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Abstract. Automated methods for an undecidable class of verification
problems cannot be complete (terminate for every correct program).
We therefore consider a new kind of quality measure for such methods,
which is completeness relative to a (powerful but unrealistic) oracle-
based method. More precisely, we ask whether an often implemented
method known as “software model checking with abstraction refinement”
is complete relative to fixpoint iteration with “oracle-guided” widening.
We show that whenever backward fixpoint iteration with oracle-guided
widening succeeds in proving a property ϕ (for some sequence of widen-
ings determined by the oracle) then software model checking with a
particular form of backward refinement will succeed in proving ϕ. In-
tuitively, this means that the use of fixpoint iteration over abstractions
and a particular backwards refinement of the abstractions has the effect
of exploring the entire state space of all possible sequences of widenings.

1 Introduction

Automatic abstraction is a fundamental problem in model checking software.
A promising approach to construct abstractions automatically, called predicate
abstraction, is to map the concrete states of a system to abstract states accord-
ing to their evaluation under a finite set of predicates. Many efforts have been
made to construct predicate abstractions of systems [1,2,7,9,14,16,17,25,26,27,
28,29]. Where do the predicates for predicate abstraction come from? A popular
scheme for generating predicates is to guess a set of initial predicates, and use
(spurious) counterexamples from a model checker to generate more predicates
as necessary [4,7,23,25]. Such schemes go by the name of abstraction refinement.

Property checking for software is undecidable, even for properties such as
invariants (assertion violations). Thus it is impossible to come up with an ab-
straction refinement procedure that always generates a set of predicates that is
guaranteed to (in)validate a program against a property. As a result, the process
of abstraction refinement is largely a black-art, and little attention has been paid
to even understand what the goal of predicate generation should be. This paper
makes two contributions in this regard:

– We formalize a goodness criterion for abstraction refinement, namely rel-
ative completeness with respect to a comparable “oracle-guided” widening
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method. Since the termination argument of most fixpoint analyses that oper-
ate on infinite state spaces and lose precision can be explained using widen-
ing, this criterion is appropriate. Without such a criterion, any abstraction
refinement procedure would seem like “just another” simple and practical
heuristic.

– We give an abstraction refinement procedure which satisfies the above crite-
rion, using the pre operator. Our definition of abstraction refinement captures
the essence of the many implementation strategies based on counterexamples
but avoids their technicalities.

If a set of states is represented by a formula ϕ (in disjunctive-normal form)
then a widening of ϕ is obtained by dropping some conjuncts from some disjuncts
in ϕ. Widenings are used to accelerate the termination of fixpoint analyses [10,
12]. For example, suppose x ≥ 0 ∧ x ≤ n represents the set of states before an
increment of variable x in a loop. The formula x ≥ 0 obtained by a widening
(dropping the conjunct x ≤ n) represents the limit of an iterative reachability
analysis. The precision of the analysis then depends on the widening schedule:
which conjuncts are dropped and when in the fixpoint analysis they are dropped.
Oracle-guided widening uses an oracle to guess the best possible widening sched-
ule.

We use such an oracle-guided widening as a quality measurement for reason-
ing about the “relative completeness” of abstraction refinement. We design an
abstraction refinement procedure using the pre operator, and show that if the
oracle-guided widening terminates with success then the abstraction refinement
(which does not use an oracle) will terminate with success. The basic idea of the
procedure is to iteratively apply pre “syntactically” without performing a satis-
fiability check on the formula constructed at intermediate stages. The resulting
procedure has the ability to “skip” over (potentially non-terminating) loops.

The term “relative completeness” of program verification methods has pre-
viously been used to refer to the existence of an oracle in the form of a theorem
prover for an undecidable logic, e.g. integer arithmetic (the method succeeds
whenever the oracle does) [8]. In contrast, our use of “relative completeness”
refers to the existence of an oracle guiding the widening in another verification
method (that method serves as a point of reference). Furthermore, our results
hold for incomplete theorem provers—we do not assume that theorem provers
are complete. Instead, we give the minimal requirements on a theorem prover
(such as the provability of certain implications) in order to construct sound
approximations.

