Bebop: A Path-sensitive Interprocedural Dataflow Engine

Thomas Ball
Microsoft Research
One Microsoft Way

Redmond, WA 98052

tball@microsoft.com

ABSTRACT

Flow-sensitive data analyses can lose precision because they
assume that all paths in a control-flow graph are executable
(feasible). Path-sensitive dataflow analyses can rule out
infeasible paths by tracking correlations between dataflow
facts. To track such correlations, in general, requires record-
ing a set of sets of facts per statement in a program. Naive
representation of such sets can lead to a very high memory
consumption and running time.

We reformulate an interprocedural dataflow algorithm
by Reps, Horwitz and Sagiv (based on context-free graph
reachability) into a traditional interprocedural flow-sensitive
dataflow algorithm. We then show how to use Binary De-
cision Diagrams (BDDs), a data structure from the model
checking community, to turn this reformulated algorithm
into an interprocedural path-sensitive dataflow analysis al-
gorithm that tracks a set of set of facts per program state-
ment. We have implemented this algorithm in a tool called
Bebop.

1. INTRODUCTION

The tradeoffs between precision and efficiency in program
analysis are well-known: an analysis can be made more pre-
cise by recording more detailed information at each program
location, at a higher cost in space and time. Flow-insensitive
analyses record global facts that hold for all statements in
a program [8] but may lose precision since they do not con-
sider the order of statement execution. Flow-sensitive anal-
yses record facts on a per-statement basis [1], but may lose
precision because they (traditionally) assume that all paths
in a control-flow graph of a program are executable (feasi-
ble). Path-sensitive analyses record facts on a per-path ba-
sis, using branch correlations to eliminate infeasible paths,
but must be applied carefully due to their potentially high
cost [2, 5]

We present a general algorithm for path-sensitive inter-
procedural finite dataflow analysis. By “finite”, we mean
that the dataflow domain is a finite set D of facts. A flow-

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

PASTE' 01, June 18-19, 2001, Snowhbird, Utah, USA..

Copyright 2001 ACM 1-58113-413-4/01/0006 ...$5.00.

Sriram K. Rajamani
Microsoft Research
One Microsoft Way

Redmond, WA 98052

sriram@microsoft.com

sensitive finite dataflow analysis keeps one set of facts per
vertex in the control-flow graph. A path-sensitive finite anal-
ysis keeps a set of sets of facts per vertex in the control-flow
graph, enabling it to maintain correlations between the facts
(such as “if d; is present then d» is not present”) and rule
out infeasible paths.

We have built an interprocedural path-sensitive dataflow
analysis tool called Bebop [4]. Bebop uses Binary Decision
Diagrams [7] (BDDs), a data structure used in model check-
ing tools [10], to symbolically represent dataflow transfer
functions and the set of sets of facts at each vertex in the
control-flow graph.

Our results are as follows:

e Sections 2 and 3. We show how an existing inter-
procedural flow-sensitive dataflow algorithm by Reps,
Horwitz and Sagiv (RHS) based on context-free lan-
guage reachability in graphs [11] can be reformu-
lated as a traditional dataflow algorithm, similar to
the “functional approach” of Sharir and Pnueli [13].
The RHS algorithm is applicable to interprocedu-
ral, finite, distributive, subset problems (IFDS prob-
lems). These are problems that have a finite set D of
dataflow facts and distributive dataflow functions (of
type set-of D — set-of D). The reformulated algo-
rithm, the SP,s algorithm, has exactly the same time
complexity and precision as the RHS algorithm.

o Section 4. We generalize the SP,j, algorithm to make
it path-sensitive. Using BDDs, we lift the level of
reasoning from a set of dataflow facts D to a set of
sets of dataflow facts. The new algorithm permits
dataflow problems having arbitrary flow functions of
type set-of D — set-of D. We mention the relation-
ship between BDDs and so called “tri-vectors” used in
related work on three-valued program analysis [12].

e Section 5. We present boolean programs as a natu-
ral target language for expressing path-sensitive finite
dataflow analyses and describe the tool Bebop that im-
plements the path-sensitive dataflow algorithm using
BDDs to represent sets of sets of facts. We encode the
analysis problem of whether or not a top-level pointer
in a C program is NULL or non-NULL using boolean
programs.

Section 6 discusses other related work and Section 7 points
to future work.

