
1

Lecture 5

Towards a Verifying Compiler:
Multithreading

Wolfram Schulte
Microsoft Research

Formal Methods 2006

Race Conditions, Locks,
Deadlocks, Invariants, Locklevels

Access Sets

Joint work with Rustan Leino, Mike Barnett, Manuel Fähndrich, Herman Venter, Rob
DeLine, Wolfram Schulte (all MSR), and Peter Müller (ETH), Bart Jacobs (KU Leuven)
and Bor-Yuh Evan Chung (Berkley) .

2

Review: Pure Methods and Model Fields

Data abstraction is crucial to express functional correctness
properties

• Verification methodology for model fields
– Model fields are reduced to ordinary fields with automatic updates

• Verification challenges for model fields and pure methods
– Consistency
– Weak purity
– Heap dependence (and frame properties)

3

Multi-threading

• Data race prevention

• Invariants and ownership trees

• Deadlock prevention

4

Multithreading

Multiple threads running in
parallel, reading and writing
shared data

A data race occurs when a
shared variable is written by
one thread and concurrently
read or written by another
thread

How to guarantee that there
are no data races?

class Counter {

 int dangerous;

 void Inc() {
int tmp = dangerous;
dangerous = tmp + 1; }

}

Counter ct = new Counter();

new Thread(ct.Inc).Start();

new Thread(ct.Inc).Start();

// What is the value of

// ct.dangerous after both

// threads have terminated?

5

Mutexes: Avoiding Races

• Mutual exclusion for shared objects is provided via locks

• Locks can be obtained using a lock block. A thread may
enter a lock (o) block only if no other thread is executing
inside a lock (o) block; else, the thread waits

• When a thread holds a lock on object o, C#/Java
– do prevent other threads from locking o but
– do not prevent other threads from accessing o’s fields

6

Program Method for Avoiding Races

Our program rules enforce that
a thread t can only access a field of object o if o is either
thread local or t has locked o

We model accessibility using access sets:
• A thread’s access set consists of all objects it has created

but not shared yet or whose lock it holds.
• Threads are only allowed to access fields of objects in their

corresponding access set

Our program rules prevent data races by ensuring that access
sets of different threads never intersect.

7

Annotations Needed to Avoid Races

• Threads have access sets
– t.A is a new ghost field in each thread t describing the set of

accessible objects

• Objects can be shared
– o.shared is a new boolean ghost field in each object o
– share(o) is a new operation that shares an unshared o

• Fields can be declared to be shared
– Shared fields can only be assigned shared objects.

8

Object Life Cycle

free locked
new T()

acquire

release

shared

unshared

share

9

Verification via Access Sets

Tr[[o = new C();]] = …
 o.shared:= false;
 tid.A[o]:= true

Tr[[x = o.f;]] = …
 assert tid.A[o];
 x :=o.f;

Tr[[o.f = x;]] = …
 assert tid.A[o];
 if (f is declared shared)
 assert x.shared;
 o.f :=x;

Tr[[share(o)]] = …
 assert tid.A[o];
 assert ! o.shared;
 o.shared :=true;
 tid.A[o] :=false;

Tr[[lock (o) S]] = …
 assert ! tid.A[o];
 assert o.shared;
 havoc o.*;
 tid.A[o]:=true;
 Tr[[S]];
 tid.A[o]:= false

10

A Note on havoc in the Lock Rule

When a thread (re) acquires o, o might have been changed by
another thread.

int x;

lock (o) {

 x = o.f;

}

lock (o) {

 assert x == o.f; // fails

}

So we have to “forget all knowledge about o’s fields”. We do so by
assigning an arbitrary value to all of o’s field, expressed as
 havoc o.*

11

Example for Data Race Freedom

Counter ct = new Counter();

share(ct);

new Thread(delegate () { lock (ct) ct.Inc(); }).Start();

new Thread(delegate () { lock (ct) ct.Inc(); }).Start();

12

Example for Data Race Freedom
class Session {
 shared Counter ct ;
 int id;

 Session(Counter ct , int id)
 requires ct.shared;
 ensures tid.A[this] !∧ this.shared;
 { this.ct=ct; this.id=id; }

 void Run()

requires tid.A[this];
 { for (; ;)
 lock (this.ct)
 this.ct.Inc();
 }
}

// thread t0
 Counter ct = new Counter();
 share(ct);
 Session s1 =new Session(ct,1);
 Session s2 =new Session(ct,2);
 // transfers s1 to t1

t1 = new Thread(s1.Run);
 // transfers s2 to t2

t2 = new Thread(s2.Run);
 t1.Start();
 t2.Start();