Our formal setting accounts for the situation where a finite-state model
checker is used. There, a Boolean variable is introduced for each predicate. The
model checker no longer keeps track of the logical meaning of the predicate that
a Boolean variable stands for. As a consequence, the fixpoint termination test
becomes strictly weaker.

This paper is organized as follows. Section 2 provides the abstract formal set-
ting for our work. Section 3 defines Method I, an algorithm for abstract fixpoint
analysis and our abstract refinement procedure. Section 4 defines Method II, an



160 T. Ball, A. Podelski, and S.K. Rajamani

algorithm for concrete fixpoint analysis with oracle-guided widening. Section 5
shows that a particular version of Method I (based on “backward refinement”)
is relatively complete with respect to Method II. Section 6 illustrates the differ-
ence between forward and backward refinement with a small example. Section 7
discusses some other technical issues and Section 8 concludes the paper.

2 The Formal Setting

In this section, everything but the “syntactic” definition of the operator pre and
an “implementation-biased” (computable) definition of implication is standard.

Programs. We express programs in the standard format of ‘guarded’ com-
mands to which other programming languages (also concurrent ones) can be
easily translated. A program is a set C of guarded commands, which are logical
formulas c of the form

c ≡ g(X) ∧ x′
1 = e1(X) ∧ . . . ∧ x′

m = em(X) (1)

where x1, x2, . . . , xm are all the program variables (including one or several pro-
gram counters, here pc); the variable x′

i stands for the value of x after executing
the guarded command c. We write X for the tuple of program variables, i.e.
X = 〈x1, x2, . . . , xm〉. The formula g is written g(X) in order to stress that its
only free variables are among x1, . . . , xm; it is called the guard of c. A program
state is a valuation of X. We have a transition of one state into another one if
the corresponding valuation of primed and unprimed variables satisfies one of
the guarded commands c ∈ C. While each guarded command is deterministic,
we note that program itself can be nondeterministic since multiple guards can
hold at a given program state.

Symbolic representation. A ‘symbolic’ method uses formulas ϕ (also referred
to as constraints or Boolean expressions) of a fixed formalism to effectively rep-
resent infinite sets of states. The exact nature of the formalism does not matter
here, although we have in mind that it is some restricted class of first-order for-
mulas over the algebraic structure on which the program computes (e.g. linear
arithmetic). Reflecting existing implementations (see e.g. [18,12,22,20,15]), we
assume a fixed infinite set of atomic formulas and represent an infinite set of
states by a formula of the form

ϕ ≡
∨
i∈I

∧
j∈Ji

ϕij (2)

where the ϕij ’s are atomic formulas. We define a partial order on formulas ϕ′ ≤ ϕ
as the provability of the implication ϕ′ ⇒ ϕ by a given theorem prover. Note
that this ordering need not correspond to the entailment ordering; in many cases
(e.g. integer arithmetic), the validity of implication is undecidable.

We purposefully do not require that theorem provers implement the test of
the (in general, undecidable) validity of implication. As we will see, in order for
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our results to hold, a theorem prover only must be able prove that ϕ ∧ ϕ′ ⇒ ϕ,
as well as that ϕ ⇒ ϕ ∨ ϕ′, for all formulas ϕ and ϕ′.

Pre and Post. For a guarded command c of the form (1), we define the appli-
cation of the operator prec on a formula ϕ by the simultaneous substitution of
the variables x1, x2, . . . , xk in ϕ by the expressions e1, . . . , ek. The operator pre
for a program (a set of guarded commands) is simply the disjunction of the prec.

prec(ϕ) ≡ g(X) ∧ ϕ[e1(X), . . . , em(X)/x1, . . . , xm]
pre(ϕ) ≡ ∨

c∈C prec(ϕ)

In deviation from more familiar definitions, we do not perform a satisfiability
check in the computation of prec. This is crucial in the definition of the backward
refinement procedure in Section 3, but not for the fixpoint procedure in Section 4.
In our formulation, we use a theorem prover only to check the ordering ϕ ≤ ϕ′;
we thus do not model the standard optimization of eliminating unsatisfiable
disjuncts in a formula ϕ.

