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Review: Verification of OO Programs

• What is needed for designing a verifier?

• Which programs can we verify?

• What are the limitations?
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Pre- and Postconditions are not Enough

Contracts can break 
abstraction

class C{
      private int a, z; 
      public void M() 
         requires a!=0; 
         {z = 100/a;}
}

We need invariants

class C{
     private int a, z; 
     invariant a!=0; 
     public void M() 
       {z = 100/a;}
}
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Dealing with Invariants

• Basic Methodology
• Object-based Ownership
• Object-oriented Ownership
• Visibility based Ownership
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Problem: Reentrancy

How can we prevent that 
current object is re-
entered in an inconsistent 
state?

class Meeting {
  int day;  int time;
  invariant 0 ≤ day<7 ∧

day==6 ⇒ 1200<= time;
  
  void Reschedule(int d ) 
    requires 0 ≤ d < 7;
  { 
    day = d;
    X.P(this);
    if ( day==6 )  time = 1200;
  }
}



6

Program Model for Object Invariants

• Objects can be valid or mutable
– inv ∈ { valid, mutable } is a new ghost field in each object

• Mutable objects need not satisfy their invariants

• o.inv indicates whether the invariant of o, Inv(o), is 
allowed to be broken

∀o:  o.inv ≠ mutable ⇒ Inv(o)

 Remark: Quantifier ranges over allocated, non-null objects
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Field Updates

• Only fields of mutable objects can be updated

Tr[[o.f = e]] =

    assert o≠null  ∧ o.inv=mutable; o.f := e



8

Pack and Unpack

inv is changed by special source commands 
• unpack(o) to make o mutable 
• pack(o) to re-establish invariant and make o valid

Tr[[unpack o]] = 

     assert o.inv = valid; 
 o.inv := mutable 

Tr[[pack o]] = 

    assert o.inv = mutable; 
assert Inv(o); 
o.inv := valid
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Pack and Unpack Example

void Reschedule( int d ) 

    requires inv==valid ∧ 0≤
d<7;

  { 

    unpack(this);

      day = d; 

       

      if ( day==6 )  time = 1200;

    pack(this);

  }

void Reschedule( int d ) 

    requires inv==valid ∧ 0≤
d<7;

  { 

    expose(this){

      day = d; 

      

      if ( day==6 )  time = 1200;

    }

  }

Spec# uses expose, defined by
    expose(o) s; = unpack o; s; pack o;

:Meeting  

x.P(this);

Valid

Mutable
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Program Invariant
• Theorem (Soundness)
         ∀o:  o.inv ≠ mutable ⇒ Inv( o ) 

• Admissible invariants contain only field accesses of the 
form this.f 

• Proof sketch
– new: 

new object is initially mutable
– o.f := E; 

can only affect invariant of o, asserts o.inv = mutable
– unpack(o): 

changes o.inv to mutable
– pack(o): 

asserts Inv(o)
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Dealing with Invariants

• Basic Methodology
• Object-based Ownership
• Object-oriented Ownership
• Visibility based Ownership
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Problem: Object Structures

Can we have relax the 
admissabilty condition?

How can we find out that 
reschedule might break 
Person’s invariant?

class Person {
  int freeDay;
  Meeting next;
  invariant this.next != null ⇒ 

this.next.day != freeDay;
}

class Meeting {
  int day;
  invariant 0 ≤ day<7;

  void Reschedule(int d ) 
    requires inv==valid;
  {
    expose(this){
      day = d; 
    }
  }
}
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Invariants in the Presence of Aliasing? 

 : Meeting

 : Person

ne
xt

next.day != freeDay

 : Foo

bar

bar.day >= 5

call reschedule(4)

call reschedule(4)
ca
ll re

-
  sche

du
le(4)

ow
ne

r

Valid

Mutable

Committ
ed

inv = 
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Ownership-Based Invariants

 : Meeting

 : Person

o
w

ne
r

• Establish hierarchy (ownership) on 
objects

• Ownership rule: When an object is 
mutable, so are its (transitive) 
owners

• An object o may only depend on 
– the fields of o and
– the fields of objects 

(transitively) owned by o
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Dynamic Ownership

• Each object has a special ghost 
field, owner, that points to its 
owner object

• rep(resentation) declarations lead 
to implicit  owner invariants

• inv∈{committed, valid, mutable}

• An object is committed, if 
– its invariant is known to hold 
– the owner is not mutable

class Person {
  int freeDay;
       Meeting next;

