Lecture 3

Towards a Verifying Compiler:
Verifying Object Invariants

Wolfram Schulte

Microsoft Research
Formal Methods 2006

Program Invariants, Callbacks,
Aggregates, Ownership, Visibility

Joint work with Rustan Leino, Mike Barnett, Manuel Fahndrich, Herman Venter, Rob DeLine,
Wolfram Schulte (all MSR), and Peter Miiller (ETH), Bart Jacobs (KU Leuven) and Bor-Yuh Evan
Chung (Berkley)

1

Review: Verification of OO Programs
* What is needed for designing a verifier?
* Which programs can we verify?

 \What are the limitations?

Pre- and Postconditions are not Enough

Contracts can break We need invariants
abstraction
class C{ Class.C{ |
private int a, z; private int a, z;
public void M() invariant al=0;
requires a!=0; public void M()
{z=100/a;} {z=100/a;}

Dealing with Invariants

Basic Methodology
Object-based Ownership
Object-oriented Ownership
Visibility based Ownership

Problem

class Meeting {
int day; int time;

invariant 0 < day<7 A
day==6 [1200<= time;

void Reschedule(int d)
requires0<d <7,
{
day = d;
X.P(this);
if (day==6) time = 1200;
}
}

. Reentrancy

How can we prevent that

current object is re-
entered in an inconsistent
state?

Program Model for Object Invariants

* Objects can be valid or mutable
— inv J{ valid, mutable } is a new ghost field in each object

* Mutable objects need not satisfy their invariants

* o.inv indicates whether the invariant of o, Inv(0), is
allowed to be broken

[Jo: o.inv # mutable [Inv(0)

Remark: Quantifier ranges over allocated, non-null objects

Field Updates

* Only fields of mutable objects can be updated

Tr[lo.f=¢€]] =
assert o#Znull A o.inv=mutable; o.f ;= e

Pack and Unpack

Inv Is changed by special source commands
* unpack(o) to make o mutable
* pack(o) to re-establish invariant and make o valid

Tr[[unpack o]] =

assert o.inv = valid;
o.inv := mutable

Tr[[pack o]] =

assert o.inv = mutable;
assert Inv(0);
o.inv ;= valid

Pack and Unpack Example

\

void Reschedule(int d) oot
requires inv==valid 00< [M_}
d<7;
ﬂ{
expose(this {
mm) day(thid);

If (day==6) time = 1200;
))
) Valid

Spec# uses expose, defined by
expose(0) s; = unpack 0; s; pack o;

Program Invariant

* Theorem (Soundness)
Yo: o.inv# mutable O Inv(o)

* Admissible invariants contain only field accesses of the
form this.f

* Proof sketch
— New:
new object is initially mutable
— o.f:= E;
can only affect invariant of o, asserts o.inv = mutable
— unpack(o):
changes o.inv to mutable
— pack(o):
asserts Inv(o)

Dealing with Invariants

Basic Methodology
Object-based Ownership
Object-oriented Ownership
Visibility based Ownership

11

Problem: Object Structures

class Meeting {
int day;
invariant 0 < day<7,

void Reschedule(int d)
requires inv==valid;

{
expose(this){

day = d;

}

}

}

class Person {
int freeDay;
Meeting next;

invariant this.next '= null [
this.next.day != freeDay;

Can we have relax the
admissabilty condition?

How can we find out that
reschedule might break

Person’s invariant?
12

Invariants in the Presence of Aliasing?

next.day != freeDay

_—
% % 3 bar, =5
gc?? o (Foo
s g
D ! S
& o P
________ ¢ aII ”19(4),(Meeting

Ownership-Based Invariants

 Establish hierarchy (ownership) on

objects (; Personw

. - L)
* Ownership rule: When an object is 45
mutable, so are its (transitive) =
owners Q

(: Meetingw

* An object o may only depend on |)

— the fields of o and

— the fields of objects
(transitively) owned by o

14

Dynamic Ownership

Each object has a special ghost
field, owner, that points to its
owner object

rep(resentation) declarations lead
to implicit owner invariants

invi{committed, valid, mutable}

An object is committed, if
— Its invariant is known to hold
— the owner Is not mutable

class Person {
int freeDay;
rep Meeting next;

