o

Az (z y))(Au.u)

(a) id=dz.x
(b) compose = Af.Ag. x.f (g x)
(¢) f=Ag.Anif n =0 then 1 else (fib (n—1)) + (fib (n—2))
fib = fix f
We can no longer write a simple identity function as before, since we need to give a single explicit type
to its parameter. Thus, we have: idgo,o,; = Az : Boolean.x and idy,; = Az : Integer.x, and so on for

functions. We actually need an infinitude of functions to represent the single functions id and compose
from before!

. For simplicity’s sake, let U =T — T. We won’t show the rules for well-formedness of environments or

types, or the rule (Val x). See the last page for the full derivation (Sorry about the readability).
(a) id=XA . z: A . ¢

The type is: Vo . o — «
(b) compose =AA . AB . AC . A\f:(B—C).Ag: (A—=B). X x:A. f (g2)

The type is: Voo . V3 . Vy . (B—7) = (a—= ) —a— 7y

For both proofs, we proceed by induction on the length of a derivation. That is, for each rule we assume
that there is a valid derivation of the premises (everything above the bar), for which our property holds
and then show that the property must hold below the bar.

For progress:

If - 2 : T then either z is a value of there is some z’ such that z — z'.

e Unit rule: if the last rule is the unit rule, then T is Unit and since it only applies when = = unit,
we have that x is a value.

e True/False rule: Similar to above; true and false are values.
e Var rule: - x : T' cannot occur, since x is not in the empty context.
e Abs rule: Similar to Unit Rule; An abstraction is a value.

e App rule: if #; and ¢y are not values, then by the induction hypothesis, t; — t} or to — t} for
some t; or ¢,. Otherwise, ¢; must be a A abstraction, since ¢t; : U — T (we actually need a
small lemma for this step, but we’ll assume it for now). Futhermore, t5 : U. This means we have
t1 = Az : U.e: T, for some z,e. Thus, we can perform a beta reduction to yield [x — t3]e. This
is our step.

e If rule: if M is not a value then by the induction hypothesis we can reduce it to some M’.

e Otherwise it’s a Boolean, and it must be true or false. In either case, we can perform a reduction.
For preservation (note that here we use induction on the derivation of the reduction, rather than the
type of e). We have one case for each reduction rule:

If e is well typed and e — ¢’ then €’ is well-typed.

e The value rules are all vacuous.



Appl Rule: By the induction hypothesis, the type of e is the type of €/, so application has the
same type.

App2 Rule: Again, by the induction hypothesis, ¢ and ¢’ have the same type, so the application
has the same type.

AppAbs Rule: Here we use the substitution property (substituting a term by another term of the
same type in some larger term doesn’t change the type of the larger term), and the induction
hypothesis.

If Rule: The only way to reduce the if statement results in another if with the same branches
(and thus the same type) or a branch (which has the same type as the statement).



n:(mpsn)((iz)e () xx)40: i

dd 15
1V 1A N—(n—n):(imz(n—p):ax A

(ne=n):inn:inx+40:h ung reA
n:n+4n:n‘n:A ddy 1eA

n: i)z 4(n—n):x‘n:h
n:(fix)4(n—n:zn:h ‘
Addy 1 n—n:x4(n<n:xz‘n:h
! <_>b$ibTbYas$ (n=n):zq4<n:z‘n:h ( v ( v

ung [eA




