
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

An overview of JML tools and applications

Lilian Burdy1, Yoonsik Cheon2, David R. Cok3, Michael D. Ernst4, Joseph R. Kiniry5, Gary T.
Leavens6?, K. Rustan M. Leino7, Erik Poll5

1 INRIA, Sophia-Antipolis, France
2 Dept. of Computer Science, University of Texas at El Paso, El Paso, Texas, USA
3 Eastman Kodak Company, R&D Laboratories, Rochester, New York, USA
4 Computer Science & Artificial Intelligence Lab, MIT, Cambridge, Massachusetts, USA
5 Dept. of Computer Science, University of Nijmegen, Nijmegen, the Netherlands
6 Dept. of Computer Science, Iowa State University, Ames, Iowa, USA
7 Microsoft Research, Redmond, Washington, USA

Received: date / Revised version: date

Abstract. The Java Modeling Language (JML) can be
used to specify the detailed design of Java classes and
interfaces by adding annotations to Java source files. The
aim of JML is to provide a specification language that is
easy to use for Java programmers and that is supported
by a wide range of tools for specification type-checking,
runtime debugging, static analysis, and verification.

This paper gives an overview of the main ideas be-
hind JML, the different groups collaborating to provide
tools for JML, and the existing applications of JML.
Thus far, most applications have focused on code for
programming smartcards written in the Java Card di-
alect of Java.

1 Introduction

JML [46,47], the Java Modeling Language, is useful for
specifying detailed designs of Java classes and interfaces.
JML is a behavioral interface specification language for
Java; that is, it specifies both the behavior and the syn-
tactic interface of Java code. The syntactic interface of a
Java class or interface consists of its method signatures,
the names and types of its fields, etc. This is what is
commonly meant by an application programming inter-
face (API). The behavior of such an API can be pre-
cisely documented in JML annotations; these describe
the intended way that programmers should use the API.
In terms of behavior, JML can detail, for example, the
preconditions and postconditions for methods as well as
class invariants, in the Design by Contract style.

An important goal for the design of JML is that it
should be easily understandable by Java programmers.
This is achieved by staying as close as possible to Java
syntax and semantics. Another important design goal is
that JML not impose any particular design methodology

? Supported in part by US NSF grants CCR-0097907 and CCR-
0113181

on users; instead, JML should be able to document Java
programs designed in any manner.

The work on JML was started by
Gary Leavens and his colleagues and
students at Iowa State University. It
has since grown into a cooperative,
open effort. Several groups worldwide
are now building tools that support
the JML notation and are involved
with the ongoing design of JML. For
an up-to-date list, see the JML website, www.jmlspecs.
org. The open, cooperative nature of the JML effort is
important both for tool developers and users, and we
welcome participation by others. For potential users, the
fact that there are several tools supporting the same
notation is clearly an advantage. For tool developers,
using a common syntax and semantics can make it much
easier to get users interested. After all, one of the biggest
hurdles to using a new specification-centric tool is often
the lack of familiarity with the associated specification
language.

The next section introduces the JML notation. Sec-
tions 3 through 6 then discuss the tools currently avail-
able for JML in more detail. Section 7 discusses the ap-
plications of JML in the domain of Java Card, the Java
dialect for programming smartcards. Section 8 discusses
some related languages and tools, and Section 9 con-
cludes.

2 The JML Notation

JML blends Eiffel’s Design by Contract approach [54]
with the Larch tradition [34,16,45] (both of which share
features and ideas with VDM [42]).1 Because JML sup-

1 JML also has takes some features from the refinement calculus
[55], which we do not discuss in this paper.



2 Burdy et. al.: An overview of JML tools and applications

ports quantifiers such as \forall and \exists, and be-
cause JML allows model (i.e., specification-only) fields
and methods, specifications can easily be made more
precise and complete than is typical for Eiffel software.
However, like Eiffel, JML uses Java’s expression syntax
in assertions, so that JML’s notation is easier for pro-
grammers to learn than notations based on a language-
independent specification language, such as the Larch
Shared Language [47,48] or OCL [69].

