
A New Foundation For Control-Dependence and Slicing
for Modern Program Structures?

Venkatesh Prasad Ranganath1, Torben Amtoft1, Anindya Banerjee1,
Matthew B. Dwyer2, and John Hatcliff1

1 Department of Computing and Information Sciences, Kansas State University ??

2 Department of Computer Science and Engineering, University of Nebraska, Lincoln ???

Abstract. The notion of control dependence underlies many program analysis
and transformation techniques. Despite wide applications, existing definitions
and approaches for calculating control dependence are difficult to apply seam-
lessly to modern program structures. Such program structures make substantial
use of exception processing and increasingly support reactive systems designed
to run indefinitely.
This paper revisits foundational issues surrounding control dependence and slic-
ing. It develops definitions and algorithms for computing control dependence
that can be directly applied to modern program structures. A variety of prop-
erties show that the new definitions conservatively extend classic definitions. In
the context of slicing reactive systems, the paper proposes a notion of slicing
correctness based on weak bisimulation and proves that the definition of control
dependence generates slices that conform to this notion of correctness. The new
definitions and algorithms for control dependence form the basis of a publicly
available program slicer that has been implemented for full Java.

1 Introduction

The notion of control-dependence underlies many program analysis and transforma-
tion techniques used in numerous applications including program slicing applied for
program understanding [2], debugging [3], partial evaluation [4], compiler optimiza-
tions [5] such as global scheduling, loop fusion, code motion etc. Intuitively, a program
statement n1 is control-dependent on a statement n2, if n2 (typically, a conditional state-
ment) controls whether or not n1 will be executed or bypassed during an execution of
the program.

While existing definitions and approaches for calculating control dependence and
slicing are widely applied and have been used in the current form for well over 20
years, there are several aspects of these definitions that prevent them from being applied

? This work was supported in part by the U.S. Army Research Office (DAAD190110564),
by DARPA/IXO’s PCES program (AFRL Contract F33615-00-C-3044), by NSF (CCR-
0306607,CCR-0296182,CCR-0209205,ITR-0326577,CCR-0444167), by Lockheed Martin,
and by Intel Corporation.

?? Manhattan KS, 66506, USA. {rvprasad,tamtoft,ab,hatcliff}@cis.ksu.edu
??? Lincoln NE 68588-0115, USA. {dwyer}@cse.unl.edu

smoothly to modern program structures which rely significantly on exception process-
ing and increasingly support reactive systems which are designed to run indefinitely.

(I.) Classic definitions of control dependence are stated in terms of program control-
flow graphs (CFGs) in which the CFG has a unique end node – they do not apply directly
to program CFGs with (a) multiple end nodes or with (b) no end node. Restriction (a)
means that existing definitions cannot be applied directly to programs/methods with
multiple exit points – a restriction that would be violated by any method that raises
exceptions or includes multiple returns. Restriction (b) means that existing definitions
cannot be applied directly to reactive programs or system models with control loops
that are designed to run indefinitely.

Restriction (a) is usually addressed by performing a pre-processing step that trans-
forms a CFG with multiple end nodes into a CFG with a single end node by adding a
new designated end node to the CFG and inserting arcs from all original exit states to
the new end node [6, 2]. Restriction (b) can also be addressed in a similar fashion by,
e.g., selecting a single node within the CFG to represent the end node. This case is more
problematic than the pre-processing for Restriction (a) because the criteria for selecting
end nodes that lead to the desired control dependence relation between program nodes
is often unclear. This is particularly true in threads such as event-handlers which have
no explicit shut-down methods, but are “shut down” by killing the thread (thus, there is
nothing in the thread’s control flow to indicate an exit point).

(II.) A deeper problem is that existing definitions of slicing correctness either apply
to programs with terminating execution traces, or they often fail to state whether or
not the slicing transformation preserves the termination behavior of the program being
sliced. Thus these definitions cannot be applied to reactive programs that are designed to
execute indefinitely. Such programs are used in numerous modern applications such as
event-processing modules in GUI systems, web services, distributed real time systems
with autonomous components, e.g. data sensors, etc.

Despite the difficulties, it appears that researchers and practitioners do continue
to apply slicing transformations to programs that fail to satisfy the restrictions above.
However, in reality the pre-processing transformations related to issue (I) introduce ex-
tra overhead into the entire transformation pipeline, clutter up program transformation
and visualization facilities, necessitate the use/maintenance of mappings from the trans-
formed CFGs back to the original CFGs, and introduce extraneous structure with ad-hoc
justifications that all down-stream tools/transformations must interpret and build on in
a consistent manner. Moreover, regarding issue (II) it will be infeasible to continue to
ignore issues of termination as slicing is increasingly applied in high-assurance appli-
cations such as reducing models for verification [7] and for reasoning about security
issues where it is crucial that liveness/non-termination properties be preserved.

Working on a larger project on slicing concurrent Java programs, we have found
it necessary to revisit basic issues surrounding control dependence and have sought to
develop definitions that can be directly applied to modern program structures such as
those found in reactive systems. In this paper, we propose and justify the usefulness and
correctness of simple definitions of control dependence that overcome the problematic
aspects of the classic definitions described above. The specific contributions of this
paper are as follows.

– We propose new definitions of control dependence that are simple to state and easy
to calculate and that work directly on control-flow graphs that may have no end
nodes or non-unique end nodes, thus avoiding troublesome pre-processing CFG
transformations (Section 4).

– We prove that these definitions applied to reducible CFGs yield slices that are cor-
rect according to generalized notions of slicing correctness based on a form of
weak bisimulation that is appropriate for programs with infinite execution traces
(Section 5.1).