The application of the operator postc on a formula ϕ is defined as usual; its
computation requires a quantifier elimination procedure.

postc(ϕ) ≡ (∃X. ϕ ∧ g(X) ∧ x′
1 = e1(X) ∧ . . . ∧ x′

m = em(X))[X/X ′]
post(ϕ) ≡ ∨

c∈C postc(ϕ)

Invariants. In order to specify correctness, we fix formulas init and safe denoting
the set of initial and safe states, respectively, as well as formulas nonInit and
unsafe denoting their complements. These formulas are in the form given for ϕ
in (2). We define the given program to be correct if no unsafe state is reachable
from an initial state.

The correctness can be proven by showing one of the two conditions below.
Here, lfp(F, ϕ) stands for the least fixpoint of the operator F above ϕ.

lfp(post, init) ≤ safe

lfp(pre, unsafe) ≤ nonInit

The least fixpoint implicitly refers to the quotient lattice of formulas wrt. the
pre-order “≤”.

A safe invariant is an inductive invariant that implies safe, i.e. a formula ψ
such that

– init ≤ ψ,
– post(ψ) ≤ ψ,
– ψ ≤ safe.

We will call a safe invariant a forward invariant in order to distinguish it from
what we call a backward invariant, namely a formula ψ such that
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– unsafe ≤ ψ,
– pre(ψ) ≤ ψ,
– ψ ≤ nonInit.

We can establish correctness by computing either a forward invariant or
a backward invariant. In order to have a generic notation that allows
us to cover both cases, we introduce meta symbols F, start and bound
such that 〈F, start, bound〉 will be instantiated to 〈post, init, safe〉 and to
〈pre, unsafe, nonInit〉; an 〈F, start, bound〉-invariant is then either a forward in-
variant or a backward invariant. Therefore we can express either of the two
correctness conditions above as the existence of an 〈F, start, bound〉-invariant,
which is a formula ψ such that

– start ≤ ψ,
– F(ψ) ≤ ψ,
– ψ ≤ bound.

The domain of formulas is closed under the application of F; the domain need
not, however, contain lfp(F, start). Even if it does not, it may still contain a
formula denoting an 〈F, start, bound〉-invariant. We note that we do not need
the completeness of the domain for our results since we only consider fixpoints
obtained by finite iteration sequences.

Using the generic notation, a possible approach to establish correctness is to
find an upper abstraction F′ of the operator F (i.e. where F(ϕ) ≤ F′(ϕ) holds for
all formulas ϕ) such that lfp(F′, start), the least fixpoint of F′ above start, can be
computed and is contained in bound. Then, lfp(F′, start) is an 〈F, start, bound〉-
invariant because of the simple fact that F′(ϕ) ≤ ϕ entails F(ϕ) ≤ ϕ.

In the following two sections, we will use two methods that use predicate
abstraction and widening, respectively, to find such an upper abstraction F′.
The two possible instantiations of 〈F, start, bound〉 to 〈post, init, safe〉 and to
〈pre, unsafe, nonInit〉 yield the two basic variations of each of the two methods.

3 Method I: Predicate Abstraction with Refinement

We first describe the abstract fixpoint iteration method parameterized by a
refinement procedure that generates a (generally infinite) sequence of finite sets
Pn of predicates over states (for n = 0, 1, . . . ). We then instantiate it with
a particular refinement procedure (introduced below). We identify a predicate
with the atomic formula ϕ defining it. Thus, each set Pn is a finite subset of the
infinite set of atomic formulas.