Figure 1 gives an example of a JML specification that
illustrates its main features. JML assertions are written
as special annotation comments in Java code, either after
//@ or between /*@ ... @*/, so that they are ignored
by Java compilers but can be used by tools that sup-
port JML. Within annotation comments JML extends
the Java syntax with several keywords—in the example
in Figure 1, the JML keywords invariant, requires,
assignable, ensures, and signals are used. It also ex-
tends Java’s expression syntax with several operators—
in the example \forall, \old, and \result are used;
these begin with a backslash so they do not clash with
existing Java identifiers.

The central ingredients of a JML specification are
preconditions (given in requires clauses), postcondi-
tions (given in ensures clauses), and invariants. These
are all expressed as boolean expressions in JML’s exten-
sion to Java’s expression syntax.

In addition to normal postconditions, the language
also supports exceptional postconditions, specified using
signals clauses. These can be used to specify what must
be true when a method throws an exception. For exam-
ple, the signals clause in Figure 1 specifies that debit
may throw a PurseException and that the balance will
not change in that case (as specified by the use of the
\old keyword).

The assignable clause for the method debit spec-
ifies a frame condition, namely that debit will assign
only to the balance field. Although not a traditional
part of design by contract languages like Eiffel, such
frame conditions are essential for verification of code
when using some of the tools described later.

There are many additional features of JML that are
not used in the example in Figure 1. We briefly discuss
the most important of these below.

– Model variables, which play the role of abstract val-
ues for abstract data types [19], allow specifications
that hide implementation details. For example, if in-
stead of a class Purse, we were specifying an inter-
face PurseInterface, we could introduce the bal-
ance as such a model variable. A class implementing
this interface could then specify how this model field
is related to the class’s particular representation of
balance.

– JML comes with an extensive library that provides
Java types that can be used for describing behavior
mathematically. This library includes such concepts

as sets, sequences, and relations. It is similar to li-
braries of mathematical concepts found in VDM, Z,
LSL, or OCL, but allows such concepts to be used di-
rectly in assertions, since they are embodied as Java
objects.

– The semantics of JML prevents side-effects in asser-
tions. This both allows assertion checks to be used
safely during debugging, and supports mathemati-
cal reasoning about assertions. This semantics works
conservatively, by allowing a method to only be used
in assertions only if it is declared as pure, meaning
the method does not have any side-effects and does
not perform any input or output [47]. For example,
if there is a method getBalance() that is declared
as pure,
/*@ pure @*/ int getBalance() { ... }

then this method can be used in the specification
instead of the field balance.

– Finally, JML supports all the Java modifiers (public,
protected, and private) for expressing visibility.
For example, invariants can be declared protected
if they are not observable by clients but intended for
use by programmers of subclasses. (Technically, the
invariants and method specifications in the Purse ex-
ample of Figure 1 have default or package visibility,
and thus would only be visible to code in the same
package.)

3 Tools for JML

For a specification language, just as for a programming
language, a range of tools is necessary to address the
various needs of the specification language’s users such
as reading, writing, and checking JML annotations.

The most basic tool support for JML is parsing and
typechecking. This already provides the first benefit of
JML annotations over informal comments, as it will catch
any typos, type incompatibilities, references to names
that no longer exist, etc. The JML checker (jml) de-
veloped at Iowa State University performs parsing and
and typechecking of Java programs and their JML an-
notations, but in fact most of the other tools mentioned
below incorporate this functionality.

The rest of this paper describes the various tools
that are currently available for JML. The following cat-
egorization serves also as an organization for the imme-
diately following sections of this paper. We distinguish
tools for checking of assertions at runtime, tools for stat-
ically checking of assertions (at or before compile-time),
tools for generating specifications, and tools for docu-
mentation.

