
1

Lecture 3

Towards a Verifying Compiler:
Verifying Object Invariants

Wolfram Schulte

Microsoft Research
Formal Methods 2006

Program Invariants, Callbacks,

Aggregates, Ownership, Visibility

Joint work with Rustan Leino, Mike Barnett, Manuel Fähndrich, Herman Venter, Rob DeLine,
Wolfram Schulte (all MSR), and Peter Müller (ETH), Bart Jacobs (KU Leuven) and Bor-Yuh Evan
Chung (Berkley)

2

Review: Verification of OO Programs

• What is needed for designing a verifier?

• Which programs can we verify?

• What are the limitations?

3

Pre- and Postconditions are not Enough

Contracts can break
abstraction

class C{
 private int a, z;
 public void M()
 requires a!=0;
 {z = 100/a;}
}

We need invariants

class C{
 private int a, z;
 invariant a!=0;
 public void M()
 {z = 100/a;}
}

4

Dealing with Invariants

• Basic Methodology
• Object-based Ownership
• Object-oriented Ownership
• Visibility based Ownership

5

Problem: Reentrancy

How can we prevent that
current object is re-
entered in an inconsistent
state?

class Meeting {
 int day; int time;
 invariant 0 ≤ day<7 ∧

day==6 ⇒ 1200<= time;

 void Reschedule(int d)
 requires 0 ≤ d < 7;
 {
 day = d;
 X.P(this);
 if (day==6) time = 1200;
 }
}

6

Program Model for Object Invariants

• Objects can be valid or mutable
– inv ∈ { valid, mutable } is a new ghost field in each object

• Mutable objects need not satisfy their invariants

• o.inv indicates whether the invariant of o, Inv(o), is
allowed to be broken

∀o: o.inv ≠ mutable ⇒ Inv(o)

 Remark: Quantifier ranges over allocated, non-null objects

7

Field Updates

• Only fields of mutable objects can be updated

Tr[[o.f = e]] =

 assert o≠null ∧ o.inv=mutable; o.f := e

8

Pack and Unpack

inv is changed by special source commands
• unpack(o) to make o mutable
• pack(o) to re-establish invariant and make o valid

Tr[[unpack o]] =

 assert o.inv = valid;
 o.inv := mutable

Tr[[pack o]] =

 assert o.inv = mutable;
assert Inv(o);
o.inv := valid

9

Pack and Unpack Example

void Reschedule(int d)

 requires inv==valid ∧ 0≤
d<7;

 {

 unpack(this);

 day = d;

 if (day==6) time = 1200;

 pack(this);

 }

void Reschedule(int d)

 requires inv==valid ∧ 0≤
d<7;

 {

 expose(this){

 day = d;

 if (day==6) time = 1200;

 }

 }

Spec# uses expose, defined by
 expose(o) s; = unpack o; s; pack o;

:Meeting

x.P(this);

Valid

Mutable

10

Program Invariant
• Theorem (Soundness)
 ∀o: o.inv ≠ mutable ⇒ Inv(o)

• Admissible invariants contain only field accesses of the
form this.f

• Proof sketch
– new:

new object is initially mutable
– o.f := E;

can only affect invariant of o, asserts o.inv = mutable
– unpack(o):

changes o.inv to mutable
– pack(o):

asserts Inv(o)

11

Dealing with Invariants

• Basic Methodology
• Object-based Ownership
• Object-oriented Ownership
• Visibility based Ownership

12

Problem: Object Structures

Can we have relax the
admissabilty condition?

How can we find out that
reschedule might break
Person’s invariant?

class Person {
 int freeDay;
 Meeting next;
 invariant this.next != null ⇒

this.next.day != freeDay;
}

class Meeting {
 int day;
 invariant 0 ≤ day<7;

 void Reschedule(int d)
 requires inv==valid;
 {
 expose(this){
 day = d;
 }
 }
}

13

Invariants in the Presence of Aliasing?

