CSC 2125, Fall 2006 Homework 2 Solutions

October 3, 2006

1. We start with $(\langle s_p, d_1 \rangle \to \langle n, d_2 \rangle) = (\langle s_p, g \rangle \to \langle e_p, g \rangle)$. Since $n = e_p$, we match the case on line [21].

Now, $callers(p) = \{n_2, n_7\}$. Since the order is unspecified on line [22], we'll process n_2 first.

Line [23] has us search for calls to procedure p from n_2 and returns from p into $returnSite(n_2)$ associated with g. $returnSite(n_2) = n_3$. Since $\langle n_2, g \rangle \rightarrow \langle s_p, g \rangle$ and $\langle e_p, g \rangle \rightarrow \langle n_3, g \rangle$ are the only ones that match (consulting $E^{\#}$ in Figure 2), we get $d_4 = g$ and $d_5 = g$ on line [23].

By assumption, the check on line [24] passes, and on line [25], we add the new summary edge $\langle n_2, g \rangle \rightarrow \langle n_3, g \rangle$. Line [26] then asks us for d_3 's such that $\langle s_{main}, d_3 \rangle \rightarrow \langle n_2, g \rangle$. Consulting Figure 2 again, the only candidate is $d_3 = \mathbf{0}$, so we may call **Propagate()** on $\langle s_{main}, d_3 \rangle \rightarrow \langle n_3, g \rangle$. Looking at Figure 2, we see that $\langle n_3, g \rangle$ is indeed labelled as reachable.

Now consider $c = n_7$. $returnSite(n_7) = n_8$, and we get $d_4 = d_5 = g$. We thus add $\langle n_7, g \rangle \rightarrow \langle n_8, g \rangle$ to our set of summary edges.

There is no d_3 such that $\langle s_p, d_3 \rangle \rightarrow \langle n_7, g \rangle$; hence, we don't call **Propagate()** at all. This is consistent with Figure 2: although there is an edge in $E^{\#}$ from $\langle e_p, g \rangle$, which is reachable, to $\langle n_8, g \rangle$, which is not, the "possibly-uninitializedness" is not propagated along it.

2. The representation function for f(X) = D - X is

$$\{(\mathbf{0},\mathbf{0}),(\mathbf{0},a),(\mathbf{0},b),(\mathbf{0},c)\}\$$

 $[[R_f]] \neq f$. To see this, note that $f(\{a\}) = \{b, c\}$, but $[[R_f]](\{a\}) = \{a, b, c\}$.

3. The proof is given in the RHS tech report at ftp://ftp.diku.dk/diku/ semantics/papers/D-215.ps.Z. Let D be given, and assume that f distributes over \cup . Let $X \subseteq D$. Then,

$$\begin{array}{l} f(X) \\ = & \bigcup_{x \in X} f(\{x\}) \cup f(\emptyset) \\ = & \bigcup_{x \in X} \{y | y \in f(\{x\})\} \cup \{y | y \in f(\emptyset)\} \\ = & \bigcup_{x \in X} \{y | y \in f(\{x\}) \lor y \in f(\emptyset)\} \\ = & \{y | (\exists x \in X \cdot y \in f(\{x\})) \lor y \in f(\emptyset)\} \end{array}$$
 since f is distributive

Now, using the above, we write,

$$\begin{split} & [[R_f]](X) \\ &= \{y | \exists x \in X \cdot (x, y) \in R_f\} \cup \{y | (\mathbf{0}, y) \in R_f\} - \{\mathbf{0}\} & \text{definition of } [[R_f]] \\ &= \{y | \exists x \in X \cdot y \in f(\{x\}) \land y \notin f(\emptyset)\} \cup \{y | (\mathbf{0}, y) \in R_f\} - \{\mathbf{0}\} & \text{part of definition of } R_f \\ &= \{y | \exists x \in X \cdot y \in f(\{x\}) \land y \notin f(\emptyset)\} \cup \{y | y \in f(\emptyset) \lor y = \mathbf{0}\} - \{\mathbf{0}\} & \text{other part of definition of } R_f \\ &= \{y | \exists x \in X \cdot y \in f(\{x\}) \land y \notin f(\emptyset)\} \cup \{y | y \in f(\emptyset)\} \cup \{\mathbf{0}\} - \{\mathbf{0}\} & \text{re-arrange} \\ &= \{y | \exists x \in X \cdot y \in f(\{x\}) \land y \notin f(\emptyset)\} \cup \{y | y \in f(\emptyset)\} & \text{Die}, \{\mathbf{0}\}! \text{ Die}, \{\mathbf{0}\}! \text{ Die} \\ &= \{y | (\exists x \in X \cdot y \in f(\{x\}) \land y \notin f(\emptyset)) \lor y \in f(\emptyset)\} & \text{absorb} \\ &= \{y | (\exists x \in X \cdot y \in f(\{x\})) \lor y \in f(\emptyset)\} & \text{by the above} \end{split}$$