3.1 Runtime assertion checking and testing

One way of checking the correctness of JML specifica-
tions is by runtime assertion checking, i.e., simply run-



Burdy et. al.: An overview of JML tools and applications 3

public class Purse {

final int MAX_BALANCE;

int balance;

//@ invariant 0 <= balance && balance <= MAX_BALANCE;

byte[] pin;

/*@ invariant pin != null && pin.length == 4

@ && (\forall int i; 0 <= i && i < 4;

@ 0 <= pin[i] && pin[i] <= 9);

@*/

/*@ requires amount >= 0;

@ assignable balance;

@ ensures balance == \old(balance) - amount

@ && \result == balance;

@ signals (PurseException) balance == \old(balance);

@*/

int debit(int amount) throws PurseException {

if (amount <= balance) { balance -= amount; return balance; }

else { throw new PurseException("overdrawn by " + amount); }

}

/*@ requires 0 < mb && 0 <= b && b <= mb

@ && p != null && p.length == 4

@ && (\forall int i; 0 <= i && i < 4;

@ 0 <= p[i] && p[i] <= 9);

@ assignable MAX_BALANCE, balance, pin;

@ ensures MAX_BALANCE == mb && balance == b

@ && (\forall int i; 0 <= i && i < 4; p[i]==pin[i]);

@*/

Purse(int mb, int b, byte[] p) {

MAX_BALANCE = mb; balance = b; pin = (byte[])p.clone();

}

}

Fig. 1. Example JML specification

ning the Java code and testing for violations of JML as-
sertions. Such runtime assertion checks are accomplished
by using the JML compiler jmlc (Section 4.1).

Given that one often wants to do runtime assertion
checking in the testing phase, there is also a jmlunit tool
(Section 4.2) which combines runtime assertion checking
with unit testing.

3.2 Static checking and verification

More ambitious than testing if the code satisfies the
specifications at runtime, is verifying that the code sat-
isfies its specification statically. This can give more as-
surance in the correctness of code as it establishes the
correctness for all possible execution paths, whereas run-
time assertion checking is limited by the execution paths
exercised by the test suite being used. Of course, correct-
ness of a program with respect to a given specification is
not decidable in general. Any verification tool must trade
off the level of automation it offers (i.e., the amount of
user interaction it requires) and the complexity of the

properties and code that it can handle. There are several
tools for statically checking or verifying JML assertions
providing different levels of automation and supporting
different levels of expressivity in specifications:

– The program checker ESC/Java (Section 5.1) can
automatically detect certain common errors in Java
code and check relatively simple assertions.

– ESC/Java2 (Section 5.2) extends ESC/Java to sup-
port more of the JML syntax and to add other func-
tionality.

– The CHASE tool (Section 5.3) automatically checks
some aspects of frame conditions.

– The program checker JACK (Section 5.5) offers simi-
lar functionality to ESC/Java, but is more ambitious
in attempting real program verification.

– The LOOP tool (Section 5.4) translates code anno-
tated with JML specifications to proof obligations
that one can then try to prove using the theorem
prover PVS. The LOOP tool can handle more com-
plex specifications and code than automatic checkers



4 Burdy et. al.: An overview of JML tools and applications

like ESC/Java can, but at the price of more user in-
teraction.
Krakatoa [53] is similar to LOOP, but integrates with
the Coq theorem prover. It is currently under devel-
opment and handles a subset of Java.

3.3 Generating specifications

In addition to these tools for checking specifications,
there are also tools that help a developer write JML
specifications, with the aim of reducing the cost and ef-
fort of producing JML specifications:

– The Daikon tool (Section 6.1) infers likely invariants
by observing the runtime behavior of a program.

– The Houdini tool (Section 6.2) postulates annota-
tions for code, then uses ESC/Java to check them.

– The jmlspec tool can produce a skeleton of a spec-
ification file from Java source and can compare the
interfaces of two different files for consistency.