 : Meeting

 : Person

ne
xt

next.day != freeDay

 : Foo

bar

bar.day >= 5

call reschedule(4)

call reschedule(4)
ca
ll re

-
 sche

du
le(4)

ow
ne

r

Valid

Mutable

Committ
ed

inv =

14

Ownership-Based Invariants

 : Meeting

 : Person

o
w

ne
r

• Establish hierarchy (ownership) on
objects

• Ownership rule: When an object is
mutable, so are its (transitive)
owners

• An object o may only depend on
– the fields of o and
– the fields of objects

(transitively) owned by o

15

Dynamic Ownership

• Each object has a special ghost
field, owner, that points to its
owner object

• rep(resentation) declarations lead
to implicit owner invariants

• inv∈{committed, valid, mutable}

• An object is committed, if
– its invariant is known to hold
– the owner is not mutable

class Person {
 int freeDay;
 Meeting next;

 /*implicit*/ invariant
next ≠ null ⇒

next.owner = this;
 …
}

rep

16

Pack and Unpack with Ownership

Tr[[unpack o]] =
assert o.inv = valid;
o.inv := mutable;

 foreach (c c.owner = o)
 { c.inv := valid; }

Tr[[pack o]] =
assert o.inv = mutable;

 assert ∀c: c.owner = o ⇒
 c.inv = valid;
foreach (c c.owner = o)
 { c.inv := committed; }

 assert Inv(o);
o.inv := valid

• unpack(o) and pack(o) and change inv for o and o's rep
objects

17

Program Invariant with Ownership

Theorem (Soundness)
 ∀o: o.inv ≠ mutable ⇒
 Inv(o) ∧
 (∀c: c.owner = o ⇒ c.inv = committed))

Admissible invariants contain only field accesses of the form
this.f1. … .fn where f1 … .fn-1 must be rep fields

18

Method Framing Revisited

Allow methods to modify also committed objects

Example. Given
class A{ rep B b;}

class B{ rep C c;}

the method
static void m(A a) requires a.inv == valid; modifies a.*;

is allowed to modify …

 the fields of a.b and a.b.c

This addresses the transitivity problem of modifies clauses

19

Method Framing Revisited

Allow methods to modify also committed objects
The Post condition for a Spec# modifies W clause

Tr [[W]] =
(∀o : ref, f: field :: old(Heap[o,allocated])
 ⇒ (o,f) ∈old(W) ∨
 old(Heap[o,f]) = Heap[o,f]) ∨

 old(Heap[o,inv]) = committed

20

Example Revisited
class Person {
 int freeDay;
 rep Meeting next;

 invariant next ≠ null ⇒

next.day ≠ freeDay;

 int doTravel(int td)
 requires inv==valid; modifies

this.*;
 { expose(this) {
 freeDay = td;
 if (next!=null) {
 next.reschedule((td+1)%7);
 };
 }

class Meeting {
 int day;

 void reschedule(int d)
 requires inv==valid;
 { expose(this)

 day = d;
}

 }

 : Meeting

 : Person

owned by

 : Person

 : Meeting : Meeting

 : Person

 : Meeting : Meeting : Meeting

21

Dealing with Invariants

• Basic Methodology
• Object-based Ownership
• Object-oriented Ownership
• Visibility based Ownership

22

Inheritance

• Each subtype defines one frame with its variables
• Single inheritance results in a sequence of frames

 Example

class Cell { int x;
invariant x>=0;...}

class BackupCell: Cell {
rep History h;
invariant h.last>=x;

Objects of
• type Cell have 2 frames:

[Cell, object]
• type B have 3 frames:

[BackupCell, Cell, object]

• Subtypes are allowed to strengthen invariants

invariant x>10;

23

Refined Representation

Idea: Reduce inheritance to ownership of frames.
If B is a direct subtype of A, then B has a rep field A.
But we only have one inv field, so:

• o.inv now represents the most derived frame for o which is valid,
i.e.
– o.inv <: T means Inv(o) holds for the frame T and all its super

frames
– o.inv == typeof(o) means Inv(o) holds for all of o’s frames

• o.owner is now a pair (p,T);
– p is the owner,
– T the frame that contains the rep field that points to o.

24

Refined Representation

owned by the
BackupCell frame

 : Cell (frame)

inv
: BackupCell (frame) : History (frame)

packed as BackupCell

Commiting c to p means then
 c.commited ⇔ let (p,T) = c.owner in p.inv <: T

packed as Cell

Valid

Mutable

Committ
ed

25

Refined Representation

• rep fields f in class T give rise to implicit invariants

invariant this.f!= null ⇒ let (p,T’) = this.f.owner in p== this T = ∧
T’

26

Pack and Unpack with Inheritance

Tr[[unpack(o from T)]] =
assert o.inv = T;

 assert !o.committed;
 o.inv := S

foreach (c c.owner==(o,T))
 { c.committed := false }

Tr[[pack o as T]] =
assert o.inv = S;
assert InvT(o);
assert ∀c: c.owner==(o,T)⇒
 c.inv = typeof(r);
foreach (c  c.owner==(o,T))