– We clarify the relationship between our new definitions and classic definitions by
showing that our new definitions represent a form of “conservative extension” of
classic definitions: when our new definitions are applied to CFGs that conform to
the restriction of a single end node, our definitions correspond to classic definitions
– they do not introduce any additional dependences nor do they omit any depen-
dences (Section 4.1).

– We discuss the intuitions behind algorithms for computing control dependence (ac-
cording to the new definitions) to justify that control dependence is computable in
polynomial time (Section 6).

Expanded discussions, definitions and full proofs appear in the companion technical
report [8]. The proposed notions of control dependence described in this paper have
been implemented in Indus [9] – our publicly available open-source Eclipse-based Java
slicer that works on full Java 1.4 and has been applied to code bases of up to 10,000
lines of Java application code (< 80K bytecodes) excluding library code. Besides its
application as a stand-alone program visualization, debugging, and code transformation
tool, our slicer is being used in the next generation of Bandera, a tool set for model-
checking concurrent Java systems.[1]

2 Basic Definitions

2.1 Control Flow Graphs

In the sequel, we follow tradition and represent a program as a control-flow graph,
whose definition we adapt from Ball and Horwitz [10].

Definition 1 (Control Flow Graphs).
A control-flow graph G = (N,E,n0) is a labeled directed graph in which

– N is a set of nodes that represent commands in program,
– the set of N is partitioned into two subsets NS, NP, where NS are statement nodes

with each ns ∈ NS having at most one successor, where NP are predicate nodes with
each np ∈ NP having two successors, and NE ⊆ NS contains all nodes of NS that
have no successors, i.e., NE contains all end nodes of G,

– E is a set of labeled edges that represent the control flow between graph nodes
where each np ∈ NP has two outgoing edges labeled T and F respectively, and each
ns ∈ (NS−NE) has an outgoing edge labeled A (representing Always taken),

– the start node n0 has no incoming edges and all nodes in N are reachable from n0.

We will display the labels on CFG edges only when necessary for the current exposition.

As stated earlier, existing presentations of slicing require that each CFG G satisfies
the unique end node property: there is exactly one element in NE = {ne} and ne is
reachable from all other nodes of G. The above definition does not require this property
of CFGs, but we will sometimes consider CFGs with the unique end node property in
our comparisons to previous work.

To relate a CFG with the program that it represents, we use the function code to
map a CFG node n to the code for the program statement that corresponds to that node.
Specifically, for ns ∈ NS, code(ns) yields the code for an assignment statement, and
for np ∈ NP, code(np) the code for the test of a conditional statement (the labels on
the edges for np allow one to determine the nodes for the true and false branches of
the conditional). The function def maps each node to the set of variables defined (i.e.,
assigned to) at that node (always a singleton or empty set), and ref maps each node to
the set of variables referenced at that node.

A CFG path π from ni to nk is a sequence of nodes ni,ni+1, . . . ,nk such for every
consecutive pair of nodes (n j,n j+1) in the path there is an edge from n j to n j+1. A path
between nodes ni and nk can also be denoted as [ni..nk]. When the meaning is clear from
the context, we will use π to denote the set of nodes contained in π and we write n ∈ π
when n occurs in the sequence π . Path π is non-trivial if it contains at least two nodes.
A path is maximal if it is infinite or if it terminates in an end node.

The following definitions describe relationships between graph nodes and the dis-
tinguished start and end nodes [11]. Node n dominates node m in G (written dom(n,m))
if every path from the start node s to m passes through n (note that this makes the dom-
inates relation reflexive). Node n post-dominates node m in G (written post-dom(n,m))
if every path from node m to the end node e passes through n. Node n strictly post-
dominates node m in G if post-dom(n,m) and n 6= m. Node n is the immediate post-
dominator of node m if n 6= m and n is the first post-dominator on every path from m
to the end node e. Note that domination relations are well-defined but post-domination
relationships are not well-defined for graphs that do not have the unique end node prop-
erty. Node n strongly post-dominates node m in G if n post-dominates m and there is
an integer k ≥ 1 such that every path from node m of length ≥ k passes through n
[2]. The difference between strong post-domination and the simple definition of post-
domination above is that even though node n occurs on every path from m to e (and
thus n post-dominates m), it may be the case that there is a loop in the CFG between m
and n that admits an infinite path beginning at m that never encounters n. Strong post-
domination rules out the possibility of such loops between m and n – thus, it is sensitive
to the possibility of non-termination along paths from m to n.

A CFG G of the form (N,E,n0) is reducible if E can be partitioned into disjoint sets
E f (the forward edge set) and Eb (the back edge set) such that (N,E f) forms a DAG
in which each node can be reached from the entry node n0 and for all edges e ∈ Eb,
the target of e dominates the source of e. All “well-structured” programs, including
Java programs, give rise to reducible control-flow graphs. Our definitions and most of
our correctness results apply to irreducible CFGs as well, but our correctness result of
slicing based on bisimulation, holds for reducible graphs since bisimulation requires

ordering properties that can only be guaranteed on reducible graphs – (see example in
Section 4 preceding Theorem 2.)

2.2 Program Execution

The execution semantics of program CFGs is phrased in terms of transitions on pro-
gram states (n,σ) where n is a CFG node and σ is a store mapping the corresponding
program’s variables to values. A series of transitions gives an execution trace through
p’s statement-level control flow graph. For state (ni,σi), the code at ni is executed on
the transition from (ni,σi) to successor state (ni+1,σi+1). Execution begins at the start
node n0, and the execution of each node possibly updates the store and transfers control
to an appropriate successor node. Execution of a node ne ∈ NE produces a final state
(halt,σ) where the control point is indicated by a special label halt – this indicates a
normal termination of program execution. The presentation of slicing in Section 5 in-
volves arbitrary finite and infinite non-empty sequences of states written Π = s1 , s2,
For a set of variables V , we write σ1 =V σ2 when for all x ∈V , σ1(x) = σ2(x).

