
1.

(λx.x (x y))(λu.u) → (λu.u) ((λu.u) y)
→ (λu.u) y

→ y

2. (a) id = λx.x

(b) compose = λf.λg.λx.f (g x)

(c) f = λg.λn.if n = 0 then 1 else (fib (n− 1)) + (fib (n− 2))
fib = fix f

3. We can no longer write a simple identity function as before, since we need to give a single explicit type
to its parameter. Thus, we have: idBool = λx : Boolean.x and idInt = λx : Integer.x, and so on for
functions. We actually need an infinitude of functions to represent the single functions id and compose
from before!

4. For simplicity’s sake, let U = T → T . We won’t show the rules for well-formedness of environments or
types, or the rule (Val x). See the last page for the full derivation (Sorry about the readability).

5. (a) id = λA . λx : A . x
The type is: ∀α . α → α

(b) compose = λA . λB . λC . λf : (B → C) . λg : (A → B) . λx : A . f (g x)
The type is: ∀α . ∀β . ∀γ . (β → γ) → (α → β) → α → γ

6. For both proofs, we proceed by induction on the length of a derivation. That is, for each rule we assume
that there is a valid derivation of the premises (everything above the bar), for which our property holds
and then show that the property must hold below the bar.

For progress:

If ` x : T then either x is a value of there is some x′ such that x → x′.

• Unit rule: if the last rule is the unit rule, then T is Unit and since it only applies when x = unit,
we have that x is a value.

• True/False rule: Similar to above; true and false are values.

• Var rule: ` x : T cannot occur, since x is not in the empty context.

• Abs rule: Similar to Unit Rule; An abstraction is a value.

• App rule: if t1 and t2 are not values, then by the induction hypothesis, t1 → t′1 or t2 → t′2 for
some t′1 or t′2. Otherwise, t1 must be a λ abstraction, since t1 : U → T (we actually need a
small lemma for this step, but we’ll assume it for now). Futhermore, t2 : U . This means we have
t1 = λx : U.e : T , for some x, e. Thus, we can perform a beta reduction to yield [x 7→ t2]e. This
is our step.

• If rule: if M is not a value then by the induction hypothesis we can reduce it to some M ′.

• Otherwise it’s a Boolean, and it must be true or false. In either case, we can perform a reduction.

For preservation (note that here we use induction on the derivation of the reduction, rather than the
type of e). We have one case for each reduction rule:

If e is well typed and e → e′ then e′ is well-typed.

• The value rules are all vacuous.

1



• App1 Rule: By the induction hypothesis, the type of e is the type of e′, so application has the
same type.

• App2 Rule: Again, by the induction hypothesis, e and e′ have the same type, so the application
has the same type.

• AppAbs Rule: Here we use the substitution property (substituting a term by another term of the
same type in some larger term doesn’t change the type of the larger term), and the induction
hypothesis.

• If Rule: The only way to reduce the if statement results in another if with the same branches
(and thus the same type) or a branch (which has the same type as the statement).

2



y
:
U

,
x

:
(U

→
U

)
`

x
:
(U

→
U

)
y

:
U

,
x

:
(U

→
U

)
`

x
:
(U

→
U

)
y

:
U

,
x

:
(U

→
U

)
`

y
:
U

y
:
U

,
x

:
(U

→
U

)
`

(x
y
)

:
U

V
a
l
A

p
p
ly

y
:
U

,
x

:
(U

→
U

)
`

x
(x

y
)

:
U

V
a
l
A

p
p
l

y
:
U
`

λ
x

:
(U

→
U

).
x
(x

y
)

:
(U

→
U

)
→

U
V
a
l
F
u
n

y
:
U

,
u

:
U
`

u
:
U

y
:
U
`

λ
u

:
U

.u
:
(U

→
U

)
V
a
l
F
u
n

y
:
U
`

(λ
x

:
(U

→
U

).
x
(x

y
))

(λ
u

:
U

.u
)

:
U

V
a
l
A

p
p
l

3


