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Data Flow Analysis
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• Source code parsed to produce AST

• AST transformed to CFG

• Data flow analysis operates on control flow 
graph (and other intermediate representations)

Compiler Structure
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ASTs

• ASTs are abstract
■They don’t contain all information in the program

- E.g., spacing, comments, brackets, parentheses

■Any ambiguity has been resolved
- E.g., a + b + c produces the same AST as (a + b) + c
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Disadvantages of ASTs

• AST has many similar forms
■E.g., for, while, repeat...until

■E.g., if, ?:, switch

• Expressions in AST may be complex, nested
■ (42 * y) + (z > 5 ? 12 * z : z + 20)

• Want simpler representation for analysis
■ ...at least, for dataflow analysis
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Control-Flow Graph (CFG)

• A directed graph where
■Each node represents a statement

■Edges represent control flow

• Statements may be
■Assignments x := y op z or x := op z

■Copy statements x := y

■Branches goto L or if x relop y goto L

■ etc.
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•x := a + b;
•y := a * b;
•while (y > a) {
• a := a + 1;
• x := a + b
•}

Control-Flow Graph Example
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Variations on CFGs

• We usually don’t include declarations (e.g., int 
x;)
■But there’s usually something in the implementation

• May want a unique entry and exit node
■Won’t matter for the examples we give

• May group statements into basic blocks
■A sequence of instructions with no branches into or 

out of the block
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Control-Flow Graph w/Basic Blocks

• Can lead to more efficient implementations
• But more complicated to explain, so...

■We’ll use single-statement blocks in lecture today

x := a + b;
y := a * b;
while (y > a + b) {

a := a + 1;
x := a + b

}
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CFG vs. AST

• CFGs are much simpler than ASTs
■Fewer forms, less redundancy, only simple 

expressions

• But...AST is a more faithful representation
■CFGs introduce temporaries

■ Lose block structure of program

• So for AST,
■Easier to report error + other messages

■Easier to explain to programmer

■Easier to unparse to produce readable code
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• A framework for proving facts about programs

• Reasons about lots of little facts

• Little or no interaction between facts
■Works best on properties about how program 

computes

• Based on all paths through program
■ Including infeasible paths

Data Flow Analysis
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• An expression e is available at program point 
p if
■ e is computed on every path to p, and

■ the value of e has not changed since the last time e
is computed on p

• Optimization
■ If an expression is available, need not be 

recomputed
- (At least, if it’s still in a register somewhere)

Available Expressions
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• Is expression e available?
• Facts:

■ a + b is available

■ a * b is available

■ a + 1 is available

Data Flow Facts
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• What is the effect of each 
statement on the set of 
facts?

Gen and Kill

Stmt Gen Kill

x := a + b a + b

y := a * b a * b

a := a + 1
a + 1,
a + b,
a * b
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Computing Available Expressions

∅

{a + b}

{a + b, a * b}

{a + b, a * b}

Ø

{a + b}

{a + b}

{a + b}
{a + b}
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Terminology

• A joint point is a program point where two 
branches meet

• Available expressions is a forward must
problem
■Forward = Data flow from in to out

■Must = At join point, property must hold on all paths 
that are joined
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• Let s be a statement
■ succ(s) =  { immediate successor statements of s }

■ pred(s) = { immediate predecessor statements of s}

■ In(s) = program point just before executing s

■Out(s) = program point just after executing s

• In(s) = ∩
s′ ∊ pred(s)

Out(s′)

• Out(s) = Gen(s) ∪ (In(s) - Kill(s))
■Note:  These are also called transfer functions

Data Flow Equations
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• A variable v is live at program point p if
■ v will be used on some execution path originating 

from p...

■ before v is overwritten

• Optimization
■ If a variable is not live, no need to keep it in a 

register

■ If variable is dead at assignment, can eliminate 
assignment

Liveness Analysis
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• Available expressions is a forward must 
analysis
■Data flow propagate in same dir as CFG edges

■Expr is available only if available on all paths
• Liveness is a backward may problem

■To know if variable live, need to look at future uses

■Variable is live if used on some path

• Out(s) = ∪
s′ ∊ succ(s)

In(s′)

• In(s) = Gen(s) ∪ (Out(s) - Kill(s))

Data Flow Equations
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• What is the effect of each 
statement on the set of 
facts?