  /*implicit*/ invariant 
next ≠ null ⇒ 

next.owner = this;
  …
}

rep
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Pack and Unpack with Ownership

Tr[[unpack o]] = 
assert o.inv = valid;
o.inv := mutable;

     foreach (c c.owner = o) 
  { c.inv := valid; }

Tr[[ pack o]] =
assert o.inv = mutable;

    assert ∀c: c.owner = o ⇒ 
    c.inv = valid;
foreach (c c.owner = o) 
   { c.inv := committed; }

     assert Inv( o );
o.inv := valid

• unpack(o) and pack(o) and change inv for o and o's rep 
objects
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Program Invariant with Ownership

Theorem (Soundness)
 ∀o: o.inv ≠ mutable ⇒ 
            Inv(o) ∧ 
            (∀c: c.owner = o ⇒ c.inv = committed))

Admissible invariants contain only field accesses of the form 
this.f1. … .fn where f1 … .fn-1 must be rep fields
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Method Framing Revisited

Allow methods to modify also committed objects

Example. Given
class A{ rep B b;}

class B{ rep C c;} 

the method
static void m(A a) requires a.inv == valid; modifies a.*;

is allowed to modify … 

         the fields of a.b and a.b.c

This addresses the transitivity problem of modifies clauses
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Method Framing Revisited

Allow methods to modify also committed objects
The Post condition for a Spec# modifies W clause

Tr [[W]] = 
(∀o : ref, f: field :: old(Heap[o,allocated]) 
  ⇒ (o,f) ∈old(W) ∨ 
      old(Heap[o,f]) = Heap[o,f]) ∨ 

           old(Heap[o,inv]) = committed 



20

Example Revisited
class Person {
  int freeDay;
  rep Meeting next;
  
  invariant next ≠ null ⇒ 

next.day ≠ freeDay;
  
  int doTravel(int td) 
    requires inv==valid; modifies 

this.*;
  { expose(this) { 
      freeDay = td; 
      if (next!=null) {
        next.reschedule((td+1)%7);
    };
  }

class Meeting {
  int day;

  void reschedule( int d ) 
    requires inv==valid;
  { expose(this) 

  day = d; 
} 

  }

 : Meeting

 : Person

owned by

 : Person

 : Meeting : Meeting

 : Person

 : Meeting : Meeting : Meeting
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Dealing with Invariants

• Basic Methodology
• Object-based Ownership
• Object-oriented Ownership
• Visibility based Ownership
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Inheritance

• Each subtype defines one frame with its variables
• Single inheritance results in a sequence of frames

     Example

class Cell { int x; 
invariant x>=0;...}

class BackupCell: Cell { 
rep History h; 
invariant h.last>=x;

Objects of 
• type Cell have 2 frames: 

[Cell, object]
• type B have 3 frames: 

[BackupCell, Cell, object]

•   Subtypes are allowed to strengthen invariants

invariant x>10;
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Refined Representation

Idea: Reduce inheritance to ownership of frames. 
If B is a direct subtype of A, then B has a rep field A. 
But we only have one inv field, so:

• o.inv now represents the most derived frame for o which is valid, 
i.e.
– o.inv <: T   means Inv(o) holds for the frame T and all its super 

frames
– o.inv == typeof(o) means Inv(o) holds for all of o’s frames

• o.owner is now a pair (p,T); 
– p is the owner, 
– T the frame that contains the rep field that points to o. 
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Refined Representation

owned by the 
BackupCell frame

 : Cell (frame)

inv
: BackupCell (frame) : History (frame)

packed as BackupCell

Commiting c to p means then
     c.commited ⇔ let (p,T) = c.owner in p.inv <: T

packed as Cell

Valid

Mutable

Committ
ed
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Refined Representation

• rep fields f in class T give rise to implicit invariants

invariant this.f!= null ⇒ let (p,T’) = this.f.owner in p== this  T = ∧
T’
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Pack and Unpack with Inheritance

Tr[[unpack(o from T)]] = 
assert o.inv = T;

     assert !o.committed;
     o.inv := S

foreach (c c.owner==(o,T)) 
   { c.committed := false }

Tr[[ pack o as T]] =
assert o.inv = S;
assert InvT( o );
assert ∀c: c.owner==(o,T)⇒ 
     c.inv = typeof(r);
foreach (c  c.owner==(o,T)) 