We write L(Pn) for the (finite!) free distributive lattice generated by the set of
predicates Pn, with bottom element false and top element true and the operators
∧ and ∨. The notation L(Pn)� is used to stress the partial order “�” that comes
with the lattice. We note that a constant-time fixpoint check in the free lattice
can be implemented using Binary Decision Diagrams (BDD’s) [5]. Each lattice
element can be written in its disjunctive normal form (sometimes viewed as a
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ϕ0 := start
n := 0
loop

Pn := atoms(ϕn)
construct abstract operator F#

n defined by Pn

ψ := lfp(F#
n , start)

if (ψ ≤ bound) then
STOP with “Success”

ϕn+1 := ϕn ∨ F(ϕn)
n := n+1

endloop

Fig. 1. Method I: abstract fixpoint iteration with iterative abstraction refinement,
where 〈F, start, bound〉 is either 〈post, init, safe〉 (“forward”) or 〈pre, unsafe, nonInit〉
(“backward”).

set of bitvectors). In the partial order “�” of the free lattice, predicates are
pairwise incomparable. Therefore, elements written in disjunctive normal form
are compared as follows.

∨
i∈I

∧
j∈Ji

ϕij �
∨

k∈K

∧
j∈J′

k

ϕ′
ij if ∀i ∈ I ∃k ∈ K {ϕij | j ∈ Ji} ⊇ {ϕ′

kj | j ∈ J ′
k}

We will always have that L(Pn) contains start, but generally L(Pn) is not
closed with respect to the operator F (we recall that the triple of meta symbols
〈F, start, bound〉 stands for either 〈post, init, safe〉 or 〈pre, unsafe, nonInit〉).

We use the framework of abstract interpretation [10] to construct the ‘best’
abstraction F#n of F with respect to Pn. This operator is defined in terms of a
Galois connection,

F#n ≡ αn ◦ F ◦ γ

where the composition f ◦g of two functions f and g is defined from right to left:
f ◦g(x) = f(g(x)). The abstraction function αn maps a formula ϕ to the smallest
(wrt. “�”) formula ϕ′ in L(Pn) that is larger (wrt. “≤”) than ϕ, formally

αn(ϕ) ≡ µϕ′ ∈ L(Pn)�. ϕ ≤ ϕ′.

The meaning function γ is the identity. As before, we omit the extension of the
definitions to the quotient lattice.

The requirement that the mappings αn and γ form a Galois connection
(which guarantees the soundness of the approximation and hence the correctness
of Method I) translates to the minimal requirement for the theorem prover: it
must be able to prove the validity of the implications ϕ ⇒ ϕ∨ϕ′ and ϕ∧ϕ′ ⇒ ϕ
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for all formulas ϕ and ϕ′. This is because the requirement of the Galois connec-
tion entails that γ is monotonic (i.e. ϕ � ϕ′ entails γ(ϕ) ≤ γ(ϕ′)). In the free
lattice, we also have that ϕ∧ϕ′ � ϕ and ϕ � ϕ∨ϕ′. Hence, by the monotonicity
of γ, ϕ ∧ ϕ′ ≤ ϕ and ϕ ≤ ϕ ∨ ϕ′, which translates to the requirement on the
theorem prover.

We will have that P0 ⊂ P1 ⊂ . . . and hence L(P0) ⊂ L(P1) ⊂ . . . which
means an increasing precision of the abstraction αn for increasing n.

Method I. The parametrized method starts with n = 0 and repeatedly

– constructs the abstract operator F#n defined by Pn,
– iterates F#n to compute lfp(F#n , start),
– refines the set of predicates to get predicates Pn+1,
– increases n by one

until lfp(F#n , start) ≤ bound.
If Method I terminates for some n, then lfp(F#n , start) is a (forward or back-

ward) invariant (depending on whether F is instantiated by post or by pre). We
note that lfp(F#n , start) is computed over a free lattice ordered by �, and that
its computation is guaranteed to terminate.

If we take the method with the forward or backward refinement procedure
defined below, we obtain the automated verification method given in Figure 1.
The algorithm uses the operator atoms to map a formula ϕ (in disjunctive-normal
form) to its (finite) set of atomic constituent formulas:

atoms(
∨
i∈I

∧
j∈Ji

ϕij) = {ϕij | i ∈ I, j ∈ Ji}.

