Data Flow Analysis

Compiler Structure

Tree Graph

Abstract Control
Source Ohbject
Coda —»‘ Syntax —w| Flow [o 11,__3

* Source code parsed to produce AST

* AST transformed to CFG

* Data flow analysis operates on control flow
graph (and other intermediate representations)

ASTs

* ASTs are abstract
= They don’t contain all information in the program
- E.g., spacing, comments, brackets, parentheses
= Any ambiguity has been resolved

- E.g.,, a+ b+ cproduces the same ASTas (a+b) +c

Disadvantages of ASTs

* AST has many similar forms
= E.g., for, while, repeat...until

s E.g., if, 7, switch

* Expressions in AST may be complex, nested
w(42*y)+(z>5712*z:z+20)

» Want simpler representation for analysis
n ...at least, for dataflow analysis

Control-Flow Graph (CFG)

« A directed graph where
= Each node represents a statement
= Edges represent control flow

» Statements may be
mAssignments x :=yop zorx:=op z
= Copy statements x :=y
= Branches goto L or if x relop y goto L

metc.

Control-Flow Graph Example

x:=a+b;
y:=a*b;
swhile (y > a) {
a=a+1;
x:=a+b

Variations on CFGs

*We usually don’t include declarations (e.g., int
X;)

» But there’s usually something in the implementation

* May want a unique entry and exit node
= Won'’t matter for the examples we give

» May group statements into basic blocks

» A sequence of instructions with no branches into or
out of the block

Control-Flow Graph w/Basic Blocks

X:=a+b;

y:=a*b;

while (y >a +b) {
a:=a+1,;
x:=a+b

}

» Can lead to more efficient implementations
* But more complicated to explain, so...

= We'll use single-statement blocks in lecture today

CFG vs. AST

* CFGs are much simpler than ASTs

» Fewer forms, less redundancy, only simple
expressions

*But...AST is a more faithful representation
u CFGs introduce temporaries
u Lose block structure of program
«So for AST,
= Easier to report error + other messages
» Easier to explain to programmer

n Easier to unparse to produce readable code

Data Flow Analysis

+ A framework for proving facts about programs
* Reasons about lots of little facts

« Little or no interaction between facts
» Works best on properties about how program
computes
*Based on all paths through program
» Including infeasible paths

Available Expressions

* An expression e is available at program point
p if
= e is computed on every path to p, and

» the value of e has not changed since the last time e
is computed on p

* Optimization

n If an expression is available, need not be
recomputed

- (At least, if it's still in a register somewhere)

Data Flow Facts

* Is expression e available?

* Facts:
ma + b is available
ma * bis available

ma + 1is available /

Gen and Kill

*What is the effect of each
statement on the set of xmae
facts?
Stmt Gen Kill y=e'b

x:=a+b| a+b

a=a+1

Computing Available Expressions

%]
x=a+b
{a+b)<
y=a‘b
e // y>z {a+b}
b,a*b {a +Db}
farbathh —=—— . {a+b}

1%

x=a+b
{a + b}

Terminology

* A joint point is a program point where two
branches meet

« Available expressions is a forward must
problem

» Forward = Data flow from in to out

= Must = At join point, property must hold on all paths
that are joined

Data Flow Equations

*Let s be a statement
msucc(s) = { immediate successor statements of s }
n pred(s) = { immediate predecessor statements of s}
= In(s) = program point just before executing s

= Out(s) = program point just after executing s

“In(s) = ﬂs, ¢ ored(s) OULS)

* Out(s) = Gen(s) U (In(s) - Kill(s))
n Note: These are also called transfer functions

Liveness Analysis

* A variable v is live at program point p if

= v will be used on some execution path originating
from p...

u before v is overwritten

* Optimization

u If @ variable is not live, no need to keep it in a
register

u If variable is dead at assignment, can eliminate
assignment

Data Flow Equations

* Available expressions is a forward must
analysis

= Data flow propagate in same dir as CFG edges

n Expr is available only if available on all paths
*Liveness is a backward may problem

= To know if variable live, need to look at future uses

u Variable is live if used on some path

+Out(s)=U In(s")

s’ € succ(s)
*In(s) = Gen(s) U (Out(s) - Kill(s))