         { c.committed := true }
o.inv := T

Given class T:S and o of type T. Then

pack(o as T) claims every object that has o as its owner and 
   its rep field declared in T
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Inheritance Precondition Problem

virtual void Cell.Set(int x)
   requires …
   modifies this.*;
{   

unpack(this from Cell); 
   this.x = x; 

    pack(this to Cell);
}

   

override void BackupCell .Set(int x)
  //requires …
{
   unpack(this from BackupCell); 
      this.b = this.x; 

 base.Set(x); 
   pack(this to BackupCell);
  }

void M(Cell c) 
{
   c.Set(23);
}   

How can we verify the 
  dynamically dispatched 
  c.Set call? 
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Dynamic Dispatch and Preconditions

For virtual methods m, we allow to write the pre:

                      this.inv == 1

For each frame in which m is defined we generate 2 procs
• m.C  is used for statically bound calls; its pre: 

                          Heap[o,inv] = C
• m.C.Virtual is used for dynamically dispatched calls, its pre:

                          Heap[o,inv] = typeof(o)

Only m.C contains the translated code
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Inheritance Precondition Example

virtual void Cell.Set(int x)
    requires this.inv == 11;
    modifies this.*;
{   

unpack(this from Cell); 
      this.x = x; 

    pack(this to Cell);
}

void M(Cell c) 
  requires c.inv == typeof(Cell);
{
   c.Set(23);
}
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Dealing with Invariants

• Basic Methodology
• Object-based Ownership
• Object-oriented Ownership
• Visibility based Ownership
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Rep & Peer Objects

• Rep fields are used to build hierarchical abstractions. 
• Peer fields are used to group sibling objects.
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Rep and Peer Objects

class List {

 rep  Node! head;

 invariant 
(∀ Node n | n.owner=this ⇒ 

        next!=null ⇒ next.prev = 
this
   ∧…

}

class Node{

  peer Node next, prev;

}

class List {

 rep Node! head;

}

class Node{

  peer Node next, prev;

  invariant 

    next!=null ⇒ next.prev = this 
∧ …

}

Peer fields give rise to additional invariants, for Nodes e.g.
     next!=null ⇒ owner = next.owner ∧ prev!=null ⇒ owner = prev.owner 

But how can we reason locally?
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Mutually Recursive Object 
Structures

• Objects are mutually dependent
• Objects cannot own each other

class Person {
  Person spouse;
  
  invariant this.spouse ≠ null ⇒

    this.spouse.spouse = this;
 …
}

: Person

spouse:     

: Person

spouse:     
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Admissible Visibility-Based Invariant

The invariant declared in class C may contain a field 
access  R.f  iff
– R is “this” or
– R is “this.g1. … .gn.” and g1..gn are rep or peer fields, and C is 

mentioned in the dependent clause of f

class Person {
 Person spouse dependent Person;

 invariant  this.spouse ≠ null ⇒ this.spouse.spouse = this;
 …
}
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Proof Obligation for Field Updates

• For a field update o.f := E; we have to prove
– That o is non-null and mutable (as before)
– That all other objects whose invariant depends on o.f are 

mutable

Tr[[o.spouse := E; ]]
assert  o ≠ null ∧ o.inv = mutable;

assert  ∀Person t: t.spouse = o ⇒ t.inv = mutable;

• The other objects are determined by inspecting the 
invariants of the all “friend” classes mentioned in the 
dependent clause (see next slide)
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Marriage is Never Easy…
class Person {
 Person spouse dependent Person; 
 invariant this.spouse ≠ null ⇒ this.spouse.spouse = this;

 void marry( Person p ) 
   requires p≠null ∧ p≠this ∧ this.inv = valid ∧ p.inv = valid ∧ 

this.spouse = null ∧ p.spouse = null ;
 { expose(this) 
     expose(p) {
       this.spouse := p;
       p.spouse := this;
     } 
   }
}

this.inv = mutable ∧ this.spouse = null 
p.inv = mutable ∧ p.spouse = null 

this.spouse.spouse=this∧ p.spouse.spouse=p 



37

Summary: Object Invariants

• The methodology solves the problems of
– Re-entrance (through the explicit inv field) 
– Object structures (through ownership or visibility)

• It can handle
– Complex object structures including (mutual) recursion
– Ownership transfer (not shown in this talk)

• The methodology is modular and sound
• Aliasing is not restricted