[*implicit*/ invariant
next Z null [J
next.owner = this;

15

Pack and Unpack with Ownership

* unpack(o) and pack(o) and change inv for o and o's rep

objects

Tr[[unpack o]] =
assert o.inv = valid;
o.inv := mutable;

foreach (c [¢.owner = 0)
{ c.inv := valid; }

Tr[[pack o]] =
assert o.inv = mutable;

assert [Ic: c.owner = o [
c.inv = valid;

foreach (c [¢.owner = 0)
{ c.inv := committed; }

assert Inv(0);
o.inv := valid

16

Program Invariant with Ownership

Theorem (Soundness)
[o: o.inv # mutable O
Inv(o) [
(Lc: c.owner = o0 [c.inv = committed))

Admissible invariants contain only field accesses of the form

this.f,.f wheref,f_, must be rep fields

17

Method Framing Revisited

Allow methods to modify also committed objects

Example. Given
class A{ rep B b;}
class B{ rep C c;}

the method
static void m(A a) requires a.inv == valid; modifies a.*;
s allowed to modify ...
the fields of a.b and a.b.c

This addresses the transitivity problem of modifies clauses

18

Method Framing Revisited

Allow methods to modify also committed objects
The Post condition for a Spec# modifies W clause

Tr[[W]] =
(Vo : ref, f: field :: old(Heap[o,allocated])
[(o,f) Dold(W) O
old(Heaplo,f]) = Heaplo,f]) U
old(Heapl[o,inv]) = committed

19

Example Revisited [:Pefson]

A

class Person {

int freeDay; owned by
rep Meeting next;

next.day # freeDay; -

invariant next # null [

class Meeting {

int doTravel(int td) int day:
amp equires inv==valid; modifies ’

this.”; void reschedule(int d)

{ expose(thi_s) {. requires inv==valid;
freeDay = td; { expose(this)
if (next!=null) { day = d;
next.reschedule((td+1)%7); }

A }
)

Dealing with Invariants

Basic Methodology
Object-based Ownership
Object-oriented Ownership
Visibility based Ownership

21

Inheritance

* Each subtype defines one frame with its variables
 Single inheritance results in a sequence of frames

Example

class Cell { int x;
invariant x>=0;...}

class BackupCell: Cell {
rep History h;
invariant h.last>=x;
invariant x>10;

Obijects of

* type Cell have 2 frames:
[Cell, object]

* type B have 3 frames:
[BackupCell, Cell, object]

* Subtypes are allowed to strengthen invariants

22

Refined Representation

Idea: Reduce inheritance to ownership of frames.
If B is a direct subtype of A, then B has a rep field A.
But we only have one inv field, so:

* o0.inv now represents the most derived frame for o which is valid,
l.e.
— o.inv<: T means Inv(o) holds for the frame T and all its super
frames

— o.inv == typeof(o) means Inv(o) holds for all of o’s frames

* 0.owner is now a pair (p,T);
— p is the owner,
— T the frame that contains the rep field that points to o.
23

Refined Representation

4 I
. Cell (frame) owned by the
BackupCell frame

inv </ <
L y,

packed as BatlkupCell

-

Commiting ¢ to p means then
c.commited = let (p,T) = c.ownerin p.inv<: T

24

Refined Representation

* rep fields f in class T give rise to implicit invariants

invariant this.fl= null O let (p,T’) = this.f.owner in p==this A T =

T

25

Pack and Unpack with Inheritance

Given class T:S and o of type T. Then

Tr[[unpack(o from T)]] = Tr[[pack o as T]] =
assert o.inv = T; assert o.inv = S;
assert lo.committed; assert Invy(0);

0.inv =S
foreach (c [&.owner==(0,T))
{ c.committed := false }

assert [c: c.owner==(o,T)]
c.inv = typeof(r);
foreach (c Uc.owner==(0,T))

{ c.committed := true }
o.inv:=T

pack(o as T) claims every object that has o as its owner and

its rep field declared in T
26

Inheritance Precondition Problem

virtual void Cell.Set(int x)
requires ...
modifies this.*;

unpack(this from Cell);
this.x = x;
pack(this to Cell);

}

override void BackupCell .Set(int x)
/[requires ...