2. BACKGROUND: THE RHS ALGO-
RITHM

In this section, we review the Reps/Horwitz/Sagiv (RHS)
algorithm for performing interprocedural flow-sensitive
dataflow analysis, which reduces a dataflow analysis to a
reachability problem over an “exploded graph” representa-
tion.

Although the RHS algorithm is an interprocedural anal-
ysis problem, the basic insight that leads to our reformula-
tion can be explained in the context of a single procedure
program, and is applicable to the algorithm in its full gener-
ality. The reader should bear this in mind, as the algorithm
presented here is simply a modified depth-first search algo-
rithm. The material in this section is a simplified version of
Sections 2 and 3 from [11].

Let P be a single-procedure program with a control-flow
graph G. An instance I P of an IFDS problem is a five-tuple,
IP =(G,D,F,M,MN), where

e G = (Vg, Eg) is a control-flow graph consisting of ver-
tices Vi and edges Eg;

e D is a finite set;

o [C set-of D — set-of D is a set of distributive
dataflow functions;

e M : E — F is a map from G’s edges to dataflow
functions;

e The meet operator IMis either set union or intersection.

As in [11], we assume (without loss of generality) that the
meet operation is set union.

Let IP = (G,D,F,M,MN) be an IFDS problem instance
and p = [e1, ez, -+ ,en] be a directed path in G. The path
function M), that defines the meaning of p under I P is simply
the composition of the dataflow functions associated with
the edges of p (as defined by M):

M, = M(en)o M(en—1)0---0M(e1)

Given a CFG G with entry vertex entry, let Paths(G)
be the set of all paths in G that start with entry, and let
Paths(G,v) be paths in Paths(G) that end with the vertex
v. Given a vertex v in the CFG G and a dataflow fact d € D,
the conditional meet-over-all-paths' (CMOP) solution to I P
is defined as follows:

CMOP (. 4y = [
p€ Paths(G,v)

My ({d})

Two of the major insights behind the RHS algorithm are:
(1) each function in F' can be represented by a bi-partite
graph (or representation relation) with 2(D + 1) vertices
and at most (D + 1)? edges, and (2) the composition of
functions in F' also can be represented in this manner. The
representation relation of a dataflow function f, Ry C (DU
{A}) x (D U{A}), is a binary relation defined as follows:

Ry = {(AA)}
U {(Ay)lye f(D)}
U {(z,y) |y € f({x}) and y ¢ f(0)}

"We use the CMOP problem rather than the “meet-over-
all-paths” problem used in [11] in order to “simulate” the
demand for summary information in a single procedure set-
ting.

global
PE : set-of (Vgr x Vgr)
Worklist : set-of (Vgr X Vigr)

procedure Propagate(e : (Vg X Vgr))
begin
if e ¢ PE then
PE := PE U {e}
Worklist := Worklist U {e}
fi
end

procedure CMOPRrpus(S : set-of D)
begin
PE := {{entry,d) — (entry,d) | d € S}
Worklist :== PE
while Worklist # 0 do
select and remove edge (entry,di) — (v2,d2) from Worklist
for each (v3,ds) such that (v2,d2) — (v3,d3) € Eg do
Propagate((entry,d1) — (v3,ds))
od
od
end

Figure 1: The RHS algorithm, restricted to the case
of a single-procedure program.

As a result of these insights, it is possible to transform
the CMOP problem over IP into a pure graph reachability
problem, as follows. Let IP = (G : (Va, Eg), D, F, M,MN)
be an IFDS problem instance. The ezploded graph for IP,
denoted by G' = (Vigr, E¢r) has vertex and edge sets:

Var Ve x (DU {A})
Eor = {{v1,d1) = (v2,d>) |

v = v2 € Eg and
(d1,d2) € Rar(vy—vs) }

The basic result from [11] is that d2 € CMOP, 4,y iff
there is a path in G’ from the node (entry,d:) to the node
(v,d2). This is an example of a single-source, single-sink
reachability problem, which can be solved in time linear
in the size of G’ (via a depth-first search). To answer the
CMOP question for all d € S (S C D) and v € V requires
solving a multi-source, multi-sink reachability problem over
G', which the RHS algorithm solves using the concept of path
edges, as shown in Figure 1. A path edge is an edge of the
form (entry,d:) — (v,dz). Since it is assumed that d holds
at entry for all d € S, the RHS algorithm initializes the set
of path edges PE to have self-loops encoding this initial in-
formation. The work list is initialized with these initial set of
path edges. While the worklist is not empty, the algorithm
removes a path edge (entry,di1) — (v2, d2) from it. For every
edge in the graph G’ of the form {(v2, d2) — (v3, d3), the algo-
rithm “propagates” a new path edge (entry,d:) — (vs,ds).
Upon termination of the algorithm we have that