2.3 Notions of Dependence and Slicing

A program slice consists of the parts of a program p that (potentially) affect the vari-
able values referenced at some program points of interest; such program points are
traditionally called the slicing criterion [12]. A slicing criterion C for a program p is a
non-empty set of nodes {n1, . . . , nk} where each ni is a node in p’s CFG.

The definitions below are the classic ones of the two basic notions of dependence
that appear in slicing of sequential programs: data dependence and control dependence
[12].

Data dependence captures the notion that a variable reference is dependent upon
any variable definition that “reaches” the reference.

Definition 2 (data dependence). Node n is data-dependent on m (written m
dd
→ n –

the arrow pointing in the direction of data flow) if there is a variable v such that: (1)
there exists a non-trivial path π in p’s CFG from m to n such that for every node
m′ ∈ π−{m,n}, v /∈ def(m′), and (2) v ∈ def(m)∩ ref(n).

Control dependence information identifies the conditionals that may affect execu-
tion of a node in the slice. Intuitively, node n is control-dependent on a predicate node
m if m directly determines whether n is executed or “bypassed”.

Definition 3 (control dependence). Node n is control-dependent on m in program p

(written m
cd
→ n) if (1) there exists a non-trivial path π from m to n in p’s CFG such

that every node m′ ∈ π−{m,n} is post-dominated by n, and (2) m is not strictly post-
dominated by n.

For a node n to be control-dependent on predicate m, there must be two paths that
connect m with the unique end node e such that one contains n and the other does
not. There are several slightly different notions of control-dependence appearing in the
literature, and we will consider several of these variants and relations between them in

the rest of the paper. At present, we simply note that the above definition is standard
and widely used (e.g., see [11]).

We write m
d
→ n when either m

dd
→ n or m

cd
→ n. The algorithm for constructing a

program slice proceeds by finding the set of CFG nodes SC (called the slice set or back-

ward static slice) from which the nodes in C are reachable via
d
→. The term “backward”

signifies that the algorithm starts at the criterion nodes and looks backward through the
program’s control-flow graph to find other program statements that influence the exe-
cution at the criterion nodes. Our definitions of control dependence can be applied in
computing forward slices as well.

Definition 4 (slice set). Let C be a slicing criterion for program p. Then the slice set
SC of p with respect to C is defined as follows:

SC = {m | ∃n .n ∈C and m
d
→∗ n}.

We will consider slicing correctness requirements in greater detail in Section 5.1.
For now we note that commonly in the slicing literature the desired correspondence
between the source program and the slice is not formalized; the emphasis is often on
applications rather than foundations, and this also leads to subtle differences between
presentations. When a notion of “correct slice” is given, it is often stated using the
notion of projection [13]. Informally, given an arbitrary trace Π of p and an analogous
trace Πs of ps, ps is a correct slice of p if projecting out the nodes in criterion C (and the
variables referenced at those nodes) for both Π and Πs yields identical state sequences.

3 Assessment of Existing Definitions

3.1 Variations in Existing Control Dependence Definitions

Although Definition 3 of control dependence is widely used, there are a number of (of-
ten subtle) variations appearing in the literature. Here are some:
Admissibility of indirect control dependences. For example, using the definition of con-

trol dependence in Definition 3, for Fig. 1 (a), we can conclude that a
cd
→ f and f

cd
→ g

however a
cd
→ g does not hold because g does not post-dominate f. The fact that a and

g are indirectly related (a does play a role in determining if g is executed or bypassed)
is not captured in the definition of control dependence itself but in the transitive closure
used in the slice set construction (Definition 4). However, some definitions of control
dependence [2] incorporate this notion of transitivity directly into the definition itself
as we will illustrate later.
Sensitivity to non-termination. Consider Fig. 1 (a) again, where node c represents a

post-test that controls a potentially infinite loop. According to Definition 3, a
cd
→ d

holds but c
cd
→ d does not hold (because d post-dominates c) even though c may deter-

mine whether d executes or never gets to execute due to an infinite loop that postpones
d forever. Thus, Definition 3 is non-termination insensitive.

We now further illustrate the variations by recalling definitions of strong and weak
control dependence given by Podgurski and Clarke [2] and used in a number of works,
e.g., the study of control dependence by Bilardi and Pingali [14].

Definition 5 (Podgurski-Clarke Control Dependence).

– n2 is strongly control dependent on n1 (n1
PC−scd
→ n2) if there is a path from n1 to n2

that does not contain the immediate post dominator of n1.

– n2 is weakly control dependent on n1 (n1
PC−wcd
→ n2) if n2 strongly post dominates n′1,

a successor of n1, but does not strongly post dominate n′′1 , another successor of n1.

Whereas Definition 3 captures direct control dependence only, strong control depen-
dence as defined above captures indirect control dependence. For example, in Fig. 1, in

contrast to Definition 3, we have a
PC−scd
→ g because there is a path afg which does not

contain e, the immediate post-dominator of a. However, one can show that when used
in the context of Definition 4 (which computes the transitive closure of dependences),
the two definitions give rise to the same slices.

Weak control dependence subsumes the notion of strong control dependence (n1
PC−scd
→

n2 implies n1

PC−wcd
→∗ n2) and it captures weaker dependences between nodes induced by

non-termination: it is non-termination sensitive. For Fig. 1 (a), c
PC−wcd
→ d because d does

not strongly post-dominate b: the presence of the loop controlled by c guarantees that
there exists no k such that every path from node b of length ≥ k passes through d.

