
Design by Contract with JML

Gary T. Leavens and Yoonsik Cheon

January 11, 2006

Abstract

This document gives a tutorial introduction to the
Java Modeling Language (JML), and explains how
JML can be used as a powerful design by contract
(DBC) tool for Java. JML is a formal behavioral
interface specification language for Java that contains
the essential notations used in DBC as a subset. The
basic concepts of DBC are explained with a particular
emphasis on how to use JML notations to specify
Java classes and interfaces. JML tools such as JML
compiler (jmlc) are also introduced, with examples
of their use.

1 Motivation

1.1 Design by Contract

Design by contract (DBC) is a method for develop-
ing software [11]. The principal idea behind DBC is
that a class and its clients have a “contract” with
each other. The client must guarantee certain con-
ditions before calling a method defined by the class,
and in return the class guarantees certain properties
that will hold after the call. The use of such pre-
and postconditions to specify software dates back to
Hoare’s 1969 paper on formal verification [7]. What is
novel about DBC is that it makes these contracts ex-
ecutable. The contracts are defined by program code
in the programming language itself, and are trans-
lated into executable code by the compiler. Thus,
any violation of the contract that occurs while the
program is running can be detected immediately.
A contract in software specifies both obligations

and rights of clients and implementors. For example,
a contract for a method, sqrt that takes a number
and returns its square root may be specified as in Fig-
ure 1. (The static method approximatelyEqualTo of
the class JMLDouble tests whether the relative differ-
ence of the first two double arguments is within the
given epsilon, the third argument.)
In JML specifications are written in special annota-

tion comments, which start with an at-sign (@). At-
signs at the beginnings of lines in annotation com-

//@ requires x >= 0.0;

/*@ ensures JMLDouble

@ .approximatelyEqualTo

@ (x, \result * \result, eps);

@*/

public static double sqrt(double x) {

/*...*/

}

Figure 1: Pre- and postconditions in JML (lines 1-4)
for the method sqrt

ments of the form /*@ ... @*/ are ignored. Note
that the at-sign, @, must be right next to the start
of comment characters. A comment starting // @

will be ignored by JML, whereas //@ starts an an-
notation properly. Similarly, /* @ will not start an
annotation, instead one must use /*@. (JML tools do
not currently warn about comments that might use
such mistaken annotation markers.)
JML uses a requires clause to specify the client’s

obligation and an ensures clause to specify the im-
plementor’s obligation. The obligation of the client in
this case is to pass a positive number as an argument
(x). On the other hand, the client has the right to get
a square root approximation as the result (\result).
Similarly, the implementor can assume that the ar-
gument is a positive number, but has an obligation
to compute and return a square root approximation.
As in the previous example, a contract is typically

written by specifying a method’s pre and postcondi-
tions. A method’s precondition says what must be
true to call it. The precondition of our square root
method may be specified as follows. (JML uses the
keyword requires to introduce a precondition.)

//@ requires x >= 0.0;

A method’s postcondition says what must be true
when it terminates. In a language like Java that sup-
ports exceptions, we further distinguish normal and
exceptional postconditions. A method’s normal post-
condition says what must be true when it returns

1

normally, i.e., without throwing an exception. For
example, the normal postcondition of our square root
method may be specified as follows. (JML uses the
keyword ensures to introduce a normal postcondi-
tion.)

/*@ ensures JMLDouble

@ .approximatelyEqualTo

@ (x, \result * \result, eps);

@*/

(JML allows the specification of what exceptions
a method may throw as well. This can be done us-
ing JML’s signals_only clause. However, the de-
fault for the signals_only clause is to only allow
exceptions named in the method header’s throws

clause. Since in Figure 1 no throws clause ap-
pears in the method header, the method has a de-
fault signals_only clause that prohibits exceptions
from being thrown, when the precondition holds.
Thus, beginning JML users can usually ignore the
signals_only clause, and the signals clause, which
allows one to specify more details about the program
state when exceptions are thrown. Instead, when
learning JML, one should concentrate on specifying
preconditions that are strong enough to rule out ex-
ceptional behaviors.)

In JML specifications are typically written just be-
fore the header of the method they specify. An ex-
ample is given in Figure 2. In this figure there are
two methods. The first is intended for client use; it
has no precondition, but throws an exception if the
argument is negative (or not a number). It has to
return normally when the argument is positive. The
second is intended for internal use. It requires that
the argument be positive, and in this case returns the
necessary approximation.

In summary, DBC is a way of recording details of
method responsibilities. It can be used for internally
called methods to avoid constantly rechecking the va-
lidity of arguments. It can also be used to specify the
effect of calling a method, and thus for recording de-
tails in a design. Some of these aspects will be further
explained in the following subsections as we explain
more about JML.

1.2 Documentation

Using DBC provides good documentation for pro-
gram modules such as Java classes and interfaces. For
each method of a class or interface, the contract says
what it requires, if anything, from the client and what
it ensures to the client, as in the examples above and
in Figure 2.