13

Soundness

Theorem

∀ ∀ threads t1,t2 :: t1≠t2 ⇒ t1.A ∩ t2.A = ∅
∀ ∀ object o, thread t :: o.shared && o t.A ∈ ⇒ t holds o’s lock

• Proof sketch for Theorem
– new
– share (o)
– Entry into lock (o)
– Exit from lock (o)

Corollary
• Valid programs don’t have data races

14

Multi-threading

• Data race prevention

• Invariants and ownership trees

• Deadlock prevention

15

Invariants and Concurrency

Invariants, whether over a single object or over an ownership
tree, can be protected via a single lock (coarse grained
locking)

For sharing and locking
• require an object o to be valid when o becomes free
• ensures o’s invariant on entry to its locked state

For owned objects
• require that commited objects are unaccessable, but

– unpack(o) adds o’s owned objects to the thread’s access set
– pack(o) deletes o’s owned objects from the thread’s access set

16

Verifying Multi-threaded Pack/Unpack

Tr[[pack o;]] =
assert tid.A[o];
assert ! o.inv;

 assert ∀c: c.owner = o ⇒
 tid.A[c] ∧ c.inv;
 foreach (c | c.owner = o)
 { tid.A[c] := false; }
 assert Inv(o);
 o.inv := true;

Tr[[unpack o;]] =
assert tid.A[o];
assert o.inv;
foreach (c | c.owner = o)
 { tid.A[c] := true; }

 o.inv := false;

17

Ownership: Verifying Lock Blocks

Finally, when locking we also have to “forget the knowledge
about” owned objects

Tr[[lock (o) S;]] =

 assert o.shared;

 assert ! tid.A[o];

 foreach (p | !tid.A[p]) havoc p.*;

 tid.A[o]:=true;

 Tr[[S]] ;

 tid.A[o]:= false;

18

Outline of the talk

• Data race prevention
• Invariants and ownership trees
• Deadlock prevention

19

Multi-threading

• Data race prevention

• Invariants and ownership trees

• Deadlock prevention

20

Concurrency: Deadlocks

A deadlock occurs when a set of
threads each wait for a mutex
(i.e shared object) that
another thread holds

Methodology:
• partial order over all shared

objects
• in each thread, acquire shared

objects in descending order

Dining Philosophers

1 has F1, waits for F2
2 has F2, waits for F3
3 has F3, waits for F1

3

21

 Fork 1

Fork 2

Fork 3

21

Annotations Needed to Avoid Deadlocks

We construct a partial order on shared objects, denoted by
.

• When o is shared, we add edges to the partial order as
specified in the share command’s where clause.

(Specified lower bounds have to be less than specified
upper bounds)

• Each thread has a new ghost field lockstack, holding the
set of acquired locks

22

Verification via Lock Ordering and
Lockstacks

Tr[[lock (o) S]] =

 assert o.shared;

 assert tid.lockstack != empty ⇒
o tid.lockstack.top();

 tid.lockStack.push(o);

 foreach (p | !tid.A[p]) havoc p.*;

 tid.A[o]:=true;

 Tr[[S]] ;

 tid.A[o]:= false;

 tid.lockstack.pop(o);

Tr[[share o
 where p o && o q;]] =

 assert o ∈ tid.A;

 assert ! o.shared;

 tid.A[o] := false;

 o.shared := true;

 assert p q;

 assume p o && o q;

23

Example: Deadlock Avoidance (contd.)

f1 = new Fork(); share f1;

f2 = new Fork(); share f2 where f1 f2;

f3 = new Fork(); share f3 where f2 f3 ;

P1 = new Thread(delegate() {
 lock (f2) { lock (f1) { /*eat*/ }}});
P1.Start();

P2 = new Thread(delegate() {
lock (f3) { lock (f2) {/*eat*/ }}}); P2.Start();

P3 = new Thread(delegate() {
lock (f3) { lock (f1) {/*eat*/ }}}); P3.Start();

Dining Philosophers

3

21

 Fork 1

Fork 2

Fork 3

lef
t

right left

right

rig
ht

left

24

Conclusion

• Clients can reason entirely as if world was single-
threaded for non-shared objects

• Supports caller-side locking and callee-side locking
• Deadlocks are prevented by partially ordering shared

objects

The End
(for now)

http://research.micsoft.com/specsharp

Thank you!

http://research.micsoft.com/specsharp

 1

Lecture 5

Towards a Verifying Compiler:
Multithreading

Wolfram Schulte
Microsoft Research

Formal Methods 2006

Race Conditions, Locks,
Deadlocks, Invariants, Locklevels

Access Sets

Joint work with Rustan Leino, Mike Barnett, Manuel Fähndrich, Herman Venter, Rob
DeLine, Wolfram Schulte (all MSR), and Peter Müller (ETH), Bart Jacobs (KU Leuven)
and Bor-Yuh Evan Chung (Berkley) .

