
CSC 2125 
Homework Operational Semantics 

 
 

 
 

1. Consider following statement 
repeat S until b 
 

a. Extend the natural operational (“big-step”) semantics of the WHILE  language 
(Table 2.1 from [1]) by a rule for relation → for the repeat-construct. (The 
semantics for the repeat-construct should not rely on the existence of a while-
construct) 

 
The definition is analogous to the definition of the while construct. We need two separate rules 
for the cases b is true and b is false. 
 

    , '     iff

, '   , ' ''
         iff

, ''

tt
ns

ff
ns

repeat S s s b tt

S s s repeat S until b s s
repeat b ff

repeat S until b s s

⎡ ⎤ → =⎣ ⎦
→ →

⎡ ⎤ =⎣ ⎦ →

B

B
 

 
 
 
 
 



b. Two statements in a natural semantic are considered equivalent if for all states s 
and s’:  

1 2, ' , 'S s s iff S s s→ →  
How can you show that the repeat construct is semantically equivalent to  
S; while ¬b do S.  
Why does this lead to the conclusion that the extended semantics is deterministic? 

 
 
We can give a proof by induction over the number of applied rules for the derivation tree (called 
induction on the shape of the derivation tree in [1]). 
For all constructs in the WHILE language, you find the complete solution in [1], pp.26f. 
Here we consider only the extension, namely  repeat S until b. 
 
Two statements S1 and S2 are considered semantically equivalent iff: 

1 2, ' , 'S s s iff S s s→ →  
 

, 'repeat S until b s s→   (1) 
iff 

; , 'S while b do S s s¬ →   (2) 
 
Here we show only that each step preserves the property: 
Base case: For one application of the repeat-rules for the derivation tree, we can either apply 

tt
nsrepeat⎡ ⎤⎣ ⎦  or ff

nsrepeat⎡ ⎤⎣ ⎦  depending on bB .  
 
We get  

, '     iff

, '   , ' ''
     iff

, ''

S s s b tt

S s s repeat S until b s s
b ff

repeat S until b s s

→ =

→ →
=

→

B

B
 

 
For the program S; while ¬b do S, we first apply the composition rule nscomp⎡ ⎤⎣ ⎦ , and 

afterwards we can apply either ff
nswhile⎡ ⎤⎣ ⎦  or tt

nswhile⎡ ⎤⎣ ⎦  to get a derivation tree with depth one 
bigger than the corresponding repeat-derivation.  
 

, '   , ' '
iff

; , '
S s s while b do S s s

b ff
S while b do S s s
→ ¬ →

¬ =
¬ →

B  

 
, ' ''   , '' ''

, '   
, ' ''

iff
; , ''

S s s while b do S s s
S s s

while b do S s s
b tt

S while b do S s s

→ ¬ →
→

¬ →
¬ =

¬ →
B  

 
 
 



For b tt=B  respectively b ff¬ =B  we get  
 

, 'repeat S until b s s→  ⇔  
, '   , ' '

; , '
S s s while b do S s s

S while b do S s s
→ ¬ →

¬ →
 

 
 
And for b ff=B  respectively b tt¬ =B  we get  
 

, '   , ' ''
, ''

S s s repeat S until b s s
repeat S until b s s

→ →

→
 

 
⇔  

 

, ' ''   , '' ''
, '   

, ' ''
; , ''

S s s while b do S s s
S s s

while b do S s s
S while b do S s s

→ ¬ →
→

¬ →

¬ →
 

 
 
So in both cases 

, 'repeat S until b s s→  ⇔ ; , 'S while b do S s s¬ →  
 
The induction step for compositional trees works is now trivial, we assume that for n applications 
of the repeat-rules, we can use n-applications of the while-rule plus the additional rule for the 
composition to gain the same result.  
 
 
[1] shows that the natural semantics of the WHILE language as given in Table 2.1. is 
deterministic. Since we just proved that we can express the repeat-construct in the WHILE 
language by S; while ¬b do S, the extended version of the natural semantics preserves its 
deterministic nature. 



 
 

2. Consider following statement 
repeat S until b  

 
a. Define the structural operational (“small-step”) semantics as in Table 2.2 from [1] 

for the repeat-construct. (The semantics for the repeat-construct should not rely 
on the existence of a while-construct) 

 
Analogous to the while-construct we define: 
 

, ; if then else ( ),sosrepeat repeat S until b s S b skip repeat S until b s⎡ ⎤ ⇒⎣ ⎦  
 
Notice that we do not need two rules here as in the natural semantics. We define the loop 
recursively with a semantic construct of “if then else”.  
 
 

b. How must the notion of semantic equivalence be defined for structural operational 
semantics?   

 
Two statements S1 and S2 are equivalent if starting from a Statement S1 in a state s there is a 
derivation sequence to configuration γ  iff starting from S2 in the same state s there is some 
derivation sequence (not necessary the same!) leading to configuration γ .  
 

1
*,S s γ⇒  iff 2

*,S s γ⇒  
 

*⇒  denotes a derivation sequence (“path”), that can be possible infinite.  
γ  is a resulting configuration, which is either terminal or “stuck”.  
 



3. What distinguishes the two notions of semantic equivalence in 1) and 2)? 
 
The small-step semantics captures the intermediate steps of a loop. So, we would obtain an 
infinite derivation sequence for e.g. 
x:=0; repeat (x:=x+1) until (false) 
where always the else branch is followed. 

( : 1) ( ),

( : 1) ( ); if then ( ( : 1) ( )),

repeat x x until false s

repeat x x until false b skip else repeat x x until false s

= + ⇒

= + = +
 

 
However, we can write down this derivation sequence up to n iterations. At each iteration we 
have an intermediate state that executes (x:=x+1) and results in a new state. That way, we 
could compare even non-terminating programs in respect to semantic equivalence. We just need 
to show that from some point on, the endless loop is equivalent. Since in the example non-
termination can only occur in conditionals and these are all represented by “if then else”, the 
notion of semantic equivalence reduced to the equivalent conditionals. 
 
For the big-step semantics, it is not possible to describe infinite looping. The derivation tree is not 
complete without termination. The proof of the root of the tree relies on termination. 
Furthermore, we can not discuss semantic equivalence for non-terminating programs, since they 
might use completely different derivation trees (see exercise 1b). 
 
 
 
  
 
 
[1] Nielson, H., Nielson, F.: “Semantics with Applications: A Formal Introduction”, Wiley 

Professional Computing, 1992. 