Gen and Kill

Stmt Gen Kill

x := a + b a, b x

y := a * b a, b y

y > a a, y

a := a + 1 a a
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{x, y, a, b}

Computing Live Variables

{x}

{x, y, a}

{x, y, a}

{y, a, b}

{y, a, b}

{x, a, b}

{a, b}

{x, y, a, b}
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• An expression e is very busy at point p if
■On every path from p, expression e is evaluated 

before the value of e is changed

• Optimization
■Can hoist very busy expression computation

• What kind of problem?
■Forward or backward?

■May or must?

Very Busy Expressions

backward
must
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• A definition of a variable v is an assignment to 
v

• A definition of variable v reaches point p if
■There is no intervening assignment to v

• Also called def-use information

• What kind of problem?
■Forward or backward?

■May or must?

Reaching Definitions

forward
may
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• Most data flow analyses can be classified this 
way
■A few don’t fit:  bidirectional analysis

• Lots of literature on data flow analysis

Space of Data Flow Analyses

May Must

Forward Reaching 
definitions Available expressions

Backward Live 
variables Very busy expressions
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• Typically, data flow facts form a lattice
■Example:  Available expressions

Data Flow Facts and Lattices

“top”

“bottom”
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• A partial order is a pair such that
■

■

■

■

Partial Orders
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• A partial order is a lattice if and are defined 
on any set:
■ is the meet or greatest lower bound operation:

-
-

■ is the join or least upper bound operation:
-
-

Lattices
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• A finite partial order is a lattice if meet and join 
exist for every pair of elements

• A lattice has unique elements    and   such 
that
■

■

• In a lattice, 

Lattices (cont’d)
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Useful Lattices

• (2S, ⊆) forms a lattice for any set S
■ 2S is the powerset of S (set of all subsets)

• If (S, ≤) is a lattice, so is (S, ≥)
■ I.e., lattices can be flipped

• The lattice for constant propagation
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•Out(s) = Top for all statements s
■// Slight acceleration:  Could set Out(s) = Gen(s) ∪(Top - Kill(s))

•W := { all statements }     (worklist)
•repeat
■Take s from W
■In(s) := ∩

s′ ∊ pred(s)
Out(s′)

■temp := Gen(s) ∪ (In(s) - Kill(s))
■if (temp != Out(s)) {
-Out(s) := temp
-W := W ∪ succ(s)
■}
•until W = ∅

Forward Must Data Flow Algorithm
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•A function f on a partial order is monotonic if

•Easy to check that operations to compute In and 
Out are monotonic
■In(s) := ∩

s′ ∊ pred(s)
Out(s′)

■temp := Gen(s) ∪ (In(s) - Kill(s))

•Putting these two together,
■ temp := 

Monotonicity
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• We know the algorithm terminates because
■The lattice has finite height

■The operations to compute In and Out are 
monotonic

■On every iteration, we remove a statement from the 
worklist and/or move down the lattice

Termination
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Forward Data Flow, Again

•Out(s) = Top       for all statements s
•W := { all statements }     (worklist)
•repeat
■Take s from W
■temp := f

s
(⊓

s′ ∊ pred(s)
Out(s′))       (f

s
monotonic transfer fn)

■if (temp != Out(s)) {
-Out(s) := temp
-W := W ∪ succ(s)
■}
•until W = ∅
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Lattices (P, ≤)

• Available expressions
■P = sets of expressions

■S1 ⊓ S2 = S1 ∩ S2

■Top = set of all expressions

• Reaching Definitions
■P = set of definitions (assignment statements)
■S1 ⊓ S2 = S1 ∪ S2

