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Review: Verification of OO Programs
* What is needed for designing a verifier?
* Which programs can we verify?

 \What are the limitations?



Pre- and Postconditions are not Enough

Contracts can break We need invariants
abstraction
class C{ Class.C{ |
private int a, z; private int a, z;
public void M() invariant al=0;
requires a!=0; public void M()
{z=100/a;} {z=100/a;}




Dealing with Invariants

Basic Methodology
Object-based Ownership
Object-oriented Ownership
Visibility based Ownership



Problem

class Meeting {
int day; int time;

invariant 0 < day<7 A
day==6 [ 1200<= time;

void Reschedule(int d )
requires0<d <7,
{
day = d;
X.P(this);
if (day==6) time = 1200;
}
}

. Reentrancy

How can we prevent that

current object is re-
entered in an inconsistent
state?



Program Model for Object Invariants

* Objects can be valid or mutable
— inv J{ valid, mutable } is a new ghost field in each object

* Mutable objects need not satisfy their invariants

* o.inv indicates whether the invariant of o, Inv(0), is
allowed to be broken

[Jo: o.inv # mutable [ Inv(0)

Remark: Quantifier ranges over allocated, non-null objects



Field Updates

* Only fields of mutable objects can be updated

Tr[lo.f=¢€]] =
assert o#Znull A o.inv=mutable; o.f ;= e




Pack and Unpack

Inv Is changed by special source commands
* unpack(o) to make o mutable
* pack(o) to re-establish invariant and make o valid

Tr[[unpack o]] =

assert o.inv = valid;
o.inv := mutable

Tr[[pack o]] =

assert o.inv = mutable;
assert Inv(0);
o.inv ;= valid




Pack and Unpack Example

\

void Reschedule( int d ) oot
requires inv==valid 00< [M_}
d<7;
ﬂ{
expose(this {
mm) day(thid);

If (day==6) time = 1200;
) )
) Valid

Spec# uses expose, defined by
expose(0) s; = unpack 0; s; pack o;




Program Invariant

* Theorem (Soundness)
Yo: o.inv# mutable O Inv( o)

* Admissible invariants contain only field accesses of the
form this.f

* Proof sketch
— New:
new object is initially mutable
— o.f:= E;
can only affect invariant of o, asserts o.inv = mutable
— unpack(o):
changes o.inv to mutable
— pack(o):
asserts Inv(o)



Dealing with Invariants

Basic Methodology
Object-based Ownership
Object-oriented Ownership
Visibility based Ownership
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Problem: Object Structures

class Meeting {
int day;
invariant 0 < day<7,

void Reschedule(int d )
requires inv==valid;

{
expose(this){

day = d;

}

}

}

class Person {
int freeDay;
Meeting next;

invariant this.next '= null [
this.next.day != freeDay;

Can we have relax the
admissabilty condition?

How can we find out that
reschedule might break

Person’s invariant?
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Invariants in the Presence of Aliasing?

next.day != freeDay
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Ownership-Based Invariants

 Establish hierarchy (ownership) on

objects ( ; Personw

. - L )
* Ownership rule: When an object is 45
mutable, so are its (transitive) =
owners Q

(: Meetingw

* An object o may only depend on | )

— the fields of o and

— the fields of objects
(transitively) owned by o
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Dynamic Ownership

Each object has a special ghost
field, owner, that points to its
owner object

rep(resentation) declarations lead
to implicit owner invariants

invi{committed, valid, mutable}

An object is committed, if
— Its invariant is known to hold
— the owner Is not mutable

class Person {
int freeDay;
rep Meeting next;

[*implicit*/ invariant
next Z null [J
next.owner = this;
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Pack and Unpack with Ownership

* unpack(o) and pack(o) and change inv for o and o's rep

objects

Tr[[unpack o]] =
assert o.inv = valid;
o.inv := mutable;

foreach (c [¢.owner = 0)
{ c.inv := valid; }

Tr[[ pack o]] =
assert o.inv = mutable;

assert [Ic: c.owner = o [
c.inv = valid;

foreach (c [¢.owner = 0)
{ c.inv := committed; }

assert Inv( 0 );
o.inv := valid
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Program Invariant with Ownership

Theorem (Soundness)
[o: o.inv # mutable O
Inv(o) [
(Lc: c.owner = o0 [ c.inv = committed))

Admissible invariants contain only field accesses of the form

this.f,. ... .f wheref, ... .f_, must be rep fields
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Method Framing Revisited

Allow methods to modify also committed objects

Example. Given
class A{ rep B b;}
class B{ rep C c;}

the method
static void m(A a) requires a.inv == valid; modifies a.*;
s allowed to modify ...
the fields of a.b and a.b.c

This addresses the transitivity problem of modifies clauses
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Method Framing Revisited

Allow methods to modify also committed objects
The Post condition for a Spec# modifies W clause

Tr[[W]] =
(Vo : ref, f: field :: old(Heap[o,allocated])
[ (o,f) Dold(W) O
old(Heaplo,f]) = Heaplo,f]) U
old(Heapl[o,inv]) = committed
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Example Revisited [:Pefson]

A

class Person {

int freeDay; owned by
rep Meeting next;

next.day # freeDay; -

invariant next # null [

class Meeting {

int doTravel(int td) int day:
amp equires inv==valid; modifies ’

this.”; void reschedule(int d )

{ expose(thi_s) {. requires inv==valid;
freeDay = td; { expose(this)
if (next!=null) { day = d;
next.reschedule((td+1)%7); }

A }
)




Dealing with Invariants

Basic Methodology
Object-based Ownership
Object-oriented Ownership
Visibility based Ownership
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Inheritance

* Each subtype defines one frame with its variables
 Single inheritance results in a sequence of frames