Refinement. Our refinement procedure is to simply apply F to the current
formula ϕn and disjoin the result with ϕn, to result in ϕn+1. The sequence of
formulas produced by the algorithm is thus:

– ϕ0 = atoms(start)
– ϕn+1 = ϕn ∨ F(ϕn)

We call the procedure ‘backward refinement’ if 〈F, start〉 is 〈pre, unsafe〉 and
‘forward refinement’ if 〈F, start〉 is 〈post, init〉.

4 Method II: Oracle-Guided Widening

Method II iteratively applies the ‘concrete’ operator F over formulas and af-
terwards calls an oracle which determines a widening operator and applies the
widening operator to the result of the application of F (the chosen widening
operator may be the identity function). The precise definition of the method is
given in Figure 2. Again, the instantiations of 〈F, start, bound〉 to 〈post, init, safe〉
and to 〈pre, unsafe, nonInit〉 yield the forward (resp. backward) variations of the
method.
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ϕ′
0, old, n := start, false, 0

loop
if (ϕ′

n ≤ old) then
if (ϕ′

n ≤ bound) then
STOP with “Success”

else
STOP with “Don’t know”

else
old := ϕ′

n

i := guess provided by oracle
ϕ′

n+1 := widen(i, (ϕ′
n ∨ F(ϕ′

n+1)))
n := n+ 1

endloop

Fig. 2. Method II: fixpoint iteration with abstraction by oracle-guided widening. Here,
〈F, start, bound〉 is either 〈post, init, safe〉 (“forward”) or 〈pre, unsafe, nonInit〉 (“back-
ward”).

The only requirement that we impose on each operator widen chosen by the
oracle is that the application of widen on a formula ϕ yields a weaker formula ϕ′

(denoting a larger set of states) in which some conjuncts in some disjuncts have
been dropped (possibly none), i.e.

widen(
∨

i∈I

∧
j∈Ji

ϕij) =
∨

i∈I

∧
j∈J′

i
ϕij where J ′

i ⊆ Ji for all i. (3)

We suppose that we have an enumeration of widening operators widen(0),
widen(1), . . . and that the oracle determines a particular one, widen(i), by
returning a natural number i at each iteration step. We write widen(i, x) short
for widen(x) where widen = widen(i). Thus, each sequence of natural numbers
produced by the oracle uniquely determines a fixpoint iteration sequence.

5 Relative Completeness for Backward Refinement

For the following theorem, we consider Method I and Method II with F, start and
bound instantiated to pre, unsafe and nonInit, respectively. The theorem says that
for every program, Method I is guaranteed to terminate with success (i.e. proving
the correctness of the program) if there exists an oracle such that Method II
terminates with success.

Theorem 1 (Relative Completeness of Abstract Backward Iteration
with Backward Refinement). Method I with 〈F, start, bound〉 instantiated to
〈pre, unsafe, nonInit〉 will terminate with success if Method II with 〈F, start, bound〉
instantiated to 〈pre, unsafe, nonInit〉 terminates with success.
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ϕ0 := safe
n := 0
loop

Pn := atoms(ϕn)
construct abstract operator post#n defined by Pn

ψ := lfp(post#n , start)
if (ψ ≤ safe) then

STOP with “Success”
ϕn+1 := ϕn ∨ p̃re(ϕn)
n := n+1

endloop

Fig. 3. Method III: forward abstract fixpoint iteration with backwards iterative ab-
straction refinement.

The theorem means that the (possibly infinite) sequence of finite abstract fix-
point iteration sequences

(start, pre#n (start), . . . , lfp(pre#n , start))n=1,2,...

‘simulates’ the tree consisting of all the infinitely many, possibly infinite branches

(start,widen(i1) ◦ pre(start), . . . )
(i1,i2,... )∈ININ

that arise from the different choices for the operator widen(ik) at each level k
(corresponding to the different sequences (i1, i2, . . . ) of natural numbers that
can be returned by the oracle). ‘Simulates’ here informally refers to the search
of a backward invariant.