Vv € Vg, Vd1 € S, Vd2 € D :
d2 € CMOP , 4,y < (entry,di1) = (v,d2) € PE

The running time of this algorithm is O(E x D?), as the
size of the exploded graph is O(FE x D?) and the algorithm
is essentially performing a (simultaneous) depth-first search
of this graph for each of the facts in S (which is size O(D)).
For the interprocedural case, the running time is O(E x D?)
as well.

global
PE'": Vg — set-of (D x D)
Worklist: Vo — set-of (D x D)

procedure Propagate(v : Vg, p : (D X D))
begin
if p ¢ PE'(v) then
PE'(v) := PE'(v) U {p}
Worklist(v) := Worklist(v) U {p}

end

procedure CMOPsp,, (S :set-of D)
begin
PE'(entry) := {(d,d) | d € S}
Worklist(entry) := PE'(entry)
while Jvy s.t Worklist(v2) # 0 do
select and remove (d1,d2) from Worklist(v2)
for each vy — vz € E¢ do
for each d3 € M(v2 — v3)({d2}) do
Propagate(vs, (d1, ds))
od
od
od
end

Figure 2: The SP,,; algorithm.

3. THE sp.,, ALGORITHM

Our insight is that path edges, regardless of whether or
not we are considering the intraprocedural or interprocedural
version of the RHS algorithm, always have the form

(entry,d1) — (v,d2)

where entry is the entry vertex of a procedure P’s control-
flow graph and v is a vertex in P’s control-flow graph.
Therefore, we can represent path edges on a per procedure
basis as a set of triples

{{d1,v,dz) | (entry,d,) — (v,d2) € PE}

Taking this an additional step further, we can partition
this set on the basis of the second component v to get a set
of pairs PE'(v) for each vertex v, where

PE'(v) = {{(d1,d2) | {entry,d1) — (v,d2) € PE}

As a result, it is not necessary to build the exploded su-
pergraph explicitly in order to solve the CMOP problem.
Rather, we can perform a traditional dataflow analysis in
which each vertex v in the original control-flow graph col-
lects a set of pairs of dataflow facts PE'(v), as shown in the
SP,ps algorithm of Figure 2.

In the SP,p, algorithm, the worklist is a map from a ver-
tex v € V to a set of pairs of dataflow facts, represent-
ing the set of path edges associated with v that have yet
to be processed. While there is a non-empty Worklist(vz),
a pair of facts (di,d2) is removed from Worklist(vz). To-
gether, the vertex ve and the pair (di,d2) represents the
path edge (entry,d1) — (v2,d2). In the RHS algorithm,
there was one for loop that visited the successors (vs,ds)
of (vz2,d2). In the new algorithm, there are two for loops
to achieve the same result: the outermost iterates over the
successors v of v2 and the second iterates over the dataflow
facts ds € M(v2 — wv3)({d2}). The Propagate procedure
is called with two arguments: the vertex vs and the pair
dataflow facts (di,ds), which together represent the path

global
PE': V — set-of (set-of D x set-of D)
Worklist: Vo — set-of (set-of D X set-of D)

procedure Propagate(v : Vi, p : (set-of D X set-of D))
begin
if p ¢ PE'(v) then
PE'(v) := PE'(v) U {p}
Worklist(v) := Worklist(v) U {p}

end

procedure CSMOPgsp, , (S’ : set-of (set-of D))
begin
PE'(entry) := {(S,S) | S € S'}
Worklist(entry) := PE’'(entry)
while Jvs s.t Worklist(v2) # 0 do
select and remove (S1, S2) from Worklist(vs2)
for each vy — vz € E¢ do
let S3 = M(v2 — v3)(S2) in
Propagate(vs, (51, S3))
ni
od
od
end

Figure 3: The SP,, algorithm, lifted to reason about
the powerset of D.

edge (entry,di) — (vs,ds). The action of the Propagate
procedure is as before (but parameterized with respect to
vertex v).

