
1

CSC2125 – Advanced Topics in Software
Engineering: Program Analysis and

Understanding
Fall 2006

2

• Topic: Analyzing and understanding software

• Three main focus areas:
■Static analysis

- Automatic reasoning about source code

■Formal systems and notations
- Vocabulary for talking about programs

■Programming language features
- Affects programs and how we reason about them

About this Class

3

Readings

•Nielson, Nielson, Hankin. Principles of
Program Analysis, 2005, Springer.
•Supplemental readings from classical papers
and from recent advances

4

Preparation

• A course in compilers would be helpful
• A course in model-checking would be most
helpful

5

Expectations

■Periodic written assignments (not graded)
- Short problem sets

- This is how you will learn things

- Much more effective than listening to a lecture

■Course participation (discussion of written
assignments and course material)

■Presentation of part of course material

■Presentation of one application

20 Ideas and Applications in Program Analysis
in 40 Minutes

What this course is about?

2

7

• Rice’s Theorem: Any non-trivial property of
programs is undecidable
■Uh-oh! We can’t do anything. So much for this

course...

• Need to make some kind of approximation
■Abstract the behavior of the program

■ ...and then analyze the abstraction

• Seminal papers: Cousot and Cousot, 1977,
1979

Abstract Interpretation

8

•e ::= n | e + e

•Notice the need for ? value
■Arises because of the abstraction

Example

+ - 0 +

- - - ?

0 - 0 +

+ ? + +

9

• Classic style of program analysis
• Used in optimizing compilers

■Constant propagation

■Common sub-expression elimination

■ etc.

• Efficiently implementable
■At least, interprocedurally (within a single proc.)

■Use bit-vectors, fixpoint computation

Dataflow Analysis

10

Control-Flow Graph

x = *

x = 3

x = 3

x = 3

x = 3

x = 6

x = ?

x = ?

x = ?

11

• Dataflow facts form a lattice

• Each statement has a transformation function
■Out(S) = Gen(S) U (In(S) - Kill(S))

• Terminates because
■Finite height lattice

■Monotone transformation functions

Lattices and Termination

x = ?

x = 3 x = 6 ...

x = *

12

• Transform CFG so each use has a single
defn

Static Single Assignment Form

3

13

• Three syntactic forms
■e ::= x variable

■ | λx.e function

■ | e e function application

• One reduction rule
■(λx.e

1
) e

2
→ e

1
[e

2
\x] (replace x by e

2
in e

1
)

• Can represent any computable function!

Lambda Calculus

14

• Conditionals
■ true = λx.λy.x false = λx.λy.y

■ if a then b else c = a b c

- if true then b else c = (λx.λy.x) b c → (λy.b) c → b

- if false then b else c = (λx.λy.y) b c → (λy.y) c → c

• Can also represent numbers, pairs, data
structures, etc, etc.

• Result: Lingua franca of PL

Example

15

• Machine represents all values as bit patterns
■ Is 00110110111100101100111010101000

- A signed integer? Unsigned integer? Floating-point
number? Address of an integer? Address of a function?
etc.

• Type systems allow us to distinguish these
■To choose operation (which + op), e.g., FORTRAN

■To avoid programming mistakes
- E.g., don’t treat integer as a function address

Type Systems

16

•e ::= x | n | λx:τ.e | e e

•τ ::= int | τ → τ

•A e : τ in type environment A, expression e has type τ

Simply-typed λ-calculus

A n : int

x ∊ dom(A)
A x : A(x)

A e1 : τ→τ′ A e2 : τ

A e1 e2 : τ′

A[τ\x] e : τ′

A λx:τ.e : τ→τ′

17

• Liskov:
■ If for each object o

1
of type S there is an object o

2
of

type T such that for all programs P defined in terms
of o

1
, the behavior of P is unchanged when o

2
is

substituted for o
1

then S is a subtype of T.

• Informal statement
■ If anyone expecting a T can be given an S instead,

then S is a subtype of T.

Subtyping

18

• Old idea: Shouldn’t just hack up code, try to
prove programs are correct

• Proofs require reasoning about the meaning
of programs

• First system: Formalize program behavior in
logic
■Hoare, Dijkstra, Gries, others

Axiomatic Semantics

4

19

• {P} S {Q}
■ If statement S is executed in a state satisfying

precondition P, then S will terminate, and Q will
hold of the resulting state

■Partial correctness: ignore termination

• Weakest precondition for assignment
■Axiom: {Q[e\x]} x := e {Q}

■ Example: {y > 3} x := y {x > 3}

Hoare Triples

20

• Control-flow analysis
• CFL reachablity and polymorphism
• Constraint-based analysis
• Alias and pointer analysis
• Region-based memory management
• Garbage collection
• More...

Other Technologies and Topics

21

• Everything!

• But in particular, Polyspace
■ Looks for race conditions, out-of-bounds array

accesses, null pointer dereferences, non-initialized
data access, etc.

■Also includes arithmetic equation solver

Applications: Abstract Interp.

22

• Optimizing compilers
■ I.e., any good compiler

• ESP: Path-sensitive program checker
■Example: can check for correct file I/O properties,

like files are opened for reading before being read

• LCLint: Memory error checker (plus more)
• Meta-level compilation: Checks lots of stuff
• ...

Applications: Dataflow analysis

23

• PREFix
■Finds null pointer dereferences, array-out-of

bounds errors, etc.

■Used regularly at Microsoft

• Also ESP

Applications: Symbolic Evaluation

24

• SLAM, BLAST, Yasm
■Focus on device drivers: lock/unlock protocol

errors, and other errors sequencing of operations

• Uses alias analysis, predicate abstraction,
analysis of recursive functions…

Applications: Model Checking

5

25

• Extended Static Checker and Spec#
■Can perform deep reasoning about programs

■Array out-of-bounds

■Null pointer errors

■Failure to satisfy internal invariants

• Based on theorem proving

Applications: Axiomatic Semantics

26

• Type qualifiers
■Format-string vulnerabilities, deadlocks, file I/O

protocol errors, kernel security holes

• Vault and Cyclone
■Memory allocation and deallocation errors, library

protocol errors, misuse of locks

Applications: Type Systems

27

•PL has a great mix of theory and practice
■Very deep theory
■But lots of practical applications

•Recent exciting new developments
■Focus on program correctness instead of speed
■Forget about full correctness, though
■Scalability to large programs essential

■Source: Jeff Foster’s course in Univ. of Maryland

Conclusion

28

Possible Course Syllabus
• Week 1 Introduction, course setup
• Week 2 Dataflow analysis
• Week 3 More dataflow. PA as MC of AI, monotone frameworks
• Week 4 Program semantics (Schmidt), worklist algorithms
• Week 5 Interprocedural analysis, context sensitive analysis
• (Pnueli), Bebob, Reps/Sagiv
• Week 6 Abstract Interpretation
• Week 7 More abstract interpretation (widening, shape analysis)
• Week 8 Lambda calculus, Type systems
• Week 9 Type systems (Cont'd), powersets
• Week 10 Axiomatic semantics
• Week 10 Axiomatic semantics, weakest precondition, C#, ESC/Java
• Week 12 Applications: Slicing and testcase generation
• Week 13 Applications: Security analysis

29

Introduction to the actual material

• Data-flow analysis – reaching definitions
■From Chapter 1 of textbook

■Slides 15, 18-37

• Abstract interpretation
■From Chapter 1 of textbook

■Slides 58-71