 { c.committed := true }
o.inv := T

Given class T:S and o of type T. Then

pack(o as T) claims every object that has o as its owner and
 its rep field declared in T

27

Inheritance Precondition Problem

virtual void Cell.Set(int x)
 requires …
 modifies this.*;
{

unpack(this from Cell);
 this.x = x;

 pack(this to Cell);
}

override void BackupCell .Set(int x)
 //requires …
{
 unpack(this from BackupCell);
 this.b = this.x;

 base.Set(x);
 pack(this to BackupCell);
 }

void M(Cell c)
{
 c.Set(23);
}

How can we verify the
 dynamically dispatched
 c.Set call?

28

Dynamic Dispatch and Preconditions

For virtual methods m, we allow to write the pre:

 this.inv == 1

For each frame in which m is defined we generate 2 procs
• m.C is used for statically bound calls; its pre:

 Heap[o,inv] = C
• m.C.Virtual is used for dynamically dispatched calls, its pre:

 Heap[o,inv] = typeof(o)

Only m.C contains the translated code

29

Inheritance Precondition Example

virtual void Cell.Set(int x)
 requires this.inv == 11;
 modifies this.*;
{

unpack(this from Cell);
 this.x = x;

 pack(this to Cell);
}

void M(Cell c)
 requires c.inv == typeof(Cell);
{
 c.Set(23);
}

30

Dealing with Invariants

• Basic Methodology
• Object-based Ownership
• Object-oriented Ownership
• Visibility based Ownership

31

Rep & Peer Objects

• Rep fields are used to build hierarchical abstractions.
• Peer fields are used to group sibling objects.

32

Rep and Peer Objects

class List {

 rep Node! head;

 invariant
(∀ Node n | n.owner=this ⇒

 next!=null ⇒ next.prev =
this
 ∧…

}

class Node{

 peer Node next, prev;

}

class List {

 rep Node! head;

}

class Node{

 peer Node next, prev;

 invariant

 next!=null ⇒ next.prev = this
∧ …

}

Peer fields give rise to additional invariants, for Nodes e.g.
 next!=null ⇒ owner = next.owner ∧ prev!=null ⇒ owner = prev.owner

But how can we reason locally?

33

Mutually Recursive Object
Structures

• Objects are mutually dependent
• Objects cannot own each other

class Person {
 Person spouse;

 invariant this.spouse ≠ null ⇒

 this.spouse.spouse = this;
 …
}

: Person

spouse:

: Person

spouse:

34

Admissible Visibility-Based Invariant

The invariant declared in class C may contain a field
access R.f iff
– R is “this” or
– R is “this.g1. … .gn.” and g1..gn are rep or peer fields, and C is

mentioned in the dependent clause of f

class Person {
 Person spouse dependent Person;

 invariant this.spouse ≠ null ⇒ this.spouse.spouse = this;
 …
}

35

Proof Obligation for Field Updates

• For a field update o.f := E; we have to prove
– That o is non-null and mutable (as before)
– That all other objects whose invariant depends on o.f are

mutable

Tr[[o.spouse := E;]]
assert o ≠ null ∧ o.inv = mutable;

assert ∀Person t: t.spouse = o ⇒ t.inv = mutable;

• The other objects are determined by inspecting the
invariants of the all “friend” classes mentioned in the
dependent clause (see next slide)

36

Marriage is Never Easy…
class Person {
 Person spouse dependent Person;
 invariant this.spouse ≠ null ⇒ this.spouse.spouse = this;

 void marry(Person p)
 requires p≠null ∧ p≠this ∧ this.inv = valid ∧ p.inv = valid ∧

this.spouse = null ∧ p.spouse = null ;
 { expose(this)
 expose(p) {
 this.spouse := p;
 p.spouse := this;
 }
 }
}

this.inv = mutable ∧ this.spouse = null
p.inv = mutable ∧ p.spouse = null

this.spouse.spouse=this∧ p.spouse.spouse=p

37

Summary: Object Invariants

• The methodology solves the problems of
– Re-entrance (through the explicit inv field)
– Object structures (through ownership or visibility)

• It can handle
– Complex object structures including (mutual) recursion
– Ownership transfer (not shown in this talk)

• The methodology is modular and sound
• Aliasing is not restricted