3.4 Documentation

Finally, in spite of all the tools mentioned above, ulti-
mately human beings must read and understand JML
specifications. Since JML specifications are also meant
to be read and written by ordinary Java programmers,
it is important to support the conventional ways that
these programmers create and use documentation. The
jmldoc tool developed by David Cok produces browsable
HTML pages containing both the API and the specifi-
cations for Java code, in the style of pages generated by
Javadoc [31].

This tool reuses the parsing and checking performed
by the JML runtime assertion checker and connects it to
the doclet API underlying Javadoc. In this way, jmldoc
remains consistent with the definition of JML and cre-
ates HTML pages that are very familiar to a user of
Javadoc. The jmldoc tool combines and displays in one
place all of the specifications that pertain to a given
class, interface, method, or field; it combines annotations
across a series of source files that constitute successive
refinements of a given class or interface, as well as the
relevant specifications of overridden methods.

4 Runtime Assertion Checking and Testing

The most obvious way to use JML annotations is to
test them at runtime and report any detected violations.
There are two tools that can be used to do this.

4.1 Runtime Assertion Checking

The JML compiler (jmlc), developed at Iowa State Uni-
versity, is an extension to a Java compiler and com-
piles Java programs annotated with JML specifications

into Java bytecode [15,17]. The compiled bytecode in-
cludes runtime assertion checking instructions that check
JML specifications such as preconditions, normal and
exceptional postconditions, invariants, and history con-
straints. The execution of such assertion checks is trans-
parent in that, unless an assertion is violated, and except
for performance measures (time and space), the behavior
of the original program is unchanged. The transparency
of runtime assertion checking is guaranteed, as JML as-
sertions are not allowed to have any side-effects [48].

The JML language provides a rich set of specification
facilities to write abstract, complete behavioral specifi-
cations of Java program modules [48]. It opens a new
possibility in runtime assertion checking by supporting
abstract specifications written in terms of specification-
only declarations such as model fields, ghost fields, and
model methods. Thus the JML compiler represents a
significant advance over the state of the art in runtime
assertion checking as represented by Design by Contract
tools such as Eiffel [54], or by Java tools such as iCon-
tract [44] or Jass [6]. The jmlc tool also supports ad-
vances such as (stateful) interface specifications, multi-
ple inheritance of specifications, various forms of quanti-
fiers and set comprehension notation, support for strong
and weak behavioral subtyping [52,21], and a contextual
interpretation of undefinedness [48].

In sum, the JML compiler brings programming ben-
efits to formal interface specifications by allowing Java
programmers to use JML specifications as practical and
effective tools for debugging, testing, and design by con-
tract.

4.2 Unit Testing

A formal specification can be viewed as a test oracle [63,
3], and a runtime assertion checker can be used as the
decision procedure for the test oracle [18]. This idea
has been implemented as a unit testing tool for Java
(jmlunit), by combining JML with the popular unit
testing tool JUnit [7]. The jmlunit tool, developed at
Iowa State University, frees the programmer from writ-
ing most unit test code and significantly automates unit
testing of Java classes and interfaces.

The tool generates JUnit test classes that rely on
the JML runtime assertion checker. The test classes send
messages to objects of the Java classes under test. The
testing code catches assertion violation errors from such
method calls to decide if the test data violate the pre-
condition of the method under test; such assertion vi-
olation errors do not constitute test failures. When the
method under test satisfies its precondition, but other-
wise has an assertion violation, then the implementation
failed to meet its specification, and hence the test data
detects a failure [18]. In other words, the generated test
code serves as a test oracle whose behavior is derived
from the specified behavior of the class being tested. The
user is still responsible for generating test data; however



Burdy et. al.: An overview of JML tools and applications 5

the test classes make it easy for the user to supply such
test data. In addition, the user can supply hand-written
JUnit test methods if desired.