Example

class Cell { int x;
invariant x>=0;...}

class BackupCell: Cell {
rep History h;
invariant h.last>=x;
invariant x>10;

Obijects of

* type Cell have 2 frames:
[Cell, object]

* type B have 3 frames:
[BackupCell, Cell, object]

* Subtypes are allowed to strengthen invariants
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Refined Representation

Idea: Reduce inheritance to ownership of frames.
If B is a direct subtype of A, then B has a rep field A.
But we only have one inv field, so:

* o0.inv now represents the most derived frame for o which is valid,
l.e.
— o.inv<: T means Inv(o) holds for the frame T and all its super
frames

— o.inv == typeof(o) means Inv(o) holds for all of o’s frames

* 0.owner is now a pair (p,T);
— p is the owner,
— T the frame that contains the rep field that points to o.
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Refined Representation

4 I
. Cell (frame) owned by the
BackupCell frame

inv </ <
L y,

packed as BatlkupCell

-

Commiting ¢ to p means then
c.commited = let (p,T) = c.ownerin p.inv<: T
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Refined Representation

* rep fields f in class T give rise to implicit invariants

invariant this.fl= null O let (p,T’) = this.f.owner in p==this A T =

T
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Pack and Unpack with Inheritance

Given class T:S and o of type T. Then

Tr[[unpack(o from T)]] = Tr[[ pack o as T]] =
assert o.inv = T; assert o.inv = S;
assert lo.committed; assert Invy( 0 );

0.inv =S
foreach (c [&.owner==(0,T))
{ c.committed := false }

assert [c: c.owner==(o,T)]
c.inv = typeof(r);
foreach (c Uc.owner==(0,T))

{ c.committed := true }
o.inv:=T

pack(o as T) claims every object that has o as its owner and

its rep field declared in T
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Inheritance Precondition Problem

virtual void Cell.Set(int x)
requires ...
modifies this.*;

unpack(this from Cell);
this.x = x;
pack(this to Cell);

}

override void BackupCell .Set(int x)
/[requires ...

{
unpack(this from BackupCell);

this.b = this.x;
base.Set(x);

pack(this to BackupCell);
}

void M(Cell c)

{
c.Set(23);

}

How can we verify the
dynamically dispatched
c.Set call?
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Dynamic Dispatch and Preconditions

For virtual methods m, we allow to write the pre:
this.inv ==

For each frame in which m is defined we generate 2 procs
* m.C is used for stafically bound calls; its pre:

Heaplo,inv] = C
* m.C.Virtual is used for dynamically dispatched calls, its pre:
Heap[o,inv] = typeof(0)

Only m.C contains the translated code 28



Inheritance Precondition Example

virtual void Cell.Set(int x)
requires this.inv == {;
modifies this.*;

unpack(this from Cell);

this.x = x;
pack(this to Cell);

}
void M(Cell c)

requires c.inv == typeof(Cell);
{

c.Set(23);
}
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Dealing with Invariants

Basic Methodology
Object-based Ownership
Object-oriented Ownership
Visibility based Ownership
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Rep & Peer Objects

* Rep fields are used to build hierarchical abstractions.
* Peer fields are used to group sibling objects.

O v
Oz0z0%

@O @
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Rep and Peer Objects

class List {
rep Node! head;

invariant
(O Node n | n.owner=this [

next!=null [0 next.prev =
this
...
}

class Node{
peer Node next, prev;

F’}eer fields give rise to additional iny

class List {
rep Node! head;
}
class Node{
peer Node next, prev;
invariant

next!=null 0 next.prev = this
...

yariants, for Nodes e.q.

nevt!l=niilll T owner = next owne
LILA"4Z A\ X] T T ATT ] W VW T TJT LLAZANTRA"A AL AR AL~

But how can we reason locally?

I prevl=null 0 owner = prev.owner
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Mutually Recursive
Structures

class Person {
Person spouse;

invariant this.spouse # null [
this.spouse.spouse = this;

* Objects are mutually dependent
* Objects cannot own each other

Object

f  Person

Lspouse:

f : Persorlj
tspouse: g
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Admissible Visibility-Based Invariant

class Person {
Person spouse dependent Person;

invariant this.spouse # null [ this.spouse.spouse = this;

The invariant declared in class C may contain a field

access R.f iff

— Ris “this” or

— Ris “this.g,. ... .g,.” and g,..g, are rep or peer fields, and C is
mentioned in the dependent clause of f
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Proof Obligation for Field Updates

* For afield update o.f := E; we have to prove
— That o is non-null and mutable (as before)

— That all other objects whose invariant depends on o.f are
mutable

Tr[[o.spouse := E; ]
assert o # null Jo.inv = mutable;
assert JPerson t: t.spouse = o0 U t.inv = mutable;

* The other objects are determined by inspecting the
invariants of the all “friend” classes mentioned in the
dependent clause (see next slide)
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Marriage is Never Easy...

class Person {
Person spouse dependent Person;
iInvariant this.spouse # null I this.spouse.spouse = this;

void marry( Person p )

requires pznull O p#this Othis.inv = valid O p.inv = valid [
this.spouse = null O p.spouse = null ;

{ expose(this) — .
expose(p){< this.inv = mutable [ this.spouse = null
this spom p.inv = mutable [ p.spouse = null
p.spouse := this;
)

}
} this.spouse.spouse=this[] p.spouse.spouse=p
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Summary: Object Invariants

The methodology solves the problems of
— Re-entrance (through the explicit inv field)
— Object structures (through ownership or visibility)

It can handle
— Complex object structures including (mutual) recursion
— Ownership transfer (not shown in this talk)

The methodology is modular and sound
Aliasing is not restricted
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