$$
\begin{aligned}
(\lambda x . x(x y))(\lambda u . u) & \rightarrow(\lambda u . u)((\lambda u . u) y) \\
& \rightarrow(\lambda u . u) y \\
& \rightarrow y
\end{aligned}
$$

2. (a) $i d=\lambda x . x$
(b) compose $=\lambda f . \lambda g . \lambda x . f(g x)$
(c) $f=\lambda g . \lambda n$.if $n=0$ then 1 else $(f i b(n-1))+(f i b(n-2))$ $f i b=f i x f$
3. We can no longer write a simple identity function as before, since we need to give a single explicit type to its parameter. Thus, we have: $i d_{\text {Bool }}=\lambda x$: Boolean. x and $i d_{\text {Int }}=\lambda x:$ Integer. x, and so on for functions. We actually need an infinitude of functions to represent the single functions $i d$ and compose from before!
4. For simplicity's sake, let $U=T \rightarrow T$. We won't show the rules for well-formedness of environments or types, or the rule (Val x). See the last page for the full derivation (Sorry about the readability).
5. (a) $i d=\lambda A \cdot \lambda x: A . x$

The type is: $\forall \alpha . \alpha \rightarrow \alpha$
(b) compose $=\lambda A \cdot \lambda B \cdot \lambda C \cdot \lambda f:(B \rightarrow C) \cdot \lambda g:(A \rightarrow B) \cdot \lambda x: A \cdot f(g x)$

The type is: $\forall \alpha . \forall \beta . \forall \gamma .(\beta \rightarrow \gamma) \rightarrow(\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \gamma$
6. For both proofs, we proceed by induction on the length of a derivation. That is, for each rule we assume that there is a valid derivation of the premises (everything above the bar), for which our property holds and then show that the property must hold below the bar.
For progress:
If $\vdash x: T$ then either x is a value of there is some x^{\prime} such that $x \rightarrow x^{\prime}$.

- Unit rule: if the last rule is the unit rule, then T is Unit and since it only applies when $x=u n i t$, we have that x is a value.
- True/False rule: Similar to above; true and false are values.
- Var rule $\vdash x: T$ cannot occur, since x is not in the empty context.
- Abs rule: Similar to Unit Rule; An abstraction is a value.
- App rule: if t_{1} and t_{2} are not values, then by the induction hypothesis, $t_{1} \rightarrow t_{1}^{\prime}$ or $t_{2} \rightarrow t_{2}^{\prime}$ for some t_{1}^{\prime} or t_{2}^{\prime}. Otherwise, t_{1} must be a λ abstraction, since $t_{1}: U \rightarrow T$ (we actually need a small lemma for this step, but we'll assume it for now). Futhermore, $t_{2}: U$. This means we have $t_{1}=\lambda x: U . e: T$, for some x, e. Thus, we can perform a beta reduction to yield $\left[x \mapsto t_{2}\right] e$. This is our step.
- If rule: if M is not a value then by the induction hypothesis we can reduce it to some M^{\prime}.
- Otherwise it's a Boolean, and it must be true or false. In either case, we can perform a reduction.

For preservation (note that here we use induction on the derivation of the reduction, rather than the type of $e)$. We have one case for each reduction rule:
If e is well typed and $e \rightarrow e^{\prime}$ then e^{\prime} is well-typed.

- The value rules are all vacuous.
- App1 Rule: By the induction hypothesis, the type of e is the type of e^{\prime}, so application has the same type.
- App2 Rule: Again, by the induction hypothesis, e and e^{\prime} have the same type, so the application has the same type.
- AppAbs Rule: Here we use the substitution property (substituting a term by another term of the same type in some larger term doesn't change the type of the larger term), and the induction hypothesis.
- If Rule: The only way to reduce the if statement results in another if with the same branches (and thus the same type) or a branch (which has the same type as the statement).

$y: U, x:(U \rightarrow U) \vdash(x y): U$			
			$\frac{y: U, u: U \vdash u: U}{y: U \vdash \lambda u: U . u:(U \rightarrow U)}$ Val Fun