DBC is better for documentation than just code;
and is even better than using informal documenta-
tion, such as program comments or Javadoc com-
ments. A DBC contract specification is more abstract
than code; in part this is because it doesn’t have to
give an algorithm in detail, but can concentrate on
what is assumed and what must be achieved. Unlike
comments, a formal specification in JML is (usually)
machine checkable, and so can help with debugging.
That is, checking the specification can help isolate
errors before they propagate too far. In addition, be-
cause a JML specification is checked mechanically, it
has a much greater chance of being kept up-to-date
with respect to the code than informal documenta-
tion.

How is constructing a square root different than the
specification of the sqrt method in Figure 2? The
main difference is that the contract given in the spec-
ification can be satisfied in many different ways. For
example, the square root method sqrt may be imple-
mented by calling a library routine, calling another
internal method (as shown in the code), or directly by
using linear search, binary search, Newton’s method,
etc. These will have varying non-functional proper-
ties such as efficiency and memory usage. However,
the specification abstracts from all these implemen-
tation details. This means that the implementation
can be changed later without invalidating the client
code as long as the new implementation still satis-
fies the contract. For example, in sqrt, the call to
Math.sqrt could be replaced with another algorithm
to compute square roots, and clients would not be
affected. In summary, a contract is an abstraction
of a method’s behavior. While in many cases the
contract is about the same length as the code (as
shown in Figure 2), in some cases it can be consider-
ably shorter (for example, if the code for computing
square roots by Newton’s method were written in the
body of sqrt).

1.3 Blame Assignment

Another advantage of DBC is that it can be used
to assign blame to a faulty part of a program. For
example, who is to be blamed if sqrt’s precondition
doesn’t hold? Clearly this isn’t the fault of sqrt,
which hasn’t even started to run yet, so the fault
must lie with the caller. Thus, the client code, the
code that calls sqrt has to be fixed.

Similarly, who is to be blamed if, at the end of
processing of a call to sqrt in which its precondition
held, it turned out that sqrt’s postcondition didn’t
hold? The code of sqrt (and the methods it calls)
must contain the fault, because the implementor has

2

package org.jmlspecs.samples.jmltutorial;

import org.jmlspecs.models.JMLDouble;

public class SqrtExample {

public final static double eps = 0.0001;

//@ requires x >= 0.0;

//@ ensures JMLDouble.approximatelyEqualTo(x, \result * \result, eps);

public static double sqrt(double x) {

return Math.sqrt(x);

}

}

Figure 2: The file SqrtExample.java

broken their side of the contract. Thus, the imple-
menting code, in sqrt and the methods it calls, has
to be fixed.

1.4 Efficiency

DBC also allows one to avoid inefficient defensive
checks, which can otherwise cripple the efficiency of
code. For example, the sqrt method in Figure 2 as-
sumes that its argument is non-negative. This trust
is validated by checking the preconditions during de-
bugging, but these checks can be turned off for pro-
duction use of the program.
Another aspect of efficiency is that defensive checks

are sometimes not possible to execute efficiently. For
example, consider the example below, in which a bi-
nary search method requires that its array argument
be sorted. Checking that an array is sorted requires
time linear in the length of the array, but the bi-
nary search routine is supposed to execute a loga-
rithmic time. Therefore the defensive checks would
slow down the method unacceptably. In this example,
contracts, which are easier to automatically remove
when the program goes into production, are much
more efficient.

/*@ requires a != null

@ && (\forall int i;

@ 0 < i && i < a.length;

@ a[i-1] <= a[i]);

@*/

int binarySearch(int[] a, int x) {

// ...

}

In the above, the precondition of binarySearch
says that the array cannot be null, and that for all

integers i, if i is strictly greater than 0 and strictly
less than the length of the array argument a, then the
element a[i] is no larger than a[j]. Note that this
universally quantified expression in JML must have
parentheses around it, (\forall . . .). In some sense
it is a bit like a for-loop in Java, with a declaration
(but no initialization), a predicate that describes the
range of the declared variable, and a body. However
the body is not a statement but a Boolean-valued
expression; the body must be true for all of the values
of the variable that fall in the described range for the
(\forall . . .) expression to be true. (The range is
optional, but if omitted, such a universally quantified
expression may not be executable; it can still be used
for documentation purposes, however.)

1.5 Modularity of Reasoning

Another important benefit of DBC is that it supports
modularity of reasoning. As an example, consider the
following typical object-oriented code.

...

source.close();

dest.close();

getFile().setLastModified(

loc.modTime().getTime());

return modTime();

How can we understand this code? There are two
ways. We could read either the code for all the meth-
ods or the contracts for all the methods. However, if
you try to read the code for all the methods the same
problem occurs again — how do you understand that
code? If the program is small you will run out of code
to read, but in code that is from a large program, or
that makes heavy use of method calls, and especially

3

one in which there is much use of subtype polymor-
phism (dynamic binding), it can be very difficult to
understand what is going on in a reasonable amount
of time. If you have had experience of reading object-
oriented source code (especially written by others or
by yourself written quite a long time ago), you will
have encountered this problem. That is, you will have
seen the problem of non-modular reasoning. Reason-
ing is non-modular if to reason about one piece of
code, you have to reason about many other pieces of
code.
A better way is to read the specifications of the

other methods. If the specifications are appropriately
abstract, you do not have to keep reading many more
specifications to understand what a method call does;
the process bottoms out more quickly. In any case,
you did not need to read other code, so the process
is, by definition, modular.

