
1

Towards a Verifying Compiler:
The Spec# Approach

Wolfram Schulte

Microsoft Research
Formal Methods 2006

Joint work with Rustan Leino, Mike Barnett, Manuel Fähndrich, Herman
Venter, Rob DeLine, Wolfram Schulte (all MSR), and Peter Müller (ETH), Bart

Jacobs (KU Leuven) and Bor-Yuh Evan Chung (Berkley)

2

The Verifying Compiler

“A verifying compiler uses
automated .. reasoning to check the correctness

of the program that it compiles.

Correctness is specified by
types, assertions, .. and other redundant annotations

that accompany the program.”
[Hoare, 2004]

3

Spec# Approach for a Verifying Compiler

• As source language we use C#

• As specifications we use method contracts, invariants,
and also class, field and type annotations

• As program logic we use Dijkstra’s weakest preconditions

• For automatic verification we use type checking,
verification condition generation (VCG) and automatic
theorem proving (ATP)

4

Spec#: Research Challenge

How to verify object oriented programs and in
particular object invariants

in the presence of

• Callbacks
• Aliasing
• Inheritance
• Multi-threading

5

Demo (Spec#)

6

Spec# Tool Architecture
Spec# (annotated C#)

Boogie PL

Spec# Compiler

VC Generator

Formulas

Automatic Theorem Prover

7

Goal of these Lectures

Enable participants to

• Understand and verify Spec# programs

• Understand and verify Boogie PL programs

• Build your own verifier [reusing Boogie]

8

Lectures

1. Verification Condition Generation

2. Logic of Object-oriented Programs

3. Invariants and Ownership

4. Abstraction

5. Multithreaded Programs

From Boogie PL
To Formulas

From Spec#
To BoogiePL

9

Lecture 1

Verification Condition Generation
for Boogie PL

Unstructured Code
Theories

Theorem Provers

10

Boogie PL

Source language
(eg. Spec#)

BoogiePL

Formulas

Translate source language features
using particular programming methodology

Translate Boogie PL code using
particular VC generation

Intermediate
language for

automatic
verification of

imperative
code

11

Boogie PL: Parts

Boogie PL source contains

• a first order theory to encode the background semantics
of the source language and the program, described by

 constants, functions and axioms

• an imperative part used to encode the traces of the
source program, described by:

 procedures, pre and postconditions,
 mutable variables, and unstructured code

12

Limits of Boogie PL

Boogie PL does not contain
• structured control flow
• structured types
• a heap
• expressions with side effects
• visibility
• subtyping
• dynamic dispatch

13

Motivation: Spec#’s Conditional to Boogie PL

if (Guard) S else T

assume Guard;
S

assume !Guard;
T

Spec#

BoogiePL

Then
Branch

Else
Branch

14

Motivation: Spec# ‘sWhile Loops to Boogie PL

assert Inv(x)

havoc x;
assume Inv(x);

assume !Guard(x);

assume Guard(x);
S(x)
assert Inv(x)

while (Guard(x)) invariant Inv(x) { S(x) }

Loop Head

Loop Body

Loop
Exit

Loop Pre-
decessor

Spec#

BoogiePL

15

Boogie PL: Code

Code is unstructured
Code ::= VarDecl* Block+

Block ::= Label: Cmd goto Label+; | return;

Cmd ::= Passive | Assign | Call

Passive ::= assert E | assume E | Cmd ; Cmd

Assign ::= id := E | havoc id

Call ::= call id := P(E)

Variables are (weakly) typed
VarDecl ::= var id : Type

Type ::= int | bool | Array |…

Array ::= [Type+] Type

Remark: Types disappear during VCG; they are (if ncessary) encoded as
axioms.

16

Boogie PL: Meaning of Code

For any command S and predicate Q, which describes the
result of executing S, we define another predicate, its
weakest precondition, denoted by wp(S,Q), that represents
the set of all states such that execution of S begun in any
of those states
– does not go wrong, and
– if it terminates, terminates in Q

17

Verification Condition Generation

2. Passive commands: assert, assume, ;
3. Acyclic control flow: goto (no loops)

4. State changes: :=, havoc

5. Loops

6. Procedure calls

18

VCG 1: Passive Commands

assert E

- Programmer claims that the condition E holds

- Verifier checks E

wp(assert E, Q) = E ∧ Q

assume E

- Programmer cares only about executions where E holds

- Verifier uses E as an assumption henceforth

wp(assume E, Q) = E ⇒ Q

S; T
– wp(S; T, E) = wp(S, wp(T, E))