{
unpack(this from BackupCell);

this.b = this.x;
base.Set(x);

pack(this to BackupCell);
}

void M(Cell c)

{
c.Set(23);

}

How can we verify the
dynamically dispatched
c.Set call?

27

Dynamic Dispatch and Preconditions

For virtual methods m, we allow to write the pre:
this.inv ==

For each frame in which m is defined we generate 2 procs
* m.C is used for stafically bound calls; its pre:

Heaplo,inv] = C
* m.C.Virtual is used for dynamically dispatched calls, its pre:
Heap[o,inv] = typeof(0)

Only m.C contains the translated code 28

Inheritance Precondition Example

virtual void Cell.Set(int x)
requires this.inv == {;
modifies this.*;

unpack(this from Cell);

this.x = x;
pack(this to Cell);

}
void M(Cell c)

requires c.inv == typeof(Cell);
{

c.Set(23);
}

29

Dealing with Invariants

Basic Methodology
Object-based Ownership
Object-oriented Ownership
Visibility based Ownership

30

Rep & Peer Objects

* Rep fields are used to build hierarchical abstractions.
* Peer fields are used to group sibling objects.

O v
Oz0z0%

@O @

31

Rep and Peer Objects

class List {
rep Node! head;

invariant
(O Node n | n.owner=this [

next!=null [0 next.prev =
this
...
}

class Node{
peer Node next, prev;

F’}eer fields give rise to additional iny

class List {
rep Node! head;
}
class Node{
peer Node next, prev;
invariant

next!=null 0 next.prev = this
...

yariants, for Nodes e.q.

nevt!l=niilll T owner = next owne
LILA"4Z A\ X] T T ATT] W VW T TJT LLAZANTRA"A AL AR AL~

But how can we reason locally?

I prevl=null 0 owner = prev.owner

32

Mutually Recursive
Structures

class Person {
Person spouse;

invariant this.spouse # null [
this.spouse.spouse = this;

* Objects are mutually dependent
* Objects cannot own each other

Object

f Person

Lspouse:

f : Persorlj
tspouse: g

33

Admissible Visibility-Based Invariant

class Person {
Person spouse dependent Person;

invariant this.spouse # null [this.spouse.spouse = this;

The invariant declared in class C may contain a field

access R.f iff

— Ris “this” or

— Ris “this.g,.g,.” and g,..g, are rep or peer fields, and C is
mentioned in the dependent clause of f

34

Proof Obligation for Field Updates

* For afield update o.f := E; we have to prove
— That o is non-null and mutable (as before)

— That all other objects whose invariant depends on o.f are
mutable

Tr[[o.spouse := E;]
assert o # null Jo.inv = mutable;
assert JPerson t: t.spouse = o0 U t.inv = mutable;

* The other objects are determined by inspecting the
invariants of the all “friend” classes mentioned in the
dependent clause (see next slide)

35

Marriage is Never Easy...

class Person {
Person spouse dependent Person;
iInvariant this.spouse # null I this.spouse.spouse = this;

void marry(Person p)

requires pznull O p#this Othis.inv = valid O p.inv = valid [
this.spouse = null O p.spouse = null ;

{ expose(this) — .
expose(p){< this.inv = mutable [this.spouse = null
this spom p.inv = mutable [p.spouse = null
p.spouse := this;
)

}
} this.spouse.spouse=this[] p.spouse.spouse=p

36

Summary: Object Invariants

The methodology solves the problems of
— Re-entrance (through the explicit inv field)
— Object structures (through ownership or visibility)

It can handle
— Complex object structures including (mutual) recursion
— Ownership transfer (not shown in this talk)

The methodology is modular and sound
Aliasing is not restricted

37