The impact of the variations on slicing. Note that slicing based on Definition 3 or
the strong control dependence above can transform a non-terminating program into a
terminating one (i.e., non-termination is not preserved in the slice). In Fig. 1 (a), assume
that the loop controlled by c is an infinite loop. Using the slice criterion C = {d} would
include a but not b and c (we assume no data dependence between d and b or c) if
the slicing is based on strong control dependence. Thus, in the sliced program, one
would be able to observe an execution of d, but such an observation is not possible in
the original program because execution diverges before d is reached. In contrast, the
difference between direct and indirect statements of control dependence seems to be
largely a technical stylistic decision in how the definitions are stated.

Very few works consider the non-termination sensitive notion of weak control de-
pendence above. We conjecture that there are at least two reasons for this. First, weak
control dependence is actually a larger relation (relating more nodes) and will thus in-
clude more nodes in the slice. Second, many applications of slicing focus on debugging
and program visualization and understanding, and in these applications having slices
that preserve non-termination is less important than having smaller slices. However,
slicing is increasingly used in security applications and as a model-reduction technique
for software model checking. In these applications, it is important to consider variants
of control dependence that preserve non-termination properties, since failure to do so
could allow inferences to be made that compromise security policies, for instance in-
validate checks of liveness properties [7].

3.2 Unique End Node Restriction on CFGs

All definitions of control dependences that we are aware of require that CFGs satisfy the
unique end node requirement – but many software systems fail to satisfy this property.

(a)

a

e

b

c

d

f

g

h

(c)

a

e

b

c

f

g

h

j

d

i

e

a

c f

d

b

a

b

c

d

e

(b)

AugmentedUnaugmented

Fig. 1. (a) is a simple CFG. (b) illustrates how a CFG that does not have a unique exit node
reachable from all nodes can be augmented to have unique exit node reachable from all nodes.
(c) is a CFG with multiple control sinks of different sorts.

Existing works simply require that CFGs have this property, or they suggest that CFGs
can be augmented to achieve this property, e.g., using the following steps: (1) insert a
new node e into the CFG, (2) add an edge from each exit node (other than e) to e, (3)
pick an arbitrary node n in each non-terminating loop and add an edge from n to e.

In our experience, such augmentations complicate the system being analyzed in sev-
eral ways. If the augmentation is non-destructive, a new CFG is generated which costs
time and memory. If the augmentation is destructive, this may clash with the require-
ments of other clients of the CFG, thus necessitating the reversal of the augmentation
before subsequent analyses can proceed. If the augmentation is not reversed, the graph
algorithms and analyses algorithms should be made intelligent to operate on the actual
CFG embedded in the augmented CFG.

Many systems have threads where the main control loop has no exit – the loop is
“exited” by simply killing the thread. For example, in Xt library, most applications cre-
ate widgets, register callbacks, and call XtAppMainLoop() to enter an infinite loop that
manages the dispatching of events to the widgets in the application. In PalmOS, appli-
cations are designed such that they start upon receiving a start code, execute a loop, and
terminate upon receiving a stop code. However, the application may choose to ignore
the stop code once it starts, and hence, not terminate except when it is explicitly killed.
In such cases, a node in the loop must be picked as the loop exit node for the purpose
of augmenting the CFG. But this can disrupt the control dependence calculations. In
Fig. 1 (b), we would intuitively expect e,b,c, and d to be control dependent on a in the

unaugmented CFG. However, a
PC−wcd
→ {e,b,c} and c

PC−wcd
→ {b,c,d, f} in the augmented

CFG. It is trivial to prune dependences involving f. But now there are new dependences

c
PC−wcd
→ {b,c,d} which did not exist in the unaugmented CFG. Although a suggestion

to delete any dependence on c may work for the given CFG, it fails if there exists a

node g that is a successor of c and a predecessor of d. Also, a
PC−wcd
→ d exists in the

unaugmented CFG but not in the augmented CFG, and it is not obvious how to recover
this information.

We address these issues head-on by considering alternate definitions of control-
dependence that do not impose the unique end-node description.

4 New Dependence Definitions

In previous definitions, the control dependence of n j on ni is specified by consider-
ing paths from ni and n j to a unique CFG end node – essentially ni and the end node
delimit the path segments that are considered. Since we aim for definitions that apply
when CFGs do not have an end node or have more than one end node, we aim to in-
stead specify that n j is control dependent on ni by focusing on paths between ni and
n j. Specifically, we focus on path segments that are delimited by ni at both ends – in-
tuitively corresponding to the situation in a reactive program where instead of reaching
an end node, a program’s behavior begins to repeat itself by returning again to ni. At
a high level, the intuition remains the same as in, e.g., Definition 3 – executing one
branch of ni always leads to n j, whereas executing another branch of ni can cause n j

to be bypassed. The additional constraints that are added (e.g., n j always occurs before
any occurrence of ni) limits the region in which n j is seen or bypassed to segments
leading up to the next occurrence of ni – ensuring that ni is indeed controlling n j. The
definition below considers maximal paths (which includes infinite paths) and thus is
sensitive to non-termination.

Definition 6 (ni
ntscd
→ n j). In a CFG, n j is (directly) non-termination sensitive control

dependent on node ni, if ni has at least two successors, nk and nl , and (1) for all maximal
paths from nk, n j always occurs and, either n j = ni, or n j occurs before any occurrence
of ni; and, (2) there exists a maximal path from nl on which either n j does not occur, or
n j is strictly preceded by ni.