1.6 The Cost of Modularity

In return for the benefit of faster understanding,
modular reasoning imposes a cost. This cost is that
clients are not allowed to conclude anything that is
not justified by the contracts of the methods that
they call. Another way of looking at this is that, to
allow modular reasoning with contract specifications,
the client code must work for every implementation
that satisfies the contract. Thus reasoning about
client code can only use the contracts (not the code!)
of methods that are called. In addition, clients are ob-
ligated to establish the precondition of each method
called. But in return they are saved the trouble of
achieving the postcondition themselves. Consider the
following example. (In this example, we use two JML
assert statements around a piece of Java code.) In
this example, we can conclude that the result of the
call is approximately 3.0.

//@ assert 9.0 >= 0.0;

double res = SqrtExample.sqrt(9.0);

/*@ assert JMLDouble

@ .approximatelyEqualTo

@ (9.0, res * res,

@ SqrtExample.eps);

@*/

What is not permitted in this example is to look
at the code for the sqrt method, see that it calls
Math.sqrt, and conclude from this that the result is
accurate to, say, 7 decimal places. The contract only
specifies that the result is an approximation that is
correct to 4 decimal places. But if the method is ac-
tually computing the square root with an accuracy of
7 decimal places, what is wrong with using this extra

information? The problem is that doing so would tie
the client to the actual implementation of the method
as opposed to the contract. In other words, the imple-
mentation would no longer be free to change the al-
gorithm used to compute square roots. For example,
the algorithm could not be changed to be a faster one
that only computed square roots to 4 decimal places
of accuracy. In summary, client code must only rea-
son about the specifications of the methods it calls,
not their code.

1.7 Contracts and Intent

There are other good reasons not use code as con-
tracts. Code makes a poor contract, because by
only using code one cannot convey to readers what
is intended (i.e., what the essential properties of the
method are) and what parts are merely implementa-
tion decisions (accidental features). For example, if
the code for sqrt computes square roots to 7 deci-
mal places, cannot this be changed in the next re-
lease? Without some separate description of what is
intended, the reader can’t tell if that 7 decimal places
were intended, or just happened to be computed; per-
haps 4 decimal places are all that is necessary for the
rest of the program. By contrast, contracts allow
implementors to specify their intent and freedom to
change inessential details. Thus contracts tell clients
what they can count on and what is essential, while
leaving implementors the freedom to change inessen-
tial details, for example to make code run faster.
Here is a question for you. What kinds of changes

might vendors want to make that don’t break existing
contracts?

2 What is JML?

JML stands for “Java Modeling Language”. It is a
formal behavioral interface specification language for
Java. As such it allows one to specify both the syn-
tactic interface of Java code and its behavior. The
syntactic interface of Java code consists of names,
visibility and other modifiers, and type checking in-
formation. For example, the syntactic interface of a
method can be seen in the method’s header, which
lists of the modifiers, its name, its return type, the
types of its formal parameters, and the types of the
(checked) exceptions it may throw. The behavior of
Java code describes what should happen at runtime
when the code is used. For example the behavior
of a method describes what should happen when the
method is called; as we have discussed above, the be-
havior of a method is often specified using pre- and
post conditions. Since JML can document both the

4

syntactic interface and behavior of Java code, it is
well-suited to documenting detailed design decisions
about Java code [8].
JML combines the practicality of DBC language

like Eiffel [12] with the expressiveness and formality
of model-oriented specification languages. As in Eif-
fel, JML uses Java’s expression syntax to write the
predicates used in assertions, such as pre- and post-
conditions. The advantage of using Java’s notation in
assertions is that it is easier for programmers to learn
and less intimidating than languages that use special-
purpose mathematical notations. However, Java ex-
pressions lack some expressiveness that makes more
specialized assertion languages convenient for writing
behavioral specifications. JML solve this problem by
extending Java’s expressions with various specifica-
tion constructs, such as quantifiers.
JML is unique in that it is designed to be used

with a wide range of tools [2, 9]. These tools support
DBC, runtime assertion checking, discovery of invari-
ants, static checking, specification browsing, and even
formal verification using theorem provers. These sup-
port tools are freely available from the JML web
page http://www.jmlspecs.org (see Appendix A
for downloading and installing JML tools). For exam-
ple, JML incorporates many ideas and concepts from
model-oriented specification languages, which allows
one to write specifications that are suitable for for-
mal verification. The benefit of JML’s design is that
such features are also useful with other tools, as they
help make specifications more abstract and succinct.
However, novice users need not fear all of these fea-
tures; as we show in this document, JML has a small
subset that can be used as a DBC language for Java.