Gen and Kill

*What is the effect of each
statement on the set of xmae
facts?
Stmt Gen Kill y=&*b
x:=a+b a,b X
y:=a*b a,b y
y>a ay
a=a+1 a a

Computing Live Variables

i

~

x=g+h
ey ——=

{{xyyaab}
/ yoa
{y, a, b} 4‘L S~ {x
{y, a, b} A

Very Busy Expressions

* An expression e is very busy at point p if

= On every path from p, expression e is evaluated
before the value of e is changed

* Optimization

= Can hoist very busy expression computation

*What kind of problem?
= Forward or backward? backward
= May or must? must

Reaching Definitions

+ A definition of a variable v is an assignment to
v

* A definition of variable v reaches point p if

» There is no intervening assignment to v

* Also called def-use information

* What kind of problem?
u Forward or backward? forward
» May or must? may

Space of Data Flow Analyses

May Must
Forward Re_aghmg Available expressions
definitions
Live .
Backward variables Very busy expressions

» Most data flow analyses can be classified this
way

n A few don't fit: bidirectional analysis

* Lots of literature on data flow analysis

Data Flow Facts and Lattices

* Typically, data flow facts form a lattice

s Example: Available expressions
waavgr 1 tOP
N

a+h, a0 24b, a+t

b art
} %ﬁu>< ‘
a'b

a+1

(none)

“bottom”

Partial Orders

* A partial order is a pair (P, <) such that
n SCPxP

A

a < isreflexive: x <z
a < is anti-symmetric: s <yandy<z=>z=y
<

- is transitive: s <yandy< 2= <2

Lattices

* A partial order is a lattice ifrlandu are defined
on any set:
| | is the meet or greatest lower bound operation:
mzxMNy<zandzNy<y
cifz<zand z <y, thenz <zly
= Liis the join or least upper bound operation:
Tr<zlUyandy<zUy

. fe<zandy<z thenz Uy <z

Lattices (cont’d)

* A finite partial order is a lattice if meet and join
exist for every pair of elements

« A lattice has unique elements | and Tsuch
that

n pfll =1 rUl==z
gl =z zUT=T
«|n a lattice,

r<yifzNy==x
r<yillelUy=1y

Useful Lattices

. (28, c) forms a lattice for any set S

u2%is the powerset of S (set of all subsets)

«If (S,) is a lattice, so is (S,)

n l.e., lattices can be flipped

* The lattice for constant propagation
|

AN
s

28

Forward Must Data Flow Algorithm

*Out(s) = Top for all statements s
u// Slight acceleration: Could set Out(s) = Gen(s) u(Top - Kill(s))

W :={all statements} (worklist)
erepeat

aTake s from W

aln(s):=N out(s')

s' € pred(s)
atemp := Gen(s) u (In(s) - Kill(s))
uif (temp != Out(s)) {
-Out(s) := temp
-W := W u succ(s)
u}
suntilW = &

Monotonicity

*A function f on a partial order is monotonic if

T <y= flz) < fy)
*Easy to check that operations to compute In and
Out are monotonic

uin(s) := ﬂsv ¢ pred(s) Out(s’)

atemp := Gen(s) U (In(s) - Kill(s))

«Putting these two together,
u temp := fs(ﬂs,Epmd(s)Out(S’))

30

Termination

»We know the algorithm terminates because
n The lattice has finite height

» The operations to compute In and Out are
monotonic

= On every iteration, we remove a statement from the
worklist and/or move down the lattice

Forward Data Flow, Again

*Out(s) = Top for all statements s

W :={all statements} (worklist)

erepeat

sTake s from W

atemp := fs(ms, ¢ pred(s) Out(s")) (fS monotonic transfer fn)
uif (temp 1= Out(s)) {

-Out(s) := temp

-W:=W u succ(s)

u}

suntil W = &

32

Lattices (P, <)

« Available expressions
u P = sets of expressions
#S1MS2=81N82
= Top = set of all expressions
» Reaching Definitions
» P = set of definitions (assignment statements)
#S1M18S2=81uS2
n Top = empty set