It is straightforward to see that the SP.;s algorithm is
equivalent to the RHS algorithm (given our interpretation
of the set of path edges PFE in terms of the PE'(v) sets that
the SP,ps algorithm computes). Furthermore, it is easy to
see that the Propagate procedure is called the same number
of times in the SP,;s; and RHS algorithms, and therefore
that the SP,;s algorithm has the same time complexity as
the RHS algorithm.

The relationship of the SP,,s algorithm to the “func-
tional approach” of Sharir and Pnueli [13] is quite direct.
Sharir and Pnueli define a set of functions @(cpiry,n) of type
set-of D — set-of D, where entry is the entry vertex of a
procedure and n is a vertex in the control-flow graph of the
same procedure. This function represents the set of facts Ds
that hold at vertex n given that the set of facts D; hold at
vertex entry (i.e., Da = @(cniry,n)(D1)). This is exactly the
function represented point-wise by the relation PE'(n).

4. ADDING PATH-SENSITIVITY TO THE
SP.ws ALGORITHM

In this section, we show how to generalize the SP,;, al-
gorithm to solve the conditional-subset meet-over-all-paths
problem, which is the lifting of the CMOP problem to ap-
ply to arbitrary subsets of D (rather than single facts of
D). This allows the algorithm to track correlations between
dataflow facts (elements of D), making it path-sensitive.
This is useful regardless of whether or not the transfer func-
tions in F' are distributive or non-distributive. We then show
how to use Binary Decision Diagrams (BDDs) to implicitly
represent these sets.

41 The csmopr Problem

Given a vertex v in the CFG G and a set § C D, the
conditional-subset meet-over-all-paths (CSMOP) solution to
IP is defined as follows:

CSMOP, 5y = [
pE Paths(G,v)

My(S)

We desire to solve the CSMOP problem for a set S" of sub-
sets of D and all v € V. Figure 3 shows the SP,j; algorithm,
generalized to solve the CSMOP problem. Note that the al-
gorithm is structurally identical to the algorithm given in
Figure 2. We have simply lifted the domain of discourse
to the powerset of D (that is, we have replaced every oc-
currence of “D” in a type by “set-of D”). Note that the
second argument to the dataflow meaning function M now
is a set of facts (S2) rather than a singleton set ({d2}). As
the number of subsets of D is 2, the worst-case complexity
of the algorithm is O(E x (27)%). For the interprocedural
case, the worst-case complexity is O(E x (27)%).

4.2 Implementing csmop with Binary Deci-
sion Diagrams
To implement the CSMOP algorithm, we require a
data structure to compactly store a set of pairs of sub-
sets of D (i.e.,, a set of bit vectors of length 2D) in
order to represent a set of path edges (an element of
set-of (set-of D X set-of D)). A Binary Decision Dia-
gram [7] (BDD) is an acyclic graph data structure for im-
plicitly representing a set of bit vectors of fixed length, and
so is a good match for our problem. We give a brief review of
BDDs. Consider the boolean function f(z,y,z) = (z = y).
This function represents the set of bit vectors (z,y,z) for
which z and y are equal:

{ (070’0)’ (07071)7 (17170)7 (17171) }

We can represent this function (a set of bit vectors, or set of
set of facts) as a tree, as shown in Figure 4(a). The tree has
8 leaves corresponding to the eight possible valuations of the
boolean variables z,y and z. Each path from the root of the
tree to a leaf represents one particular valuation (the left-
branch of each node represents a valuation of 0; the right-
branch represents a valuation of 1). If we represent identical
subtrees uniquely (via hash consing) then this tree compacts
to the DAG (directed acyclic graph) shown in Figure 4(b).
Note that in this DAG, the edges emanating from a node
labeled z all go to the node O or the node 1. Therefore, the
z nodes can be eliminated from the DAG with no loss of
information, yielding the final DAG in Figure 4(c). This is
the BDD of the function f(z,y,z) = (z = y) for the variable
ordering * — y — z. Given a fixed variable ordering of
variables, the BDD of a boolean function is unique.

Efficient algorithms have been developed for performing
set operations (and many other kinds of operations) on
BDDs [7]. In the case of the CSMOPsp,, . algorithm, every
set operation in the algorithm can be implemented efficiently
with BDD operations.

We must still address how a dataflow transfer function
f from F is represented as a BDD. Recall that f has type
set-of D — set-of D, where D is a finite set. We can
represent f by its characteristic boolean function fy:

f5(D1,D2) =1 <= f(D1) =D

In the following section, we show how we use the syntax
of boolean programs to allow an analysis developer to de-
fine transfer functions using a programming notation (rather
than explicitly coding BDDs, which would be a horrendous
task).