3 Simple Examples

3.1 Informal Specifications

The first step to writing contracts is to organize pro-
gram comments that describe methods as contracts.
That is, one should organize the comments about a
method’s behavior into preconditions and postcondi-
tions. JML supports this without requiring that these
comments be formalized by allowing informal descrip-
tions in specifications. An informal description looks
like the following:

(* some text describing a property *)

JML treats an informal description as a boolean
expression. This allows informal descriptions to be
combined with formal statements, and is convenient
when the formal statement is not easier to write down

or clearer. For example, the following JML specifica-
tion describes the behavior of the method sqrt using
informal descriptions.

//@ requires (* x is positive *);

/*@ ensures (* \result is an

@ approximation to

@ the square root of x *)

@ && \result >= 0;

@*/

public static double sqrt(double x) {

return Math.sqrt(x);

}

As an exercise, write informal pre and postcondi-
tions for the other methods of the class Person shown
in Figure 3. Are the informal specifications longer
than the code sometimes?

Informal specifications are convenient for organiz-
ing informal documentation. Informal specifications
can also be very useful when there’s not enough time
to develop a formal description of some aspect of the
program. For example, currently JML does not have
a formal specification for input and output. Thus,
methods that write to and read from files typically
have to use informal descriptions to describe parts of
their behavior. This kind of escape from formality is
very useful, in general, to avoid describing the entire
world formally when writing a specification of some
method.

However, there are several drawbacks to using in-
formal descriptions. A major drawback is that infor-
mal descriptions are often ambiguous or incomplete.
Another problem is that informal descriptions can-
not be manipulated by tools. For example, JML’s
runtime assertion checker has no way of evaluating
informal descriptions, so these cannot be checked at
runtime. Thus, whenever time permits, one should
try to use formal notation instead of informal descrip-
tions.

3.2 Formalization

Figure 4 shows the class Person of the previous sec-
tion with all its methods formally specified in JML.
Formal specifications in JML are written using an
extended form of Java expressions. Specification ex-
pressions in JML also have some restrictions, com-
pared to Java.

3.2.1 JML Specification Expressions

Some of the extensions JML adds to Java expressions
are shown in Table 1. These include a notation for

5

package org.jmlspecs.samples.jmltutorial;

public class Person {

private String name;

private int weight;

/*@ also

@ ensures \result != null

@ && (* \result is a displayable

@ form of this person *);

@*/

public String toString() {

return "Person(\"" + name + "\","

+ weight + ")";

}

public int getWeight() {

return weight;

}

public void addKgs(int kgs) {

if (kgs >= 0) {

weight += kgs;

} else {

throw new IllegalArgumentException();

}

}

public Person(String n) {

name = n; weight = 0;

}

}

Figure 3: A class Person to be filled with informal
specifications. The keyword also in the specification
of the method toString indicates that the method
“also” inherits specifications from its supertypes (i.e.,
the class Object in this case).

Table 1: Some of JML’s extension to Java expressions

Syntax Meaning

\result result of method call
a ==> b a implies b

a <== b a follows from b (i.e., b implies a)
a <==> b a if and only if b

a <=!=> b not (a if and only if b)
\old(E) value of E in pre-state

describing the result of a method (\result), vari-
ous kinds of implication1, and a way of referring to
the pre-state value of an expression (\old(·)). We
have seen the use of \result already, for example
in Figure 2. An example of the use of \old(·) ap-
pears in the specification of the addKgs method of
the class Person in Figure 4. In the normal post-
condition, the expression “weight == \old(weight

+ kgs)” is true when the value of weight at the end
of the method (just before it returns to its caller),
is equal to the value the expression “weight + kgs”
had at the beginning of the method call (just after
parameter passing).
The main restriction in JML is that expressions

used in JML’s assertions cannot have side effects.
Thus Java’s assignment expressions (=, +=, etc.) and
its increment (++) and decrement (--) operators are
not allowed. In addition, only pure methods are al-
lowed in assertions. A method is pure if it has no side-
effects on the program’s state. Some authors call such
methods “query” methods, because they can be used
to ask about the state of an object without changing
it. In JML, one must declare a method to be pure by
using the pure modifier in the method’s declaration.
For example, the getWeight method in Figure 4 is
declared to be pure. Methods that are not declared
to be pure are assumed not to be pure, and cannot
be used in specification expressions.

3.2.2 Information Hiding in Specifications

JML supports the notion of information hiding by us-
ing Java’s privacy levels. In the DBC style of JML
usage that we are describing in this document, the
privacy of a method or constructor specification is the
same as that of the method or constructor it speci-
fies.2 For example, all the method specifications in
Figure 4 have public visibility, because they anno-

1In addition, JML also support various forms of quantifiers
(see Section 5.1).