Fixpoints

* We always start with Top

= Every expression is available, no defns reach this
point

» Most optimistic assumption
» Strongest possible hypothesis
- = true of fewest number of states
* Revise as we encounter contradictions
= Always move down in the lattice (with meet)
*Result: A greatest fixpoint

Lattices (P, <), cont'd

« Live variables
n P = sets of variables
S1MS2=81uU82
n Top = empty set

*Very busy expressions
n P = set of expressions
«S1MS2=8S1N82

= Top = set of all expressions

Out(s) = Top forall s
W := { all statements }

repeat repeat
Take s from W Take s from W
temp := fS(HS,E ored(s) Out(s") temp := fs(ﬂs, sucols) In(s")

} }
until W =0 until W =0

Forward vs. Backward

In(s) =Top forall's
W := { all statements }

if (temp != Out(s)) { if (temp !=In(s)) {
Out(s) := temp In(s) := temp
W := W U succ(s) W =W u pred(s)

36

Termination Revisited

*How many times can we apply this step:

] temp :=f (M Out(s"))
s s'€ pred(s)

= if (temp !=Out(s)) { ... }
aClaim: Out(s) only shrinks
-Proof: Out(s) starts out as top
-So temp must be < than Top after first step
-Assume Out(s') shrinks for all predecessors s’ of s
-Then Out(s") shrinks
s' € pred(s)

-Since f monotonic, f (1 Out(s")) shrinks
s s s’ € pred(s)

Termination Revisited (cont’d)

* A descending chain in a lattice is a sequence
X0 Ox13x2 3 ...

* The height of a lattice is the length of the
longest descending chain in the lattice

* Then, dataflow must terminate in O(n k) time
u N = # of statements in program
n k = height of lattice
massumes meet operation takes O(1) time

38

Relationship to Section 2.4 of Book (NNH)

* MFP (Maximal Fixed Point) solution — general
iterative algorithm for monotone frameworks

= always terminates

= always computes the right solution

Least vs. Greatest Fixpoints

» Dataflow tradition: Start with Top, use meet
= To do this, we need a meet semilattice with top
» meet semilattice = meets defined for any set
= Computes greatest fixpoint

* Denotational semantics tradition: Start with
Bottom, use join

» Computes least fixpoint

40

Distributive Data Flow Problems

* By monotonicity, we also have
fleny) < fl@)n fl)

« A function f is distributive if
flzny) = fl@)N f(y)

Benefit of Distributivity

« Joins lose no information

HEEREE
-
K(R(F(1)Mg(1) =

E(h(F(T)) Mh(e(T))) =
KACFCT)) ME(R(9(T)))

42

Accuracy of Data Flow Analysis

« Ideally, we would like to compute the meet
over all paths (MOP) solution:

nlet fS be the transfer function for statement s
; 1
n Let path(s) be the set of paths from the entry to s

MOP(s) = ’_lpepath(s)fp()

« If a data flow problem is distributive, then
solving the data flow equations in the standard
way yields the MOP solution, i.e., MFP = MOP

What Problems are Distributive?

* Analyses of how the program computes
n Live variables
u Available expressions
= Reaching definitions

u Very busy expressions

* All Gen/Kill problems are distributive

A Non-Distributive Example

» Constant propagation

*In general, analysis of what the program
computes in not distributive

MOP vs MFP

» Computing MFP is always safe: MFP E MOP
* When distributive: MOP = MFP

* When non-distributive: MOP may not be
computable (decidable)

= e.g., MOP for constant propagation (see Lemma
2.31 of NNH)

46

Practical Implementation

« Data flow facts = assertions that are true or
false at a program point

* Represent set of facts as bit vector
N Facti represented by bit i
= Intersection = bitwise and, union = bitwise or, etc

*“Only” a constant factor speedup
» But very useful in practice

Basic Blocks

* A basic block is a sequence of statements s.t.
= No statement except the last in a branch

» There are no branches to any statement in the
block except the first

* In practical data flow implementations,
» Compute Gen/Kill for each basic block
- Compose transfer functions
u Store only In/Out for each basic block

u Typical basic block ~5 statements

48

Order Matters

» Assume forward data flow problem
ulet G = (V, E) be the CFG
n Let k be the height of the lattice