Forward fixpoint iteration with backward refinement. Can we use ab-
stract forward fixpoint iteration with backward refinement and still have relative
completeness? The answer is yes if we use the dual p̃re of pre for the backward
refinement. The operator p̃re (sometimes called the weakest liberal precondition
operator) is defined by p̃re(ϕ) = ¬pre(¬ϕ).

We define dual backward refinement as the procedure that iterates p̃re start-
ing from safe; i.e., it generates the sequence of sets of predicates Pi = atoms(ϕi)
(n ≥ 0) where

– ϕ0 = safe
– ϕn+1 = ϕn ∨ p̃re(ϕn)

This new method (Method III) is made precise in Figure 3. One possible inter-
pretation of the following theorem is that the crucial item in the statement of
Theorem 1 is the backward direction of the refinement (and not the direction of
the abstract fixpoint iteration).
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init ≡ pc = 	1
unsafe ≡ pc = error
variables X = {x, y, z}

guarded commands:
c1 : pc = 	1 → pc := 	2, x := 0
c2 : pc = 	2 ∧ x ≥ 0 → x := x+ 1
c3 : pc = 	2 ∧ x < 0 → pc := 	3
c4 : pc = 	3 ∧ y = 25 → pc := 	4
c5 : pc = 	4 ∧ y �= 25 → pc := 	5
c6 : pc = 	5 → pc := 	6; z := −1
c7 : pc = 	6 ∧ z �= 0 → z := z − 1
c8 : pc = 	6 ∧ z = 0 → pc := error

L1: x = 0;
L2: while (x >= 0) {

x = x + 1;
}

L3: if (y == 25) {
L4: if (y != 25) {
L5: z = -1;
L6: while (z != 0) {

z = z - 1;
}
error:;

}
}

Fig. 4. Example program: Method I, forward abstract fixpoint iteration with forward
refinement, does not terminate; Method II (iterative application of post and oracle-
guided widening) terminates with success. We here use ‘syntactic sugar’ for guarded
commands and list only the ‘true’ updates; for example, c2 stands for the formula
pc = 	2 ∧ x ≥ 0 ∧ x′ = x + 1 ∧ pc′ = pc ∧ y′ = y ∧ z′ = z. The right hand side shows
the program in C-like notation

Theorem 2 (Relative Completeness of Abstract Forward Iteration
with Dual Backward Refinement). For every program, Method III is guar-
anteed to terminate with success if Method II terminates with success.

Proofs of both Theorem 1 and Theorem 2 can be found in [3].

6 Example: Forward vs. Backward Refinement

The example program in Figure 4 shows that the completeness of Method I
relative to Method II does not hold for the forward case, i.e. when F, start and
bound are instantiated to post, init and safe, respectively. The values �1 through
�6 for pc in the left hand side of Figure 4 correspond to labels L1 through L6
in the right hand side. In this example, for Method I to terminate, it is crucial
to find the (contradictory) predicates x = 25 and x �= 25. What is difficult is
that the code path through these predicates is “bracketed” above and below by
non-terminating while loops.

We observe the following facts about this example:

– Method II forward (iterative application of post and oracle-guided widen-
ing) terminates with success (the widening operator just drops all conjuncts
containing the variable x).

– Method I with forward abstraction refinement does not terminate. Forward
refinement will get “stuck” at the first while loop, generating an infinite
sequence of predicates about x, namely x = 0, x = 1, x = 2, . . .
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This means that the analog of Theorem 1 does not hold for the forward case.
Continuing the example, we also have that

– Method II (iterative application of pre and oracle-guided widening) termi-
nates with success (the widening operator just drops all conjuncts containing
the variable z).