Finally, note that the use of BDDs does not change the
worst-case complexity of the CSMOPsp,, algorithm. In
the worst-case, the size of a BDD may be exponential in the
number of variables (O(D) in our case). We are beginning
to perform experiments to see whether or not the BDDs
exhibit worst-case behavior in practice.

4.3 BDDsand tri-vectors

We now briefly mention the relationship of BDDs to so-
called “tri-vectors”, which are vectors in which each element
has one of three values (1,0, or %). Tri-vectors can be used
in dataflow analysis to give precise “yes” and “no” answers,
as well as “don’t know”.

Suppose we consider sets of bit vectors, each of length n.
Both tri-vectors and BDDs may be used to represent sets of
bit vectors. BDDs can represent all sets of bit vectors (there
are 22" possible such sets), whereas tri-vectors can represent
a small number (3") of such sets. However, any set of bit
vectors can be over approximated using a tri-vector. For ex-
ample, with n = 2, the tri-vector (0, *) represents the set of
bit vectors {(0,0), (0,1)}. However, the set {(0,1),(1,0)}.
cannot be directly represented as a tri-vector. It can be
directly represented as a BDD. It can also be over approxi-
mated using the tri-vector (x, x).

5. BEBOP

The previous section described the basic algorithm under-
lying Bebop. In this section, we describe how Bebop is used
through an example analysis: path-sensitive tracking of the
“NULLness” of top-level pointers in C programs. Because
there are many comparisons of pointers against NULL in C
programs (to avoid dereferencing a NULL pointer), there is
reason to expect there is a good amount of branch correla-
tion due to such checks [6].

The input to Bebop is a “boolean program”, a C pro-
gram in which the only type available is boolean. Boolean
programs have all the control-flow constructs of C (sequenc-
ing, loops, conditions, GOTOs, procedure calls). In addi-
tion, boolean programs contain parallel assignment state-
ments and allow “#” (the unknown value) as the controlling
predicate in a conditional statement or loop. Control non-
determinism can be used to generate data non-determinism
via the unk function:

bool unk()
begin

if (%) return 1; else return 0; fi
end

The unk function implicitly represents the * value. Boolean
programs have global variables, local variables, and formal
parameters (which, as in C, can be modified). Parameter
passing is call-by-value. There are no pointers in boolean
programs. The expression language of boolean program is,
of course, boolean expressions.

Because boolean programs have all the control-flow con-
structs of C, they can faithfully represent the control-flow
graph of a C program. A boolean variable in a boolean
program represents a fact in the finite dataflow domain D.

Figure 4: (a) A tree representation of the boolean function f(z,y,z) = (zx = y); (b) after hash consing; (c) the
final BDD representation, after elimination of variable z.

Parallel assignment statements in boolean programs can be
used to implement any transfer function of type set-of D —
set-of D. In addition, an analyst can choose to use all the
programming features in the boolean program language to
make it easier to implement transfer functions. That is,
constructs in the boolean programming language serve two
purposes: to represent the control-flow structure of the C
program under analysis, and to define the dataflow transfer
functions.

The state of a boolean program is a pair of a program
counter pc and an evaluation to all the boolean variables in
scope at the pc (i.e., a bit vector). Given a boolean program
B, the Bebop tool computes the set of reachable states for
every statement in the boolean program using the algorithm
given in Section 4. That is, for each vertex vs in B’s control-
flow graph (corresponding to statement s), Bebop computes
PE'(vs).

The remaining question then is how to encode an analysis
problem via an automatic translation from a C program to a
boolean program, which is input to Bebop. In general, every
control-flow construct of the C program will be translated to
an identical control-flow construct in the boolean program.
However, the translation of assignment statements, condi-
tionals, and procedure calls will be specific to the problem
instance. We present the translation of assignments and
conditionals for the NULL pointer problem.

We assume the input C program is in a simple form with
no short-circuit evaluation and at most one pointer derefer-
ence per expression. In this analysis, there is one boolean
variable p; for each top-level pointer p in the C program.
This boolean variable represents the predicate (p == NULL).
The scope of a boolean variable p;, is dependent on the scope
of p in the original C program: if p is a global variable, then
Do is a global variable; if p is a local variable (formal pa-
rameter) of procedure P, then p, is a local variable (formal
parameter) of procedure P.