Our experience shows that the tool allows us to per-
form unit testing with minimal coding effort and detects
many kinds of errors. Ironically, about half of our test
failures were caused by specification errors, which shows
that the approach is also useful for debugging specifica-
tions. In addition, the tool can report assertion coverage
information, identifying assertions that are always true
or always false, and thus indicating deficiencies in the
set of test cases. However, the approach requires specifi-
cations to be fairly complete descriptions of the desired
behavior, as the quality of the generated test oracles de-
pends on the quality of the specifications. Thus, the ap-
proach trades the effort one might spend in writing test
cases for effort spent in writing formal specifications.

5 Static Checking and Verification

As mentioned before, there are several tools for stati-
cally checking – or verifying – JML annotations, provid-
ing different degrees of rigour and different degrees of
automation.

5.1 Extended Static Checking with ESC/Java

ESC/Java tool [29], developed at Compaq Research, per-
forms what is called extended static checking [20,49],
compile-time checking that goes well beyond type check-
ing. It can check relatively simple assertions and can
check for certain kinds of common errors in Java code,
such as dereferencing null, indexing an array outside its
bounds, or casting a reference to an impermissible type.
ESC/Java supports a subset of JML and also checks the
consistency between the code and the given JML annota-
tions. The user’s interaction with ESC/Java is quite sim-
ilar to the interaction with the compiler’s type checker:
the user includes JML annotations in the code and runs
the tool, and the tool responds with a list of possible
errors in the program.

JML annotations affect ESC/Java in two ways. First,
the given JML annotations help ESC/Java suppress spu-
rious warning messages. For example, in Figure 1, the
constructor’s precondition p != null lets ESC/Java de-
termine that the dereference of p in the constructor’s
body is valid, and thus ESC/Java produces no null-
dereference warning. Second, annotations make ESC/-
Java do additional checks. For example, when checking
a caller of the Purse constructor, the precondition p !=
null causes ESC/Java to emit a warning if the actual
parameter for p may be passed in as null. In these two
ways, the use of JML annotations enables ESC/Java to
produce warnings not at the source locations where er-
rors manifest themselves at runtime, but at the source
locations where the errors are committed.

An interesting property of ESC/Java is that it is nei-
ther sound nor complete; that is, it neither warns about
all errors, nor does it warn only about actual errors.
This is a deliberate design choice: the aim is to increase
the cost-effectiveness of the tool. In some situations, con-
vincing a mechanical checker of the absence of some par-
ticular error may require a large number of JML anno-
tations (consider, for example, a hypothetical program
that dereferences null if four of the program’s large-
valued integer variables satisfy the equation in Fermat’s
Last Theorem). To make the tool more cost-effective,
it may therefore be prudent to ignore the possibility of
certain errors, which is what ESC/Java has been de-
signed to do. The ESC/Java User’s Manual [50] contains
a list of all cases of unsoundness and incompleteness in
ESC/Java.

Under the hood, ESC/Java is powered by detailed
program semantics and an automatic (non-interactive)
theorem prover. ESC/Java translates a given JML-an-
notated Java program into verification conditions [51,
30], logical formulas that are valid if and only if the pro-
gram is free of the kinds of errors being analyzed. Any
verification-condition counterexamples found by the the-
orem prover are turned into programmer-sensible warn-
ing messages, including the kind and source location of
each potential error. The ESC/Java User’s Manual [50]
also provides a detailed description of the semantics of
JML annotations, as they pertain to ESC/Java.

5.2 ESC/Java2

Development of version 1 of ESC/Java ceased with the
dissolving of the SRC group at Compaq. Consequently
Cok and Kiniry have in progress a version 2 of ESC/Java,
built on the source code release provided by Compaq and
HP. This version has the following goals:

– to migrate the code base of ESC/Java and the code
accepted by ESC/Java to Java 1.4;

– to update ESC/Java to accept annotations consistent
with current version of JML;

– to increase the general use of the tool by packaging
it in an easy-to-use form;

– to increase the amount of JML that ESC/Java stati-
cally checks, consistent with the original engineering
goals of ESC/Java;

– and, over time, to update the associated tools of the
ESC suite (Calvin, Houdini, RCC) in a similar man-
ner.