– Method I backward terminates with success, which will follow by Theorem 1,
but can also be checked directly by executing the method which terminates
in four iterations. The first three iterations of pre are shown below. For
readability, conjuncts of the form (c = c) for some constant c have been
dropped.

unsafe = (pc = error)
pre(unsafe) = (pc = �6 ∧ z = 0)
pre2(unsafe) = (pc = �6 ∧ z �= 0 ∧ z = 1)∨

(pc = �5 ∧ −1 = 0)
pre3(unsafe) = (pc = �6 ∧ z �= 0 ∧ z = 2)∨

(pc = �5 ∧ −1 �= 0 ∧ −2 = 0)∨
(pc = �4 ∧ y �= 25 ∧ −1 = 0)

Note that it is crucial that we do not do a satisfiability test during the
computation of pre; therefore, the backward refinement procedure retains
disjuncts that have unsatisfiable conjuncts such as −1 = 0. Thus, the pred-
icates y = 25 , y �= 25, pc = error , pc = �6, pc = �5, pc = �4 are present in
P4. These predicates are sufficient to ensure that lfp(pre#4 , unsafe) ≤ nonInit.

As a secondary point, neither the iteration of the concrete post operator post
nor the iteration of the concrete predecessor operator pre terminates (without
using widening). We leave open the problem of designing a forward refinement
procedure with relative completeness.

7 Discussion

Boolean expressions. Our setting of the lattice L(P) generalizes the setting
of Boolean expressions that has been used so far in work on abstract model
checking [1,2,7,9,14,16,17,25,26,27,28,29]. Our more general setting allows us to
determine a sense in which the negated versions of predicates generated by the
abstraction refinement procedure are useless. This is important because the time
for constructing the abstract fixpoint operator is exponential in the number of
predicates.

Refinement Based on Error Traces. The definition of the abstraction re-
finement procedure in Section 3 is modeled after the standard refinement pro-
cedure as implemented e.g. by Clarke et al. [6], Ball and Rajamani [4] (who
took forward refinement) and Lakhnech et al. [25], Henzinger et al. [21], and
Das et al. [13] (who took backward refinement). The definition abstracts away
the technicalities of the particular implementation strategy where a ‘spurious’-
error execution trace is used to selectively add predicates that can express a
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specific set of reachable states (with the effect of eliminating that error trace);
the definition amounts to consider all traces of the same length as the ‘spurious’
execution trace. Theorems 1 and 2 also hold if we take that implementation
strategy (which still generates all ‘necessary’ predicates under the assumption
of the theorems).

More Powerful Refinement. The backward refinement procedure enhances
the standard one in that it adds also predicates that occur in unsatisfiable con-
juncts. For example, if c is the guarded command pc = �5 ∧ z′ = −1 ∧ pc′ = �6,
then atoms(prec(pc = �6 ∧ z = 0)) is atoms(pc = �5 ∧ −1 = 0), which consists of
the two predicates pc = �5 and −1 = 0 (see Section 6); the predicate −1 = 0 will
not appear in αn(ϕ) for any ϕ. In terms of a practical, error trace-based strategy,
this means that one adds predicates to eliminate more spurious transitions of
the error trace than just the first one.

Forward vs. Backward Refinement. It is perhaps intriguing as to why
Method I is as powerful as Method II with backward refinement, but not with
forward refinement. We first try to give some intuition for the difference between
the two cases and then give a more technical explanation.

In the forward direction, the ‘concrete’ execution of each guarded com-
mand c ∈ C is deterministic (even though the entire system defined by a set C of
guarded commands may be non-deterministic). An ‘abstract’ execution (where
abstraction is induced e.g. by widening) is in general non-deterministic and can
reach more program points (and other program expressions) than the concrete
execution. Note that abstraction refinement must be based on the concrete execu-
tion (otherwise, the spuriousness of an abstract error trace can not be detected).
The deterministic execution follows only one branch and hence it may get “stuck
in a loop” (for example the loop in line L2 of Figure 4).

In the backward direction, the concrete execution already is (in general) non-
deterministic and can follow several branches; hence it does not get stuck in a
loop (for example the loop in line L6 of Figure 4) and can reach as many program
points (expressions) as an abstract execution; in order to make this always true,
pre must produce also disjuncts with unsatisfiable conjuncts; we added Line L5
in the program in Figure 4 to demonstrate this point.