We supplement a traditional presentation of dependence definitions with definitions
given as formulae in computation tree logic (CTL) [15]. CTL is a logic for describing
the structure of sets of paths in a graph, making it a natural language for expressing
control dependences. Informally, CTL includes two path quantifiers, E and A, which
define that a path from a given node with a given structure exists or that all paths from
that node have the given structure. The structure of a path is defined using one of five
modal operators (we refer to a node satisfying φ as a φ -node): Xφ states that the succes-
sor node is a φ -node, Fφ states the existence of a φ -node, Gφ states that a path consists
entirely of φ -nodes, φUψ states the existence of a ψ-node and that the path leading up
to that node consists of φ -nodes, finally, the φWψ operator is a variation on U that re-
laxes the requirement that a ψ-node exist. In a CTL formula path quantifiers and modal
operators occur in pairs, e.g., AFφ says on all paths from a node a φ node occurs.

The following CTL formula captures the definition of control dependence above.

ni
ntscd
→ n j = (G,ni) |= EX(A[¬niUn j])∧EX(E[¬n jW(¬n j ∧ni)])

Here, (G,ni) |= expresses the fact that the CTL formula is checked against the graph G
at node ni. The two conjuncts are essentially a direct transliteration of the two conditions
in Definition 6.

We have formulated Definition 6 to apply to execution traces instead of CFG paths.
In this setting one needs to bound relevant segments by ni as discussed above. However,
when working on CFG paths, the definition conditions can actually be simplified to read
as follows: (1) for all maximal paths from nk, n j always occurs, and (2) there exists a

maximal path from nl on which n j does not occur. A CTL formula for this simplified
definition is

ni
ntscd
→ n j = (G,ni) |= EX(AF(n j)∧EX(EG(¬n j))).

See [8] for the proof that the simplified definition and Definition 6 are equivalent on
CFGs.
Illustrating non-termination sensitivity of Definition 6: Note that c

ntscd
→ d in Fig. 1 (a)

since there exists a maximal path (an infinite loop between b and c) where d never

occurs. In Fig. 1 (c), note that d
ntscd
→ i because there is an infinite path from j (cycle on

(j,d)) on which i does not occur.
We now turn to constructing a non-termination insensitive version of control depen-

dence. The definition above considered all paths leading out of a conditional. Now, we
need to limit the reasoning to finite paths that reach a terminal region of the graph. To
handle this in the context of CFGs that do not have the unique end-node property, we
generalize the concept of end node to control sink – a set of nodes such that each node
in the set is reachable from every other node in the set and there is no path leading out
of the set. More precisely, a control sink κ is a set of CFG nodes that form a strongly
connected component such that for each n ∈ κ each successor of n is also in κ . It is
trivial to see that each end node forms a control sink and each loop without any exit
edges in the graph forms a control sink. For example, {e} and {b,c,d} are control sinks
in Fig. 1 (b unaugmented), and {e} and {d, i, j} are control sinks in Fig. 1 (c). Let the
set of sink-bounded paths from nk (denoted SinkPaths(nk)) contain all paths π from nk

to a node ns such that ns belongs to a control sink.

Definition 7 (ni
nticd
→ n j). In a CFG, n j is (directly) non-termination insensitively con-

trol dependent on ni if ni has at least two successors, nk and nl , and (1) for all paths
π ∈ SinkPaths(nk), n j ∈ π; and, (2) there exists a path π ∈ SinkPaths(nl) such that
n j 6∈ π and if π leads to a control sink κ , n j 6∈ κ .

In CTL:

ni
nticd
→ n j = (G,ni) |= EX(ÂF(n j))∧EX(Ê[¬n jU(c-sink?∧n j 6∈ c-sink)])

where: Â and Ê represent quantification over sink-bounded paths only; c-sink? evaluates
to true only if the current node belongs to a control sink; c-sink returns the sink set
associated with the current node.
Illustrating non-termination insensitivity of Definition 7:Note that c 6

nticd
−→ d in Fig. 1 (a)

since all paths from c to the control sink, {e}, contain d. In Fig. 1 (b unaugmented)

a
nticd
→ e because there exists a path from b to the control sink {b,c,d} and neither the

path nor the sink contain e; and, a
nticd
→ {b,c,d} because there is a path ending in control

sink {e} that does not contain b, c, or d. Interestingly, for Fig. 1 (c) our definition

concludes that d 6
nticd
−→ i because although there is a trivial path from d to the control sink

{d, i, j}, i belongs to that control sink. This is because the definition inherently captures
a form of fairness – since the back edge from j guarantees that d will be executed an
infinite number of times, the only way to avoid executing i would be to branch to d
on every cycle. Consequently, even though there may be control structures inside of a

control sink, they will not give rise to any control dependences. In applications where
one desires to detect such dependences, one would apply the definition to control sinks
in isolation with back edges removed.

4.1 Properties of the Dependence Relations

We begin by showing that the new definitions of control dependence conservatively
extend classic definitions: when we consider our definitions in the original setting with
CFGs with unique end nodes, the definitions coincide with the classic definitions. In
addition, direct non-termination insensitive control dependence (Definition 7) implies
the transitive closure of direct non-termination sensitive control dependence.

Theorem 1 (Coincidence Properties). For all CFGs with the unique end node prop-

erty, and for all nodes ni,n j ∈ N we have: (1) ni
cd
→ n j implies ni

nticd
→ n j; (2) ni

nticd
→ n j

implies ni
cd
→ n j; (3) ni

PC−wcd
→ n j iff ni

ntscd
→ n j; (4) For all CFGs, for all nodes ni,n j ∈

N : ni
nticd
→ n j implies ni

ntscd
→
∗

n j.

Part(4) of the above theorem is illustrated as follows: in Fig. 1 (a), a
nticd
→ d holds but

a
ntscd
→ d does not. But a

ntscd
→
∗

d holds as both a
ntscd
→ c and c

ntscd
→ d hold.