2 Privacy can be explicitly specified in the heavyweight form
of JML method and constructor specifications [8].

6

package org.jmlspecs.samples.jmltutorial;

//@ refine "Person.java";

public class Person {

private /*@ spec_public non_null @*/

String name;

private /*@ spec_public @*/

int weight;

/*@ public invariant !name.equals("")

@ && weight >= 0; @*/

//@ also

//@ ensures \result != null;

public String toString();

//@ also

//@ ensures \result == weight;

public /*@ pure @*/ int getWeight();

/*@ also

@ requires kgs >= 0;

@ requires weight + kgs >= 0;

@ ensures weight == \old(weight + kgs);

@*/

public void addKgs(int kgs);

/*@ also

@ requires n != null && !n.equals("");

@ ensures n.equals(name)

@ && weight == 0; @*/

public Person(String n);

}

Figure 4: Class Person with formal specifications.
This specification would appear in a file named
Person.refines-java.

tate public methods. The invariant in Figure 4 is
also publicly-visible, however its visibility is explic-
itly specified by using the modifier public; without
that modifier it would only be visible to clients in the
same package.

JML enforces information hiding by ensuring that
public specifications can only mention publicly-
visible names. That is, JML does not allow private
fields to be used in public specifications. Thus, for
example, since the method, constructor, and invari-
ant specifications in Figure 4 all have public visibility,
they can only mention publicly-visible names. This is
the reason for the annotation “spec public” in the
declaration of the fields name and weight. This an-
notation says that Person’s fields name and weight

are to be treated as publicly-visible in JML specifica-
tions, even though Java considers them to be private.

3.2.3 Non-Null Annotations

The declaration of the instance field name shows an-
other JML annotation. The non null annotation is
a shorthand way of saying that, in every publicly-
visible state, name is not null. That is, after a con-
structor returns, and whenever there is no execution
of a method of class Person in progress, name can-
not be null. (This non null annotation is equivalent
to the invariant “name != null”; see Section 3.3 for
details.)

3.2.4 Underspecification

A method specification doesn’t have to be complete.
It is often intentionally left incomplete, or underspec-
ified in the sense that implementations satisfying the
specification may have observably different behav-
iors. For example, the specification of the method
toString doesn’t exactly specify the return value;
all the specification says is that it is a non-null value.

One reason for using underspecification is to allow
implementations to have more freedom. In general,
this is a good idea, because if you did not care about
some details of the behavior of a method, leaving it
underspecified can allow faster implementations, or
implementations that use less space, or are easier to
program. Underspecification also allows room for fu-
ture enhancements. However, since clients may only
rely on the specification as a contract, is important to
include in the contract everything that they need to
accomplish their work; that is, everything important
about the behavior should be in the contract.

7

3.2.5 Semantics

The meaning of JML method specifications is as fol-
lows. A method must be called in a state where the
method’s precondition is satisfied; otherwise, nothing
is guaranteed (the call might loop forever or not re-
turn, or make arbitrary state changes). The state
where a method is called is referred to as a pre-
state. If a method is called in a proper pre-state, then
there are two possible outcomes of the method’s ex-
ecution. The method can return normally or throw
an exception.3 If the method terminates normally
without throwing an exception, then in that termi-
nation state, called a normal post-state, its normal
postcondition must be satisfied. If the method ter-
minates abruptly, by throwing an exception (that
does not inherit from the class java.lang.Error),
then in that termination state, called an exceptional
post-state, then the exception thrown must be per-
mitted by the specification’s (default or explicit)
signals_only clause, and the exceptional post-state
must satisfy the corresponding exceptional postcon-
ditions (signals clauses).

3.3 Invariants

The specification of the class Person has the following
public invariant clause (see Figure 4).

/*@ public invariant !name.equals("")

@ && weight >= 0;

@*/

An invariant is a property that should hold in all
client-visible states. It must be true when control is
not inside the object’s methods. That is, an invariant
must hold at the end of each constructor’s execution,
and at the beginning and end of all methods.4

In JML, a public invariant clause allows one to
define the acceptable states of an object that are
client-visible; such invariants are sometimes called
type invariants. In JML one can also specify invari-
ants with more restrictive visibility; such invariants,
which are not visible to clients, are sometimes called
representation invariants. Representation invariants

3 Other possibilities are that the method may either (3) di-
verge (i.e., loop forever or otherwise not return to the caller),
or (4) the Java Virtual Machine (JVM) may signal an error.
JML’s diverges clause can be used to specify when (3) is al-
lowed. Outcome (4) is outside of the control of the program-
mer, and therefore is always allowed. See JML’s preliminary
design document [8] for details.

4 However, in JML, constructors and methods declared with
the modifier helper are exempted from having to satisfy invari-
ants. Such helper methods must be private, and can be used
to avoid duplication of code, even code that does not start or
end in a state that satisfies a type’s invariants.

can be used to define acceptable internal states of
an object; for example, that a linked list is circular,
or other similar design decisions. Public invariants
about spec public, private fields, such as this one in
Person, have the flavor of both type and representa-
tion invariants.
As an exercise, formally specify the following

method assuming that it is declared in the class
Person. (Hint: when thinking about the precondi-
tion, watch out for the invariant!)

public void changeName(String newName) {

name = newName;

}

4 Basic Tool Usage

In this section we describe some of the tools that work
with JML.

4.1 Overview of Tools

Several academic researchers and software contribu-
tors have collaborated on JML, to provide a range
of tools to address the various needs such as reading,
writing, and checking JML specifications [2]. The fol-
lowing are the most useful of these for DBC.