Table 1 shows the translation of assignment statements
and conditional statements from the C program into the
boolean program. Direct assignments to a top-level pointer
p are addressed in the first four rows. The table shows the
syntactic pattern in the C code, the corresponding trans-
lation into the boolean program, and the conditions under
which the translation is enabled. The fourth row specifies
that for all other cases of right-hand side expressions, the
translation non-deterministically assigns 1 or O to pp, via
the unk function.

| C statement || Transfer function |

Condition

p = NULL; p-b := true; p a pointer
p = &e; p-b := false; p a pointer
P=q; p-b := q.b; p, q pointers
P =e; p-b := unk(); p a pointer

*p = NULL; q-b := true; ptsTo(p) = {q}
*p = &e; q-b := false; ptsTo(p) = {q}
*p = q; rb := gb; ptsTo(p) = {r}
*p = e; q-b := unk(); Vq € ptsTo(p)

if (p==NULL) if (p-b) then p a pointer
if (p!=NULL) if (!p-b) then p a pointer
if (e) if (*) then

Table 1: Translation of statements in C programs
into boolean program for pointer NULLness analy-
sis.

In the case of an indirect assignment through a pointer
p, we use a points-to analysis [8] to conservatively estimate
the effect of the assignment. Given a pointer p, ptsTo(p)
denotes the set of variables that p may point to. If ptsTo(p)
contains only one entry, then a strong update can take place.
Otherwise (eighth row), all boolean variables representing
pointers that p may point to must be given the * value.
Translation of conditionals is straightforward.

Figure 5 presents a simple example C program and its
translation into a boolean program according to Table 1.
The assignment statement *q = *p + 1 translates to skip
because the points-to analysis of this code shows that no
variable in foo, including p and ¢, points to p or q. The
Bebop tool will compute the abstract set of states (over
(pv, qv)) at the end of the first if to be {(0,0), (1, *)}. That
is, either both pointers are not NULL or p is NULL and the
state of g is unknown. Therefore, this analysis shows that
the statement *q = *p + 1 cannot dereference NULL. In
comparison, a flow-sensitive analysis would represent the ab-
stract set of states at the end of the first conditional to be
{(*, %)}, which would lead the analysis to report a potential
NULL pointer dereference.

void foo(int *p, intxq) void foo(bool p_b, bool q_b)

{ begin
if (p !'= NULL) { if (!p_b) then
q = Pp; q-b := p_b;

fi
if (p != NULL) if (!p_b) then

*q = *p + 1; skip;
¥ fi
end

| C program | Boolean program

Figure 5: A C program and its translation into a
boolean program to encode the pointer NULLness
dataflow problem.

6. RELATED WORK

In previous work, we presented the interprocedural
dataflow analysis algorithm underlying Bebop [4]. In this pa-
per, we have explored the connection between our algorithm
and the RHS algorithm, from which it was derived, in detail
and have discussed the application of Bebop to path-sensitive
dataflow problems. We have shown that the RHS algorithm
can be reformulated as a traditional dataflow analysis simi-
lar to that of Sharir and Pnueli [13]. One of the key insights
of the behind the RHS algorithm is the pointwise tabula-
tion of the Sharir-Pnueli ¢ functions. Our reformulation
preserves this pointwise tabulation, and hence the complex-
ity of the RHS algorithm. Furthermore, we have described
how to use our reformulation to “lift” the algorithm using
BDDs to become path-sensitive.

In previous unpublished work [14], Michael Siff and
Thomas Reps experimented with using BDDs in the RHS al-
gorithm. They used BDDs to represent the entire exploded
graph, which encodes both the control-flow graph and the
data flow facts in a monolithic structure. They found that
the BDDs grew large very quickly. Our work differs in that
we use one BDD per vertex of the control-flow graph to
record the set of dataflow facts for that vertex, so that BDDs
are only used to represent data and not control.

Bodik and Anik [5] describe a data structure called the
Value Name Graph (VNG), over which a polynomial-time
flow-sensitive tri-vector dataflow analysis can be performed,
yielding path-sensitive results. The VNG is analogous to
the exploded graph of RHS. In the VNG, dataflow facts
(names) are generated automatically by a combination of
symbolic back substitution and value numbering. In the
worst-case, the number of names can be exponential in the
size of the program. Our approach synthesizes “names”
that are boolean combinations of facts in D to achieve path-
sensitive results. Boolean programs do not address the issue
of tracking values as their name changes-this must be cap-
tured in the translation from C to boolean programs.