19

VCG 1: Examples

• wp(assert x>1, Q)
 = x>1 ∧ Q

• wp(assert true, Q)

 = Q
• wp(assume y=x+1, y=5)

 = (y=x+1 ⇒ y=5)
• wp(assume false, Q)

 = true
• wp(assert P; assume P, Q)

 = P ∧ (P ⇒ Q)

20

VCG 1: Assume-Assert Reasoning

 wp(assume P; S; assert Q, true)
= wp(assume P, wp (S, wp(assert Q, true))
= wp(assume P, wp (S, Q))
= P ⇒ wp(S,Q)

21

VCG 1: Correctness for Procedures
(simplified)

Let proc M(par) returns (res) requires P, ensures Q

and impl M(par) returns (res) { start: S; return; }

Then

valid (M) = wp (assume P; S; assert Q, true) =

 P ⇒ wp(S,Q)

We will refine this later.

22

VCG 2: Acyclic Control Flow

The problem of redundancy

wp(l0:S0; goto l1,..ln, Q) =
wp(S0, wp(l1:S1, Q) ∧ … ∧ wp(ln:Sn, Q))

How can we get a linear (in size of the passive program)
formula?

23

VCG 2: Acyclic Control Flow

• For each block A = L: S goto LB1,..,LBn introduce a variable
Aok, which holds when all executions starting at A are okay.

• Introduce a Block Equation for each block A (BEA):

 Aok ≡ wp(S, (∀ B Succ(A) : B∈ ok))

• VC (semantics of entire code):

 (∀ A : BEA) Start⇒ ok

24

VCG 3: State Changes

The wp for control flow assumes stateless blocks

How do we get rid of assignments?

(3) Establish dynamic single assignment form (DSA), i.e. there
is at most one definition for each variable on each path
• Replace defs/uses with new incarnations

 x := x+1 with xn+1 = xn
+ 1

• Replace havoc x with new incarnations xn+1

• At join points unify variable incarnations
2) Eliminate assignments by replacing

 x := E with assume x = E

25

VCG 4: Loops

Loops introduce back edges in control flow graph. But technique can
only deal with acyclic graphs.

How do we get rid of back edges?

We showed the result of this transformation earlier in the slide
entitled: Spec# ‘sWhile Loops to Boogie PL

In detail:
8. Duplicate loop invariant P by using

assert P = assert P; assume P
9. Check loop invariant at loop entry and exit
10. Delete back edges after “havoc”-ing loop targets

26

• Declaration
proc Find(xs: [int] int, ct: int, x: int) returns (result: int);

• Implementation
impl Find(xs: [int] int, ct: int, x: int) returns (result: int)

{…}

• Call
call r := Find(bits, 100, true)

Remark: In Boogie PL the keywords are procedure and implementation

Boogie PL: Procedures

27

Caller obligations described by
• Precondition

Implementation obligation described by
• Postcondition

 proc Find(xs: [int] int, ct: int, x: int) returns (result: int);
 requires ct≥0;
 ensures result ≥ 0 ⇒ result < ct ∧ xs[result]=x;
 ensures result < 0 ⇒ !(∃ i:int :: 0≤i ∧ i<ct ∧ xs[i] == x);

A specification spells out the entire contract.

Boogie PL: Procedure Specifications

28

var xs: [int] int;

var ct: int;

proc Find(x: int) returns (result: int);

 requires ct≥0;

 ensures result ≥ 0 ⇒ result < ct ∧ xs[result]=x;

 ensures result < 0 ⇒ ! (∃ i:int :: 0≤i ∧ i<ct ∧ xs[i] == x);

impl Find(x: int) returns (result: int)
 { start: ct := 0; result := -1; return; }

A Bogus Implementation?

