CSC 2125, Fall 2006
 Homework 2 Solutions

October 3, 2006

1. We start with $\left(\left\langle s_{p}, d_{1}\right\rangle \rightarrow\left\langle n, d_{2}\right\rangle\right)=\left(\left\langle s_{p}, g\right\rangle \rightarrow\left\langle e_{p}, g\right\rangle\right)$. Since $n=e_{p}$, we match the case on line [21].
Now, $\operatorname{callers}(p)=\left\{n_{2}, n_{7}\right\}$. Since the order is unspecified on line [22], we'll process n_{2} first.
Line [23] has us search for calls to procedure p from n_{2} and returns from p into returnSite $\left(n_{2}\right)$ associated with g. $\operatorname{returnSite}\left(n_{2}\right)=n_{3}$. Since $\left\langle n_{2}, g\right\rangle \rightarrow\left\langle s_{p}, g\right\rangle$ and $\left\langle e_{p}, g\right\rangle \rightarrow\left\langle n_{3}, g\right\rangle$ are the only ones that match (consulting $E^{\#}$ in Figure 2), we get $d_{4}=g$ and $d_{5}=g$ on line [23].
By assumption, the check on line [24] passes, and on line [25], we add the new summary edge $\left\langle n_{2}, g\right\rangle \rightarrow\left\langle n_{3}, g\right\rangle$. Line [26] then asks us for d_{3} 's such that $\left\langle s_{\text {main }}, d_{3}\right\rangle \rightarrow\left\langle n_{2}, g\right\rangle$. Consulting Figure 2 again, the only candidate is $d_{3}=\mathbf{0}$, so we may call Propagate() on $\left\langle s_{\text {main }}, d_{3}\right\rangle \rightarrow\left\langle n_{3}, g\right\rangle$. Looking at Figure 2, we see that $\left\langle n_{3}, g\right\rangle$ is indeed labelled as reachable.
Now consider $c=n_{7}$. returnSite $\left(n_{7}\right)=n_{8}$, and we get $d_{4}=d_{5}=g$. We thus add $\left\langle n_{7}, g\right\rangle \rightarrow\left\langle n_{8}, g\right\rangle$ to our set of summary edges.
There is no d_{3} such that $\left\langle s_{p}, d_{3}\right\rangle \rightarrow\left\langle n_{7}, g\right\rangle$; hence, we don't call Propagate() at all. This is consistent with Figure 2: although there is an edge in $E^{\#}$ from $\left\langle e_{p}, g\right\rangle$, which is reachable, to $\left\langle n_{8}, g\right\rangle$, which is not, the "possiblyuninitializedness" is not propagated along it.
2. The representation function for $f(X)=D-X$ is

$$
\{(\mathbf{0}, \mathbf{0}),(\mathbf{0}, a),(\mathbf{0}, b),(\mathbf{0}, c)\}
$$

$\left[\left[R_{f}\right]\right] \neq f$. To see this, note that $f(\{a\})=\{b, c\}$, but $\left[\left[R_{f}\right]\right](\{a\})=$ $\{a, b, c\}$.
3. The proof is given in the RHS tech report at ftp://ftp.diku.dk/diku/ semantics/papers/D-215.ps.Z. Let D be given, and assume that f distributes over \cup. Let $X \subseteq D$. Then,

$$
\begin{aligned}
& f(X) \\
= & \bigcup_{x \in X} f(\{x\}) \cup f(\emptyset) \\
= & \text { since } f \text { is distributive } \\
= & \bigcup_{x \in X}\{y \mid y \in f(\{x\})\} \cup\{y \mid y \in f(\emptyset)\} \\
= & \{y \mid(\exists x \in X \cdot y \in f(\{x\}) \vee y \in f(\emptyset)\} \\
&
\end{aligned}
$$

Now, using the above, we write,

$$
\begin{array}{rlr}
& {\left[\left[R_{f}\right]\right](X)} & \\
= & \left\{y \mid \exists x \in X \cdot(x, y) \in R_{f}\right\} \cup\left\{y \mid(\mathbf{0}, y) \in R_{f}\right\}-\{\mathbf{0}\} & \text { definition of }\left[\left[R_{f}\right]\right] \\
= & \{y \mid \exists x \in X \cdot y \in f(\{x\}) \wedge y \notin f(\emptyset)\} \cup\left\{y \mid(\mathbf{0}, y) \in R_{f}\right\}-\{\mathbf{0}\} & \text { part of definition of } R_{f} \\
= & \{y \mid \exists x \in X \cdot y \in f(\{x\}) \wedge y \notin f(\emptyset)\} \cup\{y \mid y \in f(\emptyset) \vee y=\mathbf{0}\}-\{\mathbf{0}\} & \text { other part of definition of } R_{f} \\
= & \{y \mid \exists x \in X \cdot y \in f(\{x\}) \wedge y \notin f(\emptyset)\} \cup\{y \mid y \in f(\emptyset)\} \cup\{\mathbf{0}\}-\{\mathbf{0}\} & \text { re-arrange } \\
= & \{y \mid \exists x \in X \cdot y \in f(\{x\}) \wedge y \notin f(\emptyset)\} \cup\{y \mid y \in f(\emptyset)\} & \text { Die, }\{\mathbf{0}\}!\text { DIE! } \\
= & \{y \mid(\exists x \in X \cdot y \in f(\{x\}) \wedge y \notin f(\emptyset)) \vee y \in f(\emptyset)\} & \text { group together } \\
= & \{y \mid(\exists x \in X \cdot y \in f(\{x\})) \vee y \in f(\emptyset)\} & \text { absorb } \\
= & f(X) & \text { by the above }
\end{array}
$$