For the (bisimulation-based) correctness proof in Section 5.1, we shall need a few
results about slice sets (members of which are termed “observable”). The main intuition
is that the nodes in a slicing criteria C represent “observations” that one is making about
a CFG G under consideration. Specifically, for an n ∈ C, one can observe that n has
been executed and also observe the values of any variables referenced at n. A crucial
property is that the first observable node on any path (n1 in the lemmas below) will be
encountered sooner or later on all other paths. Letting Ξ be the set of nodes, we have:

Lemma 1. Assume Ξ is closed under
ntscd
→ , and that n0 /∈Ξ . Assume that there is a path

π from n0 to n1, with n1 ∈ Ξ but for all n ∈ π with n 6= n1, n /∈ Ξ . Then all maximal
paths from n0 will contain n1.

The notion of “closed” Ξ is this: if ni ∈ Ξ and ni
ntscd
→ n j then n j ∈ Ξ .

Lemma 2. Assume Ξ is closed under
nticd
→ , and that n0 /∈Ξ . Assume that there is a path

π from n0 to n1, with n1 ∈ Ξ but for all n∈ π with n 6= n1, n /∈ Ξ . Then all sink-bounded
paths from n0 will contain n1.

As a consequence we have the following result, giving conditions to preclude the exis-
tence of infinite un-observable paths:

Lemma 3. Assume that n0 /∈ Ξ , but that there is a path π starting at n0 which contains

a node in Ξ . (1) If Ξ is closed under
nticd
→ , then all sink bounded paths starting at n0 will

reach Ξ . (2) If Ξ is also closed under
ntscd
→ , then all maximal paths starting at n0 will

reach Ξ .

We are now ready for the section’s main result: from a given node there is a unique first
observable. For this, we need the CFG to be reducible, as can be seen by the counterex-
ample where from n0 there are edges to n1 and n2 between which there is a cycle.

Theorem 2. Assume that n0 /∈ Ξ , that n1,n2 ∈Ξ , and that there are paths π1 = [n0..n1]
and π2 = [n0..n2] such that on both paths, all nodes except the last do not belong to Ξ .

If Ξ is closed under
ntscd
→ and if the CFG is reducible, then n1 = n2.

5 Slicing

We now describe how to slice a (reducible) CFG G wrt. a slice set SC, the smallest set

containing C which is closed under data dependence
dd
→ and also closed under

ntscd
→ .

The result of slicing is a program with the same CFG as the original one, but with
the code map code1 replaced by code2. Here code2(n) = code1(n) for n∈ SC; for n /∈ SC:

– if n is a statement node then code2(n) is the statement skip;
– if n is a predicate node then code2(n) is cskip, the semantics of which is that it

non-deterministically chooses one of its successors.

The above definition is conceptually simple, so as to facilitate the correctness proofs. Of
course, one would want to do some post-processing, like eliminating skip commands
and eliminating cskip commands where the two successor nodes are equal; we shall
not address this issue further but remark that most such transformations are trivially
meaning preserving.

5.1 Correctness Properties

For a slicing criterion C, execution of nodes not in C correspond to silent moves or
non-observable actions. The slicing transformation should preserve the behavior of the
program with respect to C observations, but parts of the program that are irrelevant
with respect to computing C observations can be “sliced away”. The slice set SC built
according to Definition 4 represents the nodes that are relevant for maintaining the
observations C. Thus, to prove the correctness of slicing we will establish the stronger
result that G will have the same SC observations wrt. the original code map code1 as wrt.
the sliced code map code2, and this will imply that they have the same C observations.

The discussion above suggests that appropriate notions of correctness for slicing re-
active programs can be derived from the notion of weak bisimulation found in concur-
rency theory, where a transition may include a number of τ-moves [16]. In our setting,
we shall consider transitions that do one or more steps before arriving at a node in the
slice set.

Definition 8. For i = 1,2, wrt. code map codei: s
i
7−→ s′ denotes that program state s

rewrites in one step to s′. And, s0
i

=⇒ s denotes that there exists s1 . . . sk (k ≥ 1) with
sk = s such that

(1) for all j ∈ {1 . . .k} we have s j−1
i
7−→ s j;

(2) nk ∈ SC but for all j ∈ {1 . . .k−1}, n j /∈ SC, where s j = (n j,σ j) for each j.

Definition 9. Binary relation S on program states is a bisimulation if whenever (s1,s2)∈

S then: (a) if s1
1

=⇒ s′1 then there exists s′2 such that s2
2

=⇒ s′2 and (s′1,s
′
2) ∈S ; and,

(b) if s2
2

=⇒ s′2 then there exists s′1 such that s1
1

=⇒ s′1 and (s′1,s
′
2) ∈S .

For each node n in G, we define relv(n), the set of relevant variables at n, by stipulating
that x ∈ relv(n) if there exists a node nk ∈ SC and a path π from n to nk such that
x ∈ refs(nk), but x /∈ defs(n j) for all nodes n j occurring before nk in π .

The above is well-defined in that it does not matter whether we use code1 or code2,
as it is easy to see that the value of relv(n) is not influenced by the content of nodes

not in SC, since that set is closed under
dd
→. (Also, the closedness properties of SC are

not affected by using code2 rather than code1.) We have now arrived at the correctness
theorem:

Theorem 3. Let relation S0 be given by (n1,σ1)S0 (n2,σ2) iff n1 = n2 and σ1 =relv(n1)

σ2. Then (given reducible G) if SC is closed under
ntscd
→ then S0 is a bisimulation.

6 Non-Termination Sensitive Control Dependence Algorithm

Control dependences are calculated using a symbolic data-flow analysis. Each outgoing
edge n→ p of a predicate node n is represented by a token tnp. At each node m, a
summary set Smn is maintained for each predicate node n. Tokens are injected into the
summary sets of the successors of each predicate node. The tokens are then propagated
according to the following rules until no propagatian can occur.