• The JML compiler (jmlc), is an extension to a
Java compiler and compiles Java programs an-
notated with JML specifications into Java byte-
code [4, 3]. The compiled bytecode includes run-
time assertion checking instructions that check
JML specifications such as preconditions, nor-
mal and exceptional postconditions, and invari-
ants (see Section 4.2).

• The unit testing tool (jmlunit [5]) combines the
JML compiler with JUnit, a popular unit testing
tool for Java [1]. The tool frees the programmer
from writing code that decides test success or
failure; instead of writing such test oracles, the
tool uses JML specifications, processed by jmlc,
to decide whether the code being tested works
properly.

• The documentation generator (jmldoc) pro-
duces HTML containing both Javadoc comments
and any JML specifications. This makes it possi-
ble to browse JML specifications or to post them
on the web.

• The extended static checker (escjava2), can find
possible mistakes in Java code very quickly. It is
especially good at finding potential null pointer

8

exceptions and array-out-of-bounds indexing op-
erations. It uses JML annotations to turn off its
warnings and propagates and checks JML spec-
ifications.

• The type checker (jml) is another tool for check-
ing JML specifications, as a faster substitute for
jmlc, if one does not need to compile the code.

All the above tools are freely available from the
JML web page (refer to Appendix A).

4.2 JML Compiler

The JML compiler (jmlc) behaves like Java compil-
ers, such as javac, by producing Java bytecode from
source code file. The difference is that it adds as-
sertion checking code to the bytecodes it produces.
These check JML assertions such as preconditions,
postconditions, and invariants. The execution of such
assertion checking code is transparent in that, unless
an assertion is violated, and except for performance
measures (time and space), the behavior of the origi-
nal program is unchanged. The transparency of run-
time assertion checking is guaranteed, as JML asser-
tions are not allowed to have any side-effects (see Sec-
tion 3.2).
Using jmlc is similar to using javac. For ex-

ample, the following command compiles the file
Person.java.

jmlc Person.java

This produces a bytecode file, Person.class, in the
current working directory.
Sometimes it is convenient to place the output of

jmlc in a directory that is different than that where
normal Java compilers put their output. To do this,
one can use the -d option. For example, the following
command

jmlc -d ../bin Person.java

puts the output file, Person.class, it in the direc-
tory ../bin.
By default, jmlc names all the files it is processing.

This may be reassuring, since jmlc is somewhat slow.
But if one tires of all this output, one can use the -Q
option to jmlc. For example, the command

jmlc -Q *.java

quietly compiles all the files in the current working
directory whose names end in .java.
For more details on the compilation options avail-

able, refer to the jmlc manual page included in the
JML distribution (see Appendix A). Alternatively,

package org.jmlspecs.samples.jmltutorial;

public class PersonMain {

public static void

main(String [] argv) {

System.out.println(new Person(null));

System.out.println(new Person(""));

}

}

Figure 5: Main program to test the class Person

there is a graphical user interface for jmlc, called
jmlc-gui, that can be used to run the compiler. It
makes keeping track of options and selecting files eas-
ier.
How to run bytecode compiled with jmlc? It

can be treated as regular Java bytecode, except that
it needs JML’s runtime library classes included in
jmlruntime.jar to be interpreted by the Java Vir-
tual Machine (i.e., the JVM, which is the java com-
mand). In particular, the runtime classes must be
in the JVM’s “boot class path”; this is done auto-
matically if you use the script jmlrac. For example,
given a main program shown in Figure 5, Figure 6
is a transcript that shows how you can compile and
run the PersonMain and Person classes. (The output
is slightly formatted to fit in this paper’s columns.)
This transcript was done on a Linux machine, using
the bash shell, which is reflected in the $ prompts
and the use of the shell variable $HOME. The tran-
script also assumes that the user has installed JML
into their home directory, which is named by $HOME,
so that they have permission to write compiled class
files into the directory containing the samples.
If you are using your own Windows machine, you

might write the first two lines as follows, for a typical
JML install into c:\JML.

> c:

> cd \

> cd JML\org\jmlspecs\samples\jmltutorial

> set CLASSPATH=c:\JML

The transcript would then continue as in Figure 6.
Do you see why this transcript results in a precon-

dition violation error? See the specification of the
class Person in Figure 4. Note that the line number
in the backtrace (line 253 of PersonMain) does not
exist in the source, as one can tell from Figure 5; this
line number is an artifact of the compilation process.
It is not necessary to compile all the source files

with jmlc. For example, the driver class PersonMain
may be compiled with a plain Java compiler such as

9

$ cd $HOME/JML/org/jmlspecs/samples/jmltutorial

$ export CLASSPATH="$HOME/JML"

$ jmlc -Q PersonMain.java Person.java

File "Person.java", line 33, character 12

warning: The informal description is not executable.