« If G acyclic, visit in topological order
= Visit head before tail of edge

* Running time O(|E|)
= No matter what size the lattice

Order Matters — Cycles

« If G has cycles, visit in reverse postorder
u Order from depth-first search

*Let Q = max # back edges on cycle-free path
n Nesting depth
» Back edge is from node to ancestor on DFS tree

*Then if vz.f(z) <z (sufficient, but not necessary)
= Running time is O((Q + 1)|E|)
- Note direction of req’'t depends on top vs. bottom

50

Flow-Sensitivity

« Data flow analysis is flow-sensitive
= The order of statements is taken into account

nl.e., we keep track of facts per program point

* Alternative: Flow-insensitive analysis
= Analysis the same regardless of statement order
= Standard example: types

=/ xcint* x= L xcint Y

Terminology Review

* Must vs. May
= (Not always followed in literature)
* Forwards vs. Backwards
* Flow-sensitive vs. Flow-insensitive
* Distributive vs. Non-distributive

52

Another Approach: Elimination

*Recall in practice, one transfer function per
basic block

*Why not generalize this idea beyond a basic
block?

= “Collapse” larger constructs into smaller ones,
combining data flow equations

= Eventually program collapsed into a single node!

= “Expand out” back to original constructs, rebuilding
information

Lattices of Functions

*Let (P, <) be a lattice
*Let M be the set of monotonic functions on P
* Define f sf g if for all x, f(x) < g(x)
* Define the function f 11 g as
= (f M g) (x) = f(x) M g(x)

*Claim: (M, sf) forms a lattice

Elimination Methods: Conditionals

a = g
Fite = (Ftnen © fit) M (Fegse © fif)
Out(if) = fip(In(ite)))

Out(then) :,U.then o fig(In(ite)))
Out(else) = (foee © fir) (In(ite)))

Elimination Methods: Loops

l :
ol

Fahile = Jhead" i i
Jhead ° foody © head”

Jhead © fbudy © fliead © fbody © flgad 7

56

Elimination Methods: Loops (cont’'d)

cLetf'=fofo..of (itimes)
w f0=id

*Let 90 = Nico.) (Fpead © fbody)i ° Fhead

*Need to compute limit as j goes to infinity
» Does such a thing exist?

*Observe: g(j+1) = g(j)

Height of Function Lattice

» Assume underlying lattice (P, <) has finite
height

= What is height of lattice of monotonic functions?
a Claim: finite

* Therefore, g(j) converges

58

Non-Reducible Flow Graphs

« Elimination methods usually only applied to
reducible flow graphs

» Ones that can be collapsed
» Standard constructs yield only reducible flow graphs

*» Unrestricted goto can yield non-reducible
graphs

Comments

+ Can also do backwards elimination

= Not quite as nice (regions are usually single entry
but often not single exit)

* For bit-vector problems, elimination efficient
» Easy to compose functions, compute meet, etc.

« Elimination originally seemed like it might be
faster than iteration

u Not really the case

60

10

Data Flow Analysis and Functions

*What happens at a function call?

n Lots of proposed solutions in data flow analysis
literature

« In practice, only analyze one procedure at a
time

» Consequences
» Call to function kills all data flow facts

= May be able to improve depending on language,
e.g., function call may not affect locals

More Terminology

* An analysis that models only a single function
at a time is intraprocedural

* An analysis that takes multiple functions into
account is interprocedural

* An analysis that takes the whole program into
account is...guess?

*Note: global analysis means “more than one
basic block,” but still within a function

62

Data Flow Analysis and The Heap

» Data Flow is good at analyzing local variables
= But what about values stored in the heap?

= Not modeled in traditional data flow

In practice: *x 1= e
= Assume all data flow facts killed (!)

» Or, assume write through x may affect any variable
whose address has been taken

*In general, hard to analyze pointers

Data Flow Analysis and Optimization

*Moore’s Law: Hardware advances double
computing power every 18 months.

* Proebsting’s Law: Compiler advances double
computing power every 18 years.

11