■Top = empty set

34

Fixpoints

• We always start with Top
■Every expression is available, no defns reach this 

point

■Most optimistic assumption

■Strongest possible hypothesis
- = true of fewest number of states

• Revise as we encounter contradictions
■Always move down in the lattice (with meet)

• Result:  A greatest fixpoint
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Lattices (P, ≤), cont’d

• Live variables
■P = sets of variables
■S1 ⊓ S2 = S1 ∪ S2

■Top = empty set

• Very busy expressions
■P = set of expressions

■S1 ⊓ S2 = S1 ∩ S2

■Top = set of all expressions
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Forward vs. Backward

Out(s) = Top  for all s
W := { all statements }
repeat

Take s from W
temp := f

s
(⊓

s′ ∊ pred(s)
Out(s′))

if (temp != Out(s)) {
Out(s) := temp
W := W ∪ succ(s)

}
until W = ∅

In(s) = Top  for all s
W := { all statements }
repeat

Take s from W
temp := f

s
(⊓

s′ ∊ succ(s)
In(s′))

if (temp != In(s)) {
In(s) := temp
W := W ∪ pred(s)

}
until W = ∅
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Termination Revisited

• How many times can we apply this step:
■ temp := f

s
(⊓

s′ ∊ pred(s)
Out(s′))

■ if (temp != Out(s)) { ... }
■Claim:  Out(s) only shrinks

-Proof:  Out(s) starts out as top

-So temp must be ≤ than Top after first step

-Assume Out(s′) shrinks for all predecessors s′ of s

-Then ⊓
s′ ∊ pred(s)

Out(s′) shrinks

-Since f
s

monotonic, f
s
(⊓

s′ ∊ pred(s)
Out(s′)) shrinks
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Termination Revisited (cont’d)

• A descending chain in a lattice is a sequence
■ x0 ⊐ x1 ⊐ x2 ⊐ ...

• The height of a lattice is the length of the 
longest descending chain in the lattice

• Then, dataflow must terminate in O(n k) time
■ n = # of statements in program

■ k = height of lattice

■ assumes meet operation takes O(1) time
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Relationship to Section 2.4 of Book (NNH)

• MFP (Maximal Fixed Point) solution – general 
iterative algorithm for monotone frameworks
■ always terminates

■ always computes the right solution
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Least vs. Greatest Fixpoints

• Dataflow tradition:  Start with Top, use meet
■To do this, we need a meet semilattice with top

■meet semilattice = meets defined for any set

■Computes greatest fixpoint

• Denotational semantics tradition:  Start with 
Bottom, use join
■Computes least fixpoint
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• By monotonicity, we also have

• A function f is distributive if

Distributive Data Flow Problems

42

• Joins lose no information

Benefit of Distributivity
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• Ideally, we would like to compute the meet 
over all paths (MOP) solution:
■ Let f

s
be the transfer function for statement s

■ If p is a path {s
1
, ..., s

n
}, let f

p
= f

n
;...;f

1

■ Let path(s) be the set of paths from the entry to s

• If a data flow problem is distributive, then 
solving the data flow equations in the standard 
way yields the MOP solution, i.e., MFP = MOP

Accuracy of Data Flow Analysis
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• Analyses of how the program computes
■ Live variables

■Available expressions

■Reaching definitions

■Very busy expressions

• All Gen/Kill problems are distributive

What Problems are Distributive?
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• Constant propagation

• In general, analysis of what the program 
computes in not distributive

A Non-Distributive Example
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MOP vs MFP

• Computing MFP is always safe:  MFP ⊑ MOP
• When distributive:  MOP = MFP
• When non-distributive:  MOP may not be 
computable (decidable)
■ e.g., MOP for constant propagation (see Lemma 

2.31 of NNH)
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• Data flow facts = assertions that are true or 
false at a program point

• Represent set of facts as bit vector
■Fact

i
represented by bit i

■ Intersection = bitwise and, union = bitwise or, etc

• “Only” a constant factor speedup
■But very useful in practice

Practical Implementation
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• A basic block is a sequence of statements s.t.
■No statement except the last in a branch