Ammons and Larus [2] use path profiling to identify “hot
paths” in programs. They then duplicate code in the CFG to
eliminate joins along the hot paths and perform a traditional
flow-sensitive analysis on the new CFG, which yields path-
sensitive information along the hot paths. In their work, an
exponential blow-up can occur due to the code duplication,
which must be carefully controlled.

Other related work includes systems that allow users to
define program analyses and provide an underlying param-

eterized analysis engine [16, 15]. We focus on the prob-
lem of defining a general-purpose and parameterizable path-
sensitive analysis engine. A paper in PLDI 2001 describes
how to automate the process of creating boolean programs
from C programs [3].

7. CONCLUSIONS

We have presented Bebop, a path-sensitive interprocedu-
ral dataflow analysis tool. We are beginning to perform
experiments with Bebop and will report on these in a fu-
ture paper. We expect to investigate the use of overapproz-
tmation techniques to help Bebop scale to larger programs.
Clients of path-sensitive analyses may not need every ounce
of path-sensitivity in order to be successful. Therefore, it
makes sense to explore algorithms that provide conservative
overapproximations to the CSMOP problem and scale to
larger programs. There are two basic ideas we will pursue.
First, we can easily make Bebop into a flow-sensitive engine
through redefining the meet operator to be the Cartesian
abstraction of set union. Second, we will investigate how
the theory overlapping projections [9] can help obtain good
overapproximations given hints about dependent and inde-
pendent sets of dataflow facts.

Acknowledgements

Thanks to Manuvir Das and Manuel Fahndrich for their
comments on an earlier draft of this paper.

8. REFERENCES

[1] A. Aho, R. Sethi, and J. Ullman. Compilers:
Principles, Techniques and Tools. Addison-Wesley,
1986.

[2] G. Ammons and J. R. Larus. Improving data-flow
analysis with path profiles. In PLDI 98: Programming
Language Design and Implementation, pages 72-84.
ACM, 1998.

[3] T. Ball, R. Majumdar, T. Millstein, and S. K.
Rajamani. Automatic predicate abstraction of C
programs. In PLDI 01: Programming Language
Design and Implementation. ACM, 2001.

[4] T. Ball and S. K. Rajamani. Bebop: A symbolic
model checker for Boolean programs. In SPIN 00:
SPIN Workshop, LNCS 1885, pages 113-130.
Springer- Verlag, 2000.

[6] R. Bodik and S. Anik. Path-sensitive value-flow
analysis. In POPL 98: Principles of Programming
Languages, pages 237-251. ACM, 1998.

[6] R. Bodik, R. Gupta, and M. L. Soffa. Refining data
flow information using infeasible paths. In ESEC/FSE
97: European Software Engineering/Foundations of
Software Engineering, LNCS 1301, pages 361-377.
Springer-Verlag, 1997.

[7] R. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on
Computers, C-35(8):677-691, 1986.

[8] M. Das. Unification-based pointer analysis with
directional assignments. In PLDI 00: Programming
Language Design and Implementation, pages 35-46.
ACM, 2000.

[9]

[10]

[11]

[12]

S. G. Govindaraju and D. L. Dill. Approximate
symbolic model checking using overlapping
projections. In Electronic Notes in Theoretical
Computer Science, July 1999.

K. McMillan. Symbolic Model Checking: An Approach
to the State-Explosion Problem. Kluwer Academic
Publishers, 1993.

T. Reps, S. Horwitz, and M. Sagiv. Precise
interprocedural dataflow analysis via graph
reachability. In POPL 95: Principles of Programming
Languages, pages 49-61. ACM, 1995.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape
analysis via 3-valued logic. In POPL 99: Principles of
Programming Languages, pages 105-118. ACM, 1999.

[13]

M. Sharir and A. Pnueli. Two approaches to
interprocedural data flow analysis. In Program Flow
Analysis: Theory and Applications, pages 189-233.
Prentice-Hall, 1981.

M. Siff. personal communication. July 12 2000.

S. W. K. Tjiang and J. L. Hennessy. Sharlit — a tool
for building optimizers. In PLDI 92: Programming
Language Design and Implementation, pages 82-93.
ACM, 1992.

G. A. Venkatesh. A framework for construction and
evaluation of high-level specifications for program
analysis techniques. In PLDI 89: Programming
Language Design and Implementation, pages 1-12.
ACM, 1989.