– If q is a non-predicate node in q→ r then the tokens in the summary sets at q
are copied into the corresponding summary sets at r. This records that all maximal
paths containing q also contain r.

– Only if all tokens corresponding to a predicate node n have arrived at node q then
the tokens in the summary sets at n are copied into corresponding summary sets at
q. This records that all maximal paths containing n also contain q.

Upon termination, tnp ∈ Smn indicates that all maximal paths from n starting with
n→ p contain m. Based on this observation, if |Smn| > 0∧ |Smn| 6= Tn then, by Defini-
tion 6, it can be inferred that m is directly control dependent on n. On the other hand, if
|Smn| > 0 and |Smn| = Tn then, by Definition 6, it can be inferred that m is not directly
control dependent on n.

The above algorithm has a worst-case asymptotic complexity of O(|N|3×K) where
K is the sum of the outdegree of all predicate nodes in the CFG. Linear time algorithms
to calculate control dependence based on augmented CFGs have been proposed in the
literature [2]. The practical cost of this augmentation varies with the specific algorithm
and the nature of control dependence being calculated. Our experience with an imple-
mentation of our algorithm in a program slicer for full Java [17] suggests that, despite
its complexity bound, it elegantly scales to programs with tens-of-thousands of lines of
code. We suspect that this is due in part to the elimination of the processing overhead
involved in dealing with augmented CFGs.

A complete description of the algorithm, its correctness and its complexity analysis
is given in [8].

NON-TERMINATION-SENSITIVE-CONTROL-DEPENDENCE(G)
1 G(N,E,n0,NE) : a control flow graph.
2 S[|N|, |N|] : a matrix of sets where S[n1,n2] represents Sn1n2 .
3 T [|N|] : a sequence of integers where T [n1] denotes Tn1 .
4 CD[|N|] : a sequence of sets.
5 workbag : a set of nodes.
6
7 # (1) Initialize
8 workbag← /0
9 for each n1 in condNodes(G) and n2 in succs(n1,G)

10 do workbag← workbag∪{n2}
11 Sn2n1 ←{tn1n2}
12
13 # (2) Calculate all-path reachability
14 while workbag 6= /0
15 do flag← false
16 n3← remove(workbag)
17 for each n1 in condNodes(G)\n3
18 do if |Sn3n1 |= Tn1

19 then for each n4 in condNodes(G)\n3
20 do if Sn1n4\Sn3n4 6= /0
21 then Sn3n4 ← Sn3n4 ∪Sn1n4

22 flag = true
23
24 if flag and |succs(n3,G)|= 1
25 then n5← the successor of n3 in G
26 for n4 in condNodes(G)
27 do if Sn5n4\Sn3n4 6= /0
28 then Sn5n4 ← Sn5n4 ∪Sn3n4

29 workbag← workbag∪{n5}
30 else if flag and |succs(n3,G)|> 1
31 then for each n4 in N
32 do if |Sn4n3 |= Tn3

33 then workbag← workbag∪{n4}
34
35 # (3) Calculate non-termination sensitive control dependence
36 for each n3 in N
37 do for each n1 in condNodes(G)
38 do if |Sn4n3 |> 0 and |Sn3n1 | 6= Tn1

39 then CD[n3]←CD[n3]∪{n1}
40
41 return CD

Fig. 2. The algorithm to calculate non-termination sensitive control dependence.

7 Related Work

Fifteen years ago, control dependence was rigorously explored by Podgurski and Clarke [2].
Since then there has been a variety of work related to calculation and application of con-
trol dependence in the setting of CFGs that satisfy the unique end node property.

In the realm of calculating control dependence, Bilardi et.al [14] proposed new con-
cepts related to control dependence along with algorithms based on these concepts to ef-
ficiently calculate weak control dependence. Johnson proposed an algorithm that could
be used to calculate control dependence in time linear in the number of edges [18]. In
comparison, in this paper we sketch a feasible algorithm in a more general setting.

In the context of slicing, Horwitz, Reps, and Binkley [19] presented what has now
become the standard approach to inter-procedural slicing via dependence graphs. Re-
cently, Allen and Horwitz [20] extended previous work on slicing to handle exception-
based inter-procedural control flow. In this work, they handle CFG’s with two end nodes
(one for normal return and one for exceptional return) but it is unclear how this affects
the control dependence captured by the dependence graph. In comparison, we have
shown that program slicing is feasible with unaugmented CFGs.

For relevant work on slicing correctness, Horwitz et.al. use a semantics based multi-
layered approach to reason about the correctness of slicing in the realm of data depen-
dence [21]. Ball et.al use a program point specific history based approach to prove the
correctness of slicing for arbitrary control flow [10]. We extend that work to consider ar-
bitrary control flow without the unique end-node restriction. Their correctness property
is a weaker property than bisimulation – it does not require ordering to be maintained
between observable nodes if there is no dependence between these nodes – and it holds
for irreducible CFGs. Even though our definitions apply to irreducible graphs, we need
reducible graphs to achieve the stronger correctness property. We are currently inves-
tigating if we can establish their correctness property using our control dependence
definitions on irreducible graphs.

Hatcliff et.al. present notions of dependence for concurrent CFGs, and propose a no-
tion of bisimulation as the correctness property [6]. Millett and Teitelbaum [22] study
static slicing of Promela (the model description language for the model-checker SPIN)
and its application to model checking, simulation, and protocol understanding. They
reuse existing notions of slicing, however, they neither discuss issues related to preser-
vation of non-termination and liveness properties nor formalize a notion of correct slice
for their applications. Krinke [23] considers static slicing of multi-threaded programs
with shared variables, and focuses on issues associated with inter-thread data depen-
dence but does not consider non-termination sensitive control dependence.