$ jmlrac org.jmlspecs.samples.jmltutorial.PersonMain

Exception in thread "main"

org.jmlspecs.jmlrac.runtime.JMLInternalPreconditionError:

by method Person.Person regarding specifications at

File "Person.refines-java", line 51, character 20 when

’n’ is null

at org.jmlspecs.samples.jmltutorial.PersonMain.main(PersonMain.java:253)

Figure 6: Compiling and testing PersonMain and Person.

javac. Only those classes and interfaces that are
compiled with jmlc will be runtime assertion checked.

5 Other Things in JML

This section describes a few more advanced features
of JML that are useful in dealing with common prob-
lems in specification.

5.1 Quantifiers

JML supports several kinds of quantifiers in asser-
tions: a universal quantifier (\forall), an existential
quantifier (\exists), generalized quantifiers (\sum,
\product, \min, and \max), and a numeric quanti-
fier (\num of). For example, the following predicate
uses a universal quantifier to assert that all students
found in the set juniors have advisors.

(\forall Student s;

juniors.contains(s);

s.getAdvisor() != null)

In a quantifier, such as the above, there is a decla-
ration, such as Student s, of a name that is local to
the quantifier. This is followed by an optional range
predicate, such as juniors.contains(s) in the ex-
ample above; the range predicate restricts the domain
to which the quantifier applies. With the range pred-
icate, we quantify over all objects (or values) of the
declared type such that the range predicate is satis-
fied. If the range predicate is omitted, there is no
restriction on the objects being quantified over, and
so all possible objects apply. Finally, the third predi-
cate, the body of the quantifier, s.getAdvisor() !=

null in the above example, must be true of all the
objects that satisfy the range predicate.
An equivalent way to write the above example,

without an explicit range predicate, is as follows.

(\forall Student s;

juniors.contains(s)

==> s.getAdvisor() != null)

The quantifiers \max, \min, \product, and \sum,
are generalized quantifiers that return respectively
the maximum, minimum, product, and sum of the
values of their body expression when the quantified
variables satisfy the given range expression. The nu-
merical quantifier, \num of, returns the number of
values for quantified variables for which the range and
the body predicate are true. For example, an expres-
sion (\sum int x; 1 <= x && x <= 5; x) denotes
the sum of values between 1 and 5 inclusive (i.e., 15).

As an exercise, can you write a quantified predicate
that asserts that the elements of an array int[] a

are sorted in ascending order? Hint: use a nested
quantification.

5.2 Inheritance of specifications

In JML, a subclass inherits specifications such as pre-
conditions, postconditions, and invariants from its
superclasses and interfaces that it implements. An
interface also inherits specifications of the interfaces
that it extends. The semantics of specification inher-
itance reflects that of code inheritance in Java; e.g., a
program variable appearing in assertions is statically
resolved, and an instance method call is dynamically
dispatched.

An important feature of JML’s specification inher-
itance is that its semantics supports a behavioral no-
tion of subtyping. The essence of behavioral subtyp-
ing is summarized by Liskov and Wing’s substitution
property, which states that a subtype object can be
used in place of a supertype’s object [10]. In essence,
preconditions are disjoined, postconditions are con-
joined in the form of

∧
(\old(pi) ⇒ qj) (where pi is

10

a precondition and qj is the corresponding postcon-
dition), and invariants are conjoined.

5.3 Model Fields

The class Person in Figure 4 was specified in terms
of private, spec public fields name and weight. For
example, the constructor’s postcondition refers to the
field name. But what if you want to change the im-
plementation, e.g., if you want to use a different data
structure? As a simple example, consider you want
to change a spec public field’s name from

private /*@ spec_public non_null @*/

String name;

to

private /*@ non_null @*/ String fullName;

Ideally, you don’t want to make a change to your
public specifications (e.g., the constructor’s postcon-
dition), as such a change may affect the client code
because the client relies on the public specification.
For specifications, you want to keep the old name
public, but for implementation, you don’t want to
have two fields taking up space at runtime. In JML,
you can solve this dilemma by using a model vari-
able. A model variable is a specification-only variable
[6]. For example, you can make the old field a model
field, introduce a new field, and define a relationship
between them, as shown below.

//@ public model non_null String name;

private /*@ non_null @*/ String fullName;

//@ private represents name <- fullName;

Note that as the new field fullName is private,
its existence is completely hidden from the client.
The representation is not exposed to the client. The
represents clause, which is also private in this case,
defines an abstraction function that maps a concrete
representation value to an abstract value of the model
field (see Figure 7). It says that the value of name is
the same as that of the given expression, fullName
in this case.

In sum, a model variable is a specification-only
variable. It is like a domain-level construct and its
value is given by a represents clause. In addition to
model variables, JML also support model methods,
classes, and interfaces.
Question: how would you modify the specification

and implementation to change the representation of
a person’s weight from kilograms to pounds?

name abstract (model)

fullName concrete (real)

represented by

name abstract (model)

fullName concrete (real)

represented by

Figure 7: Mapping concrete values into abstract val-
ues.

6 Summary

In this paper we have shown the advantages of DBC
and how to use JML for DBC.

A Installing JML Tools

JML documentation and tools are freely available
from the JML web site at http://www.jmlspecs.

org. A release of JML is distributed as a gzipped tar
archive file, e.g., JML.5.1.tar.gz.
The installation of JML tools is straightforward.