Widening. We use the notion of a widening operator essentially in the sense
of [10,12]. In the standard setting, a widening operator is a binary operator that
assigns two elements x and x′ another element x∇x′ that is larger than both. In
this paper, each widening operator widen is unary. This makes a difference in the
context of a fixed widening operator (the second argument is used to determine
the ‘direction’ of the extrapolation of the first by x∇x′); it does not restrict
the power of the extrapolation in our setting (for each application x∇x′ of the
binary operator the oracle can guess a unary one which, applied to x, yields the
same result).

The restriction on the form of widen(x) is motivated by the goal to model
widening operators such that each application can realistically be implemented
(although, of course, the oracle can not). The intuition is that boundaries that
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need to be moved in each fixpoint iteration are getting weaker and weaker and
will be dropped in the limit. Many widening operators that have been imple-
mented by Cousot, Halbwachs, Jeannet and others (see e.g. [12,15,18,22]) seem
to follow that intuition.

Widening vs. Predicate Abstraction. Our intent is not a comparison be-
tween the respective power of model checking based on predicate abstraction
with refinement and of widening-based model checking. Such a comparison would
be futile since the latter lacks the outer loop that performs a refinement of the
abstraction. (What would such a loop look like in order to obtain relative com-
pleteness?)

It is illuminating, however, to see that predicate abstraction and widening can
be formally related with each other as two abstraction methods for verification.
Previously, this was thought to be impossible [24]. For static program analy-
sis, widening was shown to be superior to predicate abstraction or any other
‘static’ abstraction [11]. As a consequence of our result, predicate abstraction
with refinement can be understood as widening with ‘optimal’ guidance.

The converse of the theorems, i.e. the relative completeness of Method II
wrt. Method I, does not hold.1 Intuitively, this is because the widening in
Method II (dropping a conjunct) is generally less precise than the extrapola-
tion in Method II (which amounts to replacing a conjunct with a formula over
already generated predicates). The converse would hold if we extended the widen-
ing accordingly. However, we consider that direction of relative completeness not
interesting as long as we do not know of a realistic way to mimic the oracle for
guessing a widening.

The power of either, Method I or II, depends on the given formalism which
fixes the set of atomic formulas. For example, the methods are more powerful if
equalities x = y + c must be expressed by the conjunction of inequalities (e.g. if
atoms({x = 0}) is not {x = 0} but {x ≤ 0, x ≥ 0}, then Method I will succeed
on the example in Section 6 also with forward refinement; similarly, Method I
with backward refinement will succeed on the example program in [25]).

Termination for Incorrect Programs. Each verification method that we
consider here can be modified in a straightforward way so that it will always
detect (and will always terminate) in the case where the program is incorrect.
The termination of a verification method is an issue only in the case of correct
programs. Therefore we concentrate on that case, and gloss over the case of
incorrect programs.

Finite quotients. If we assume that the program has a finite simulation or
bisimulation quotient, termination of fixpoint computations can be guaranteed
(both forward and backward) [26,19]. Our work does not make any such as-
sumptions. We focus on the uniform evaluation of a method on all instances of
1 To obtain a counterexample, consider a program with two independent branches,

one that causes the generation of the predicates x = y and x = y + 1, and
another corresponding to the program fragment x=0; y=0; while(*){x++; y++};
while(x!=0){y--; x--}; if(y!=0){error:}.
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the undecidable verification problem (and not on the instances of a decidable
subproblem).

Optimization. Generating a small set of predicates is always a desirable fea-
ture in designing a refinement procedure. This was not our focus in this paper.
Instead, we defined what the goal of the refinement procedure should be, and
designed a refinement procedure to meet this goal. Once this goal is established,
and only after such a goal is formulated as an algorithmic problem, it is possible
to propose and evaluate optimizations. Our work enables this to happen.

8 Conclusion

Automated refinement is presently the least understood part of automated pro-
gram verification methods known under the term ‘software model checking’. Up
to now, different refinement procedures could be evaluated only practically, by
comparing their implementations in various existing tools. The work presented
here is the first that tries to evaluate them on a principled basis. We think
that this is a starting point to arrive at a systematic way to design and analyze
refinement procedures.
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