 2

Review: Pure Methods and Model Fields

Data abstraction is crucial to express functional correctness
properties

• Verification methodology for model fields
– Model fields are reduced to ordinary fields with automatic updates

• Verification challenges for model fields and pure methods
– Consistency

– Weak purity

– Heap dependence (and frame properties)

 3

Multi-threading

• Data race prevention

• Invariants and ownership trees

• Deadlock prevention

 4

Multithreading

Multiple threads running in
parallel, reading and writing
shared data

A data race occurs when a
shared variable is written by
one thread and concurrently
read or written by another
thread

How to guarantee that there
are no data races?

class Counter {

 int dangerous;

 void Inc() {
int tmp = dangerous;
dangerous = tmp + 1; }

}

Counter ct = new Counter();

new Thread(ct.Inc).Start();

new Thread(ct.Inc).Start();

// What is the value of

// ct.dangerous after both

// threads have terminated?

 5

Mutexes: Avoiding Races

• Mutual exclusion for shared objects is provided via locks

• Locks can be obtained using a lock block. A thread may
enter a lock (o) block only if no other thread is executing
inside a lock (o) block; else, the thread waits

• When a thread holds a lock on object o, C#/Java
– do prevent other threads from locking o but

– do not prevent other threads from accessing o’s fields

 6

Program Method for Avoiding Races

Our program rules enforce that
a thread t can only access a field of object o if o is either
thread local or t has locked o

We model accessibility using access sets:

• A thread’s access set consists of all objects it has created
but not shared yet or whose lock it holds.

• Threads are only allowed to access fields of objects in their
corresponding access set

Our program rules prevent data races by ensuring that access
sets of different threads never intersect.

 7

Annotations Needed to Avoid Races

• Threads have access sets
– t.A is a new ghost field in each thread t describing the set of

accessible objects

• Objects can be shared
– o.shared is a new boolean ghost field in each object o

– share(o) is a new operation that shares an unshared o

• Fields can be declared to be shared
– Shared fields can only be assigned shared objects.

 8

Object Life Cycle

free locked
new T()

acquire

release

shared

unshared

share

 9

Verification via Access Sets

Tr[[o = new C();]] = …
 o.shared:= false;
 tid.A[o]:= true

Tr[[x = o.f;]] = …
 assert tid.A[o];
 x :=o.f;

Tr[[o.f = x;]] = …
 assert tid.A[o];
 if (f is declared shared)
 assert x.shared;
 o.f :=x;

Tr[[share(o)]] = …
 assert tid.A[o];
 assert ! o.shared;
 o.shared :=true;
 tid.A[o] :=false;

Tr[[lock (o) S]] = …
 assert ! tid.A[o];
 assert o.shared;
 havoc o.*;
 tid.A[o]:=true;
 Tr[[S]];
 tid.A[o]:= false

 10

A Note on havoc in the Lock Rule

When a thread (re) acquires o, o might have been changed by
another thread.

int x;

lock (o) {

 x = o.f;

}

lock (o) {

 assert x == o.f; // fails

}

So we have to “forget all knowledge about o’s fields”. We do so by
assigning an arbitrary value to all of o’s field, expressed as
 havoc o.*

 11

Example for Data Race Freedom

Counter ct = new Counter();

share(ct);

new Thread(delegate () { lock (ct) ct.Inc(); }).Start();

new Thread(delegate () { lock (ct) ct.Inc(); }).Start();

 12

Example for Data Race Freedom
class Session {
 shared Counter ct ;
 int id;

 Session(Counter ct , int id)
 requires ct.shared;
 ensures tid.A[this] !∧ this.shared;
 { this.ct=ct; this.id=id; }

 void Run()

requires tid.A[this];
 { for (; ;)
 lock (this.ct)
 this.ct.Inc();
 }
}

// thread t0
 Counter ct = new Counter();
 share(ct);
 Session s1 =new Session(ct,1);
 Session s2 =new Session(ct,2);
 // transfers s1 to t1

t1 = new Thread(s1.Run);
 // transfers s2 to t2

t2 = new Thread(s2.Run);
 t1.Start();
 t2.Start();