You download the distribution file and (unzip and)
untar it in an appropriate directory that you want
to install JML. Under Microsoft Windows, you can
use WinZip or similar programs to extract it to a
directory of your choice. On Unix, you can use the
tar command to extract it. For example, after sav-
ing it to a file /usr/local/JML.5.1.tar.gz, do the
following commands.

% cd /usr/local

% tar -xzvf JML.5.1.tgz

JML tools, documents, sample code, and API
specifications will be extracted into a subdirectory
named JML. The subdirectory bin contains several
OS-dependent shell scripts to run various JML tools,
i.e., *.bat files for Microsoft Windows, *-unix files
for Unix, and *-cygwin files for Cygwin. You need to
copy these files to a directory on your PATH and edit
them to change the variable JMLDIR to the directory
where you installed JML.
On Microsoft Windows (e.g., 98, ME, 2000, and

XP), copy all .bat files from JML\bin to a directory
on your PATH. Then edit the copied .bat files by
changing JMLDIR to the correct value for you (e.g.,
c:\JML).
On Unix including clones like Linux and Cyg-

win, use the script bin/Install-JML-Scripts to
install the shell scripts and manual pages. By

11

default, the shell scripts are installed in the di-
rectory /usr/local/bin and the manual pages in
/usr/local/man. Look and edit the installation
script to install them in other directories and for other
options.
For more details on installation, refer to the

README.html file included in the distribution.

Acknowledgments

Thanks to students of CS 3331 Advanced Object-
Oriented Programming (Fall 2003 and Spring 2004)
at UTEP for comments on earlier drafts of this tu-
torial. Thanks to Francisco Laguna for comments on
an earlier draft.

References

[1] Kent Beck and Erich Gamma. Test infected:
Programmers love writing tests. Java Report,
3(7):37–50, 1998.

[2] Lilian Burdy, Yoonsik Cheon, David Cok,
Michael Ernst, Joe Kiniry, Gary T. Leavens,
K. Rustan M. Leino, and Erik Poll. An overview
of JML tools and applications. In Thomas Arts
and Wan Fokkink, editors, Eighth International
Workshop on Formal Methods for Industrial
Critical Systems (FMICS 03), volume 80 of Elec-
tronic Notes in Theoretical Computer Science
(ENTCS), pages 73–89. Elsevier, June 2003.

[3] Yoonsik Cheon. A runtime assertion checker
for the Java Modeling Language. Technical Re-
port 03-09, Department of Computer Science,
Iowa State University, Ames, IA, April 2003.
The author’s Ph.D. dissertation. Available from
archives.cs.iastate.edu.

[4] Yoonsik Cheon and Gary T. Leavens. A run-
time assertion checker for the Java Modeling
Language (JML). In Hamid R. Arabnia and
Youngsong Mun, editors, Proceedings of the In-
ternational Conference on Software Engineering
Research and Practice (SERP ’02), Las Vegas,
Nevada, USA, June 24-27, 2002, pages 322–328.
CSREA Press, June 2002.

[5] Yoonsik Cheon and Gary T. Leavens. A sim-
ple and practical approach to unit testing: The
JML and JUnit way. In Boris Magnusson,
editor, ECOOP 2002 — Object-Oriented Pro-
gramming, 16th European Conference, Máalaga,
Spain, Proceedings, volume 2374 of Lecture Notes

in Computer Science, pages 231–255, Berlin,
June 2002. Springer-Verlag.

[6] Yoonsik Cheon, Gary T. Leavens, Murali Sitara-
man, and Stephen Edwards. Model variables:
Cleanly supporting abstraction in design by con-
tract. Technical Report 03-10, Department of
Computer Science, Iowa State University, April
2003. Available from archives.cs.iastate.

edu.

[7] C. A. R. Hoare. An axiomatic basis for computer
programming. Communications of the ACM,
12(10):576–583, October 1969.

[8] Gary T. Leavens, Albert L. Baker, and Clyde
Ruby. Preliminary design of JML: A behavioral
interface specification language for Java. Tech-
nical Report 98-06-rev27, Iowa State University,
Department of Computer Science, April 2005.
See www.jmlspecs.org.

[9] Gary T. Leavens, Yoonsik Cheon, Curtis Clifton,
Clyde Ruby, and David R. Cok. How the de-
sign of JML accommodates both runtime asser-
tion checking and formal verification. Techni-
cal Report 03-04, Department of Computer Sci-
ence, Iowa State University, Ames, Iowa, 50011,
March 2003. To appear in the proceedings of
FMCO 2002.

[10] Barbara Liskov and Jeannette Wing. A be-
havioral notion of subtyping. ACM Transac-
tions on Programming Languages and Systems,
16(6):1811–1841, November 1994.

[11] Bertrand Meyer. Applying “design by contract”.
Computer, 25(10):40–51, October 1992.

[12] Bertrand Meyer. Eiffel: The Language. Object-
Oriented Series. Prentice Hall, New York, NY,
1992.

12