■There are no branches to any statement in the 
block except the first

• In practical data flow implementations,
■Compute Gen/Kill for each basic block

- Compose transfer functions

■Store only In/Out for each basic block

■Typical basic block ~5 statements

Basic Blocks
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• Assume forward data flow problem
■ Let G = (V, E) be the CFG

■ Let k be the height of the lattice

• If G acyclic, visit in topological order
■Visit head before tail of edge

• Running time O(|E|)
■No matter what size the lattice

Order Matters
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• If G has cycles, visit in reverse postorder
■Order from depth-first search

• Let Q = max # back edges on cycle-free path
■Nesting depth

■Back edge is from node to ancestor on DFS tree

• Then if                     (sufficient, but not necessary)
■Running time is

- Note direction of req’t depends on top vs. bottom

Order Matters — Cycles
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• Data flow analysis is flow-sensitive
■The order of statements is taken into account

■ I.e., we keep track of facts per program point

• Alternative:  Flow-insensitive analysis
■Analysis the same regardless of statement order

■Standard example:  types
- /* x : int */ x := ... /* x : int */

Flow-Sensitivity
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• Must vs. May
■ (Not always followed in literature)

• Forwards vs. Backwards
• Flow-sensitive vs. Flow-insensitive
• Distributive vs. Non-distributive

Terminology Review
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• Recall in practice, one transfer function per 
basic block

• Why not generalize this idea beyond a basic 
block?
■ “Collapse” larger constructs into smaller ones, 

combining data flow equations

■Eventually program collapsed into a single node!

■ “Expand out” back to original constructs, rebuilding 
information

Another Approach:  Elimination

54

Lattices of Functions

• Let (P, ≤) be a lattice
• Let M be the set of monotonic functions on P
• Define f ≤

f
g if for all x, f(x) ≤ g(x)

• Define the function f ⊓ g as
■ (f ⊓ g) (x) = f(x) ⊓ g(x)

• Claim:  (M, ≤
f
) forms a lattice



10

55

Elimination Methods:  Conditionals

56

Elimination Methods:  Loops

57

Elimination Methods:  Loops (cont’d)

• Let f i = f o f o ... o f (i times)
■ f 0 = id

• Let

• Need to compute limit as j goes to infinity
■Does such a thing exist?

• Observe:  g(j+1) ≤ g(j)
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Height of Function Lattice

• Assume underlying lattice (P, ≤) has finite 
height
■What is height of lattice of monotonic functions?

■Claim:  finite

• Therefore, g(j) converges
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• Elimination methods usually only applied to 
reducible flow graphs
■Ones that can be collapsed

■Standard constructs yield only reducible flow graphs

• Unrestricted goto can yield non-reducible 
graphs

Non-Reducible Flow Graphs
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Comments

• Can also do backwards elimination
■Not quite as nice (regions are usually single entry

but often not single exit)

• For bit-vector problems, elimination efficient
■Easy to compose functions, compute meet, etc.

• Elimination originally seemed like it might be 
faster than iteration
■Not really the case
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• What happens at a function call?
■ Lots of proposed solutions in data flow analysis 

literature

• In practice, only analyze one procedure at a 
time

• Consequences
■Call to function kills all data flow facts

■May be able to improve depending on language, 
e.g., function call may not affect locals

Data Flow Analysis and Functions
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• An analysis that models only a single function 
at a time is intraprocedural

• An analysis that takes multiple functions into 
account is interprocedural

• An analysis that takes the whole program into 
account is...guess?

• Note:  global analysis means “more than one 
basic block,” but still within a function

More Terminology
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• Data Flow is good at analyzing local variables
■But what about values stored in the heap?

■Not modeled in traditional data flow

• In practice:  *x := e
■Assume all data flow facts killed (!)

■Or, assume write through x may affect any variable 
whose address has been taken

• In general, hard to analyze pointers

Data Flow Analysis and The Heap
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Data Flow Analysis and Optimization

• Moore’s Law:  Hardware advances double 
computing power every 18 months.

• Proebsting’s Law:  Compiler advances double 
computing power every 18 years.