 13

Soundness

Theorem

∀ ∀ threads t1,t2 :: t1≠t2 ⇒ t1.A ∩ t2.A = ∅
∀ ∀ object o, thread t :: o.shared && o t.A ∈ ⇒ t holds o’s lock

• Proof sketch for Theorem
– new
– share (o)
– Entry into lock (o)
– Exit from lock (o)

Corollary
• Valid programs don’t have data races

 14

Multi-threading

• Data race prevention

• Invariants and ownership trees

• Deadlock prevention

 15

Invariants and Concurrency

Invariants, whether over a single object or over an ownership
tree, can be protected via a single lock (coarse grained
locking)

For sharing and locking
• require an object o to be valid when o becomes free

• ensures o’s invariant on entry to its locked state

For owned objects
• require that commited objects are unaccessable, but

– unpack(o) adds o’s owned objects to the thread’s access set

– pack(o) deletes o’s owned objects from the thread’s access set

 16

Verifying Multi-threaded Pack/Unpack

Tr[[pack o;]] =
assert tid.A[o];
assert ! o.inv;

 assert ∀c: c.owner = o ⇒
 tid.A[c] ∧ c.inv;
 foreach (c | c.owner = o)
 { tid.A[c] := false; }
 assert Inv(o);
 o.inv := true;

Tr[[unpack o;]] =
assert tid.A[o];
assert o.inv;
foreach (c | c.owner = o)
 { tid.A[c] := true; }

 o.inv := false;

 17

Ownership: Verifying Lock Blocks

Finally, when locking we also have to “forget the knowledge
about” owned objects

Tr[[lock (o) S;]] =

 assert o.shared;

 assert ! tid.A[o];

 foreach (p | !tid.A[p]) havoc p.*;

 tid.A[o]:=true;

 Tr[[S]] ;

 tid.A[o]:= false;

 18

Outline of the talk

• Data race prevention

• Invariants and ownership trees

• Deadlock prevention

 19

Multi-threading

• Data race prevention

• Invariants and ownership trees

• Deadlock prevention

 20

Concurrency: Deadlocks

A deadlock occurs when a set of
threads each wait for a mutex
(i.e shared object) that
another thread holds

Methodology:
• partial order over all shared

objects
• in each thread, acquire shared

objects in descending order

Dining Philosophers

1 has F1, waits for F2
2 has F2, waits for F3
3 has F3, waits for F1

3

21

 Fork 1

Fork 2

Fork 3

 21

Annotations Needed to Avoid Deadlocks

We construct a partial order on shared objects, denoted by
.

• When o is shared, we add edges to the partial order as
specified in the share command’s where clause.

(Specified lower bounds have to be less than specified
upper bounds)

• Each thread has a new ghost field lockstack, holding the
set of acquired locks

 22

Verification via Lock Ordering and
Lockstacks

Tr[[lock (o) S]] =

 assert o.shared;

 assert tid.lockstack != empty ⇒
o tid.lockstack.top();

 tid.lockStack.push(o);

 foreach (p | !tid.A[p]) havoc p.*;

 tid.A[o]:=true;

 Tr[[S]] ;

 tid.A[o]:= false;

 tid.lockstack.pop(o);

Tr[[share o
 where p o && o q;]] =

 assert o ∈ tid.A;

 assert ! o.shared;

 tid.A[o] := false;

 o.shared := true;

 assert p q;

 assume p o && o q;

 23

Example: Deadlock Avoidance (contd.)

f1 = new Fork(); share f1;

f2 = new Fork(); share f2 where f1 f2;

f3 = new Fork(); share f3 where f2 f3 ;

P1 = new Thread(delegate() {
 lock (f2) { lock (f1) { /*eat*/ }}});
P1.Start();

P2 = new Thread(delegate() {
lock (f3) { lock (f2) {/*eat*/ }}}); P2.Start();

P3 = new Thread(delegate() {
lock (f3) { lock (f1) {/*eat*/ }}}); P3.Start();

Dining Philosophers

3

21

 Fork 1

Fork 2

Fork 3

le
ft

right left

right

rig
ht

left

 24

Conclusion

• Clients can reason entirely as if world was single-
threaded for non-shared objects

• Supports caller-side locking and callee-side locking
• Deadlocks are prevented by partially ordering shared

objects

 25

The End
(for now)

http://research.micsoft.com/specsharp

Thank you!