8 Conclusion

The notion of control dependence is used in myriad of applications, and researchers
and tool builders increasingly seek to apply it to modern software systems and high-
assurance applications – even though the control flow structure and semantic behavior
of these systems do not mesh well with the requirements of existing control depen-
dence definitions. In this paper, we have proposed conceptually simple definitions of

control dependence that (a) can be applied directly to the structure of modern software
thus avoiding unsystematic preprocessing transformations that introduce overhead, con-
ceptual complexity, and sometimes dubious semantic interpretations, and (b) provide a
solid semantic foundation for applying control dependence to reactive systems where
program executions may be non-terminating.

We have rigorously justified these definitions by providing detailed proofs of cor-
rectness (see the companion technical report [8]), by expressing them in temporal logic
(which provides an unambiguous definition and allows them to be mechanically
checked/debugged against examples using automated verification tools), by showing
their relationship to existing definitions, and by implementing and experimenting with
them in a publicly available slicer for full Java. In addition, we have provided algorithms
for computing these new control dependence relations, and argued that any additional
cost in computing these relations is negligible when one considers the cost and ill-
effects of preprocessing steps required for previous definitions. Thus, we believe that
there are many benefits for widely applying these definitions in static analysis tools.

In ongoing work, we continue to explore the foundations of statically and dynam-
ically calculating dependences for concurrent Java programs for slicing, program ver-
ification, and security applications. In particular, we are exploring the relationship be-
tween dependences extracted from execution traces and dependences extracted from
control-flow graphs in an effort to systematically justify a comprehensive set of depen-
dence notions for the rich features found in concurrent Java programs. This effort will
yield a more direct semantic connection between notions of dependence and execution
traces instead of working indirectly through syntactic-oriented CFG definitions. With
the translated, temporal logic-based dependence definitions, we are investigating how
certain temporal properties of the unsliced version of the program are preserved in the
sliced version.

References

1. Corbett, J., Dwyer, M.B., Hatcliff, J., Laubach, S., Păsăreanu, C.S., Robby, Zheng, H.: Ban-
dera: Extracting Finite-state Models from Java source code. In: 22nd International Confer-
ence on Software Engineering (ICSE’00). (2000) 439–448.

2. Podgurski, A., Clarke, L.: A formal model of program dependences and its implications for
software testing, debugging, and maintenance. IEEE Trans. Soft. Engg. 16 (1990) 965–979.

3. Francel, M.A., Rugaber, S.: The relationship of slicing and debugging to program under-
standing. In: Seventh IEEE International Workshop on Program Comprehension (IWPC’99).
(1999) 106–113.

4. Anderson, L.O.: Program Analysis and Specialization for the C Programming Languages.
PhD thesis, DIKU, University of Copenhagen (1999).

5. Ferrante, J., Ottenstein, K.J., Warren, J.O.: The program dependence graph and its use in
optimization. ACM TOPLAS 9 (1987) 319–349.

6. Hatcliff, J., Corbett, J.C., Dwyer, M.B., Sokolowski, S., Zheng, H.: A formal study of slic-
ing for multi-threaded programs with JVM concurrency primitives. In: International Static
Analysis Symposium (SAS’99) (1999), 1–18.

7. Hatcliff, J., Dwyer, M.B., Zheng, H.: Slicing software for model construction. Journal of
Higher-order and Symbolic Computation 13 (2000) 315–353.

8. Ranganath, V.P., Amtoft, T., Banerjee, A., Dwyer, M.B., Hatcliff, J.: A new
foundation for control-dependence and slicing for modern program structures.
Technical Report 8, SAnToS Lab., Kansas State University (2004). Available at
http://projects.cis.ksu.edu/docman/admin/index.php?editdoc=1&docid=95&group id=12.

9. SAnToS Laboratory, Kansas State University: Indus, a toolkit to customize and adapt Java
programs. Available at http://indus.projects.cis.ksu.edu.

10. Ball, T., Horwitz, S.: Slicing programs with arbitrary control-flow. In: First International
Workshop on Automated and Algorithmic Debugging (AADEBUG). Volume 749 of Lecture
Notes in Computer Science, Springer-Verlag (1993) 206–222.

11. Muchnick, S.S.: Advanced Compiler Design & Implementation. Morgan Kaufmann Pub-
lishers. Inc., San Francisco, California, USA (1997).

12. Tip, F.: A survey of program slicing techniques. Journal of Programming Languages 3
(1995) 121–189.

13. Weiser, M.: Program slicing. IEEE Trans. Soft. Engg. 10 (1984) 352–357.
14. Bilardi, G., Pingali, K.: A framework for generalized control dependences. In: PLDI’96,

1996, 291–300.
15. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (1999).
16. Milner, R.: Communication and Concurrency. Prentice Hall (1989).
17. Jayaraman, G., Ranganath, V.P., Hatcliff, J.: Kaveri: Delivering Indus Java Program Slicer to

Eclipse. In: Fundamental Approaches to Software Engineering (FASE’05), 2005. To appear.
18. Johnson, R., Pingali, K.: Dependence-based program analysis. In: PLDI’93, 1993, 78–89.
19. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs. ACM

TOPLAS, 1990, 35–46.
20. Allen, M., Horwitz, S.: Slicing Java programs that throw and catch exceptions. In: PEPM’03,

2003, 44–54.
21. Horwitz, S., Pfeiffer, P., Reps, T.W.: Dependence analysis for pointer variables. In: PLDI’89,

1989, 28–40.
22. Millett, L., Teitelbaum, T.: Slicing Promela and its applications to model checking, simula-

tion, and protocol understanding. In: Fourth International SPIN Workshop. (1998)
23. Krinke, J.: Static slicing of threaded programs. In: Workshop on Program Analysis for

Software Tools and Engineering (PASTE’98). (1998) 35–42.

