CSC2125 — Advanced Topics in Software
Engineering: Program Analysis and
Understanding
Fall 2006

About this Class

* Topic: Analyzing and understanding software

* Three main focus areas:
= Static analysis
- Automatic reasoning about source code
» Formal systems and notations
- Vocabulary for talking about programs
= Programming language features

- Affects programs and how we reason about them

Readings

*Nielson, Nielson, Hankin. Principles of
Program Analysis, 2005, Springer.

*Supplemental readings from classical papers
and from recent advances

Preparation

* A course in compilers would be helpful

* A course in model-checking would be most
helpful

Expectations

» Periodic written assignments (not graded)
- Short problem sets
- This is how you will learn things

- Much more effective than listening to a lecture

mCourse participation (discussion of written
assignments and course material)

mPresentation of part of course material

mPresentation of one application

What this course is about?

20 Ideas and Applications in Program Analysis
in 40 Minutes

Abstract Interpretation

*Rice’s Theorem: Any non-trivial property of
programs is undecidable

n Uh-oh! We can’t do anything. So much for this
course...

*Need to make some kind of approximation
» Abstract the behavior of the program

» ...and then analyze the abstraction

»Seminal papers: Cousot and Cousot, 1977,
1979

Dataflow Analysis

» Classic style of program analysis
» Used in optimizing compilers
= Constant propagation

= Common sub-expression elimination
metc.

« Efficiently implementable

n At least, interprocedurally (within a single proc.)
= Use bit-vectors, fixpoint computation

Lattices and Termination

« Dataflow facts form a lattice

x=7?
x=3 x=6 .

x=*

« Each statement has a transformation function
= Out(S) = Gen(S) U (In(S) - Kill(S))

* Terminates because
» Finite height lattice

= Monotone transformation functions

Example

‘e=nle+te

*Notice the need for ? value

nArises because of the abstraction

Control-Flow Graph

x=3 N X3 N
| yi=z+w | [y:=0 |1
N / /
x=3" x=2 /
. s
x=2"x A
/
=T/

Static Single Assignment Form

* Transform CFG so each use has a single
defn

Lambda Calculus

* Three syntactic forms

we 5= X variable
| Axe function
m |ee function application

» One reduction rule
s(xe)e,—ele\X] (replace xbye,ine)

» Can represent any computable function!

Example

+ Conditionals
mtrue = AxAy.x false = Ax.Ay.y

mifathenbelsec=abc
- if true then b else ¢ = (Ax.Ay.x) bc — (Ay.b) c — b
- if false then b else ¢ = (Ax.Ay.y) bc — (Ay.y)c — ¢

+ Can also represent numbers, pairs, data
structures, etc, etc.
*Result: Lingua franca of PL

Type Systems

* Machine represents all values as bit patterns
=I5 00110110111100101100111010101000

- A signed integer? Unsigned integer? Floating-point
number? Address of an integer? Address of a function?
etc.

* Type systems allow us to distinguish these
» To choose operation (which + op), e.g., FORTRAN

» To avoid programming mistakes
- E.g., don't treat integer as a function address

Simply-typed A-calculus

e =Xx|n|AxTE|EE
Ti=int|T—oT
in type environment A, expression e has type 1

Al-e:T
x € dom(A)
Al n:int AF x 1 A(X)
AlT\x] Fe: 1 A- el 1T A-e2:1
A- AT ToT A-ete2:7

Subtyping

« Liskov:

= If for each object o, of type S there is an object o, of
type T such that for all programs P defined in terms
of o,, the behavior of P is unchanged when o, is
substituted for o, then s is a subtype of T.

* Informal statement
= If anyone expecting a T can be given an S instead,
then s is a subtype of T.

Axiomatic Semantics

+Old idea: Shouldn’t just hack up code, try to
prove programs are correct

* Proofs require reasoning about the meaning
of programs

* First system: Formalize program behavior in
logic
» Hoare, Dijkstra, Gries, others

Hoare Triples

*{P}S{Q}

n If statement S is executed in a state satisfying
precondition P, then S will terminate, and Q will
hold of the resulting state

n Partial correctness: ignore termination

» Weakest precondition for assignment
s AXiom: {Qe\x]} x = e {Q}
sExample: {y>3}x:=y{x>3}

Other Technologies and Topics

+ Control-flow analysis

» CFL reachablity and polymorphism

+ Constraint-based analysis

+ Alias and pointer analysis

* Region-based memory management
» Garbage collection

*More...

Applications: Abstract Interp.

* Everything!

*But in particular, Polyspace

» Looks for race conditions, out-of-bounds array
accesses, null pointer dereferences, non-initialized
data access, etc.

m Also includes arithmetic equation solver

Applications: Dataflow analysis

* Optimizing compilers

n l.e., any good compiler

*ESP: Path-sensitive program checker

» Example: can check for correct file I/O properties,
like files are opened for reading before being read

«LCLint: Memory error checker (plus more)
* Meta-level compilation: Checks lots of stuff

Applications: Symbolic Evaluation

* PREFix

» Finds null pointer dereferences, array-out-of
bounds errors, etc.

= Used regularly at Microsoft

*Also ESP

Applications: Model Checking

*SLAM, BLAST, Yasm

» Focus on device drivers: lock/unlock protocol
errors, and other errors sequencing of operations

» Uses alias analysis, predicate abstraction,
analysis of recursive functions...

Applications: Axiomatic Semantics

» Extended Static Checker and Spec#
» Can perform deep reasoning about programs
u Array out-of-bounds
» Null pointer errors

n Failure to satisfy internal invariants

*Based on theorem proving

Applications: Type Systems

* Type qualifiers

» Format-string vulnerabilities, deadlocks, file /0
protocol errors, kernel security holes

+Vault and Cyclone

= Memory allocation and deallocation errors, library
protocol errors, misuse of locks

Conclusion

*PL has a great mix of theory and practice
nVery deep theory
uBut lots of practical applications

*Recent exciting new developments
sFocus on program correctness instead of speed
sForget about full correctness, though
sScalability to large programs essential

sSource: Jeff Foster's course in Univ. of Maryland

Possible Course Syllabus

*« Week 1 Introduction, course setup

* Week 2 Dataflow analysis

* Week 3 More dataflow. PA as MC of Al, monotone frameworks

* Week 4 Program semantics (Schmidt), worklist algorithms

* Week 5 Interprocedural analysis, context sensitive analysis
(Pnueli), Bebob, Reps/Sagiv

* Week 6 Abstract Interpretation

* Week 7 More abstract interpretation (widening, shape analysis)

* Week 8 Lambda calculus, Type systems

* Week 9 Type systems (Cont'd), powersets

* Week 10 Axiomatic semantics

* Week 10 Axiomatic semantics, weakest precondition, C#, ESC/Java

* Week 12 Applications: Slicing and testcase generation

* Week 13 Applications: Security analysis 28

Introduction to the actual material

« Data-flow analysis — reaching definitions
» From Chapter 1 of textbook
= Slides 15, 18-37
« Abstract interpretation
= From Chapter 1 of textbook
n Slides 58-71