29

Postconditions
• often relate pre-state and post-state

– ensures x == old(x)+1;

• must say which variables x might change
– modifies x;

variables not mentioned are not allowed to change

proc Find(x: int) returns (result: int);
 …
 modifies ct; // would allow the previous implementation
 ensures ct == old(ct); // would disallow the change (despite

 // modifies clause)

More about Postconditions

30

VCG 5: Calls

Given
proc P(par) returns (res)

 requires Pre; modifies state; ensures Post;

Then
wp(call x = P(E), R)

=
 wp({var par, res;

par := E;
assert Pre;
havoc state;
assume Post;
x := res }, R)

Remark: par and res are assumed to be fresh locals in the method body’s scope

31

VCG 5: Bodies

Given
 proc P(par) returns (res)

 requires Pre; modifies state; ensures Post;

impl P(par) returns (res)
{var …; start: S goto … end: return;}

Then
valid (P) =
 let (start: S’ goto … end: S’’; return;) = Passify(MakeAcyclic
 (start: assume Pre; S goto …

 end: assert Post[old(par) par0]; return;)

 in (startok ≡ wp(S’, (∀ b ∈ succs(start) : bok)) …
 endok ≡ wp(S’’, true)
 ⇒ startok)

Remark: assumes that all normal terminations of P terminate at “end”.

32

BoogiePL: Arrays and Background

Boogie ‘s array operations are just a short hand notation, i.e.

x := a[i] ≡ x := select(a, i)

a[i] := E ≡ a := store(a, i, E)

select and store are defined as (untyped) axioms in Boogie’s
background predicate

(m,i,j,v ∀
 i ≠ j ⇒ select(store(m, i, v), i) = v
 ∧ select(store(m, i, v), j) = select(m, j))

33

Boogie PL: Final VCG

• Boogie PL has a universal background predicate BPUniv

• Each Boogie PL program has a local theory BPProg

• The generated VC for each procedure implementation P is:

BPUniv ∧ BPProg ⇒ valid(P)

34

Background: Automatic Theorem Provers

Usable ATPs have to support first order logic
– examples: Simplify, Zap, SMT solvers

They are build on Nelson-Oppen cooperating decision
procedures and have decision procedures for
– congruence closure
– linear arithmetic
– partial orders
– quantifiers

Their key features are
– automatic: no user interaction
– refutation based: searches for counterexamples
– heuristics tuned for program checking
– Labels and time limit

35

Summary

Boogie PL is a simple intermediate language.

Boogie supports
• Modular verification using contracts
• Linear (in size of the code) VC generation
• A standard background as well as a program specific one

36

Appendix: VCG Example

start : assume x > 100;

 goto loop;

loop : assert x >= 0;

goto body, end;
body : assume x > 0;

 x := x - 1;

goto loop;

end : assume !(x > 0);

 assert x == 0; return;

37

Create assume

start : assume x > 100;

 goto loop;

loop : assert x >= 0;

 assume x>=0; goto body, end;
body : assume x > 0;

 x := x - 1;

goto loop;

end : assume !(x > 0);

 assert x == 0; return;

38

Move loop invariant into Loop-Pre-
Header and after Loop Body

start : assume x > 100;

 assert x >= 0; goto loop;

loop :

 assume x>=0; goto body, end;
body : assume x > 0;

 x := x - 1;

 assert x >= 0; goto loop;

end : assume !(x > 0);

 assert x == 0; return;

39

Cut back jumps: assume havoc on variables
assigned inside the loop;block loop body

start : assume x > 100;

 assert x >= 0; goto loop;

loop : havoc x;

 assume x>=0; goto body, end;
body : assume x > 0;

 x := x - 1;

 assert x >= 0; return;

end : assume !(x > 0);

 assert x == 0; return;

40

Create Dynamic Single Assignment
Form

start : assume x > 100;

 assert x >= 0; goto loop;

loop : skip

 assume x1>=0; goto body, end;
body : assume x1 > 0;

 x2 := x1 - 1;

 assert x2 >= 0; return;

end : assume !(x1 > 0);

 assert x1 == 0; return;

41

Passify Assigments

start : assume x > 100;

 assert x >= 0; goto loop;

loop : skip

 assume x1>=0; goto body, end;
body : assume x1 > 0;

 assume x2 == x1 - 1;

 assert x2 >= 0; return;

end : assume !(x1 > 0);

 assert x1 == 0; return;

42

Apply Block Translation and wp

start ≡ x > 100 ⇒

 x >= 0 ∧ loop
loop ≡

 x1 >= 0 ⇒ body ∧ end

body ≡ x1 > 0 ⇒
 x2 = x1 - 1 ⇒

 x2 >= 0 ∧ true

end ≡ !(x1 > 0) ⇒
 x1 = 0 ⇒ true

⇒ start