There is currently an alpha version of ESC/Java2
available (from http://www.cs.kun.nl/ita/research/
projects/sos/projects/escjava.html). This release
includes the following improvements with respect to the
original ESC/Java.

– Parses Java 1.4 (the old version only parsed Java 1.3).
In particular ESC/Java2 handles the Java assert



6 Burdy et. al.: An overview of JML tools and applications

statement, treating it as either a Java assert state-
ment that possibly throws an exception or as a JML
assert statement that may provoke a static checker
warning.

– Parses all of current JML. This is a somewhat moving
target, since JML is the subject of current discussion
and research. Nevertheless the core part of JML is
stable and that is the portion that ESC/Java2 at-
tempts to statically check. Some of the more eso-
teric features of JML (e.g. model programs) are only
parsed, are not thoroughly type checked, and are ig-
nored for purposes of static checking.

– Allows specifications to be placed in (multiple) files
separate from the implementation, using JML’s re-
finement features. ESC/Java2 makes checks by com-
bining all available specifications and implementa-
tions. It also checks these specifications for consis-
tency.

– Follows the JML semantics for specification inheri-
tance. The constructs specific to ESC/Java version 1
(also_requires, etc.) were dropped.

– Increased the set of JML features that are statically
checked, as described in the implementation notes
accompanying the release.

There are two major areas of development of ESC/-
Java2 that will improve overall usability of the tool, be-
sides performance improvements. The first is the use
of model variables and method calls in annotation ex-
pressions. Model variables are an important abstraction
mechanism in writing specifications and model methods
allow much more readable and compact specifications.
This is a current topic of research and experimentation
and some partial facilities in this direction are a part of
the current alpha release of ESC/Java2.

The second major area for development is checking
of the frame conditions (i.e., JML’s assignable clauses,
also known as modifies clauses). It is an acknowledged
unsoundness of ESC/Java that these are not checked
and faulty assignable clauses can be a subtle source
of errors. In particular, the default assignable clause
in some JML specifications is that everything is poten-
tially modified; this interpretation is not currently im-
plemented.

5.3 Chase

The CHASE tool highlights the complementary nature
of the tools available for JML. As previously mentioned,
one source of unsoundness of ESC/Java is that it does
not check assignable clauses. The semantics of these
frame axioms are also not checked by the JML compiler.
The CHASE tool [14] tries to remedy these problems.
It performs a syntactic check on assignable clauses,
which, in the spirit of ESC/Java, is neither sound nor
complete, but which spots many mistakes made in the
user’s assignable clauses. This is another example of

the utility of a common language; developers can reap
the benefits of complementary tools. (The latest JML
tools from Iowa State are also incorporating some of this
functionality.)

5.4 Program Verification with LOOP

The LOOP project at the University of Nijmegen started
out as an exploration of the semantics of object-oriented
languages in general, and Java in particular. A denota-
tional semantics of sequential Java was defined in the
language of the theorem prover PVS [62], and an asso-
ciated compiler, called the LOOP tool [8], was devel-
oped, which translates any given sequential Java class
into PVS theories describing its semantics. In order to
conveniently use this as a basis for the specification and
verification of Java code, the LOOP tool was then ex-
tended to also provide a formal semantics of JML, so
that the tool now translates JML-annotated Java code
into proof obligations for PVS, which one can try to
prove interactively, in PVS. These proof obligations are
expressed as a special kind of Hoare statements about
methods, and they be proved using an associated Hoare
logic [41] and weakest-precondition calculus [40] for Java
and JML, both of which have been formalized in PVS.
The LOOP tool generates a single proof obligation for
every method and constructor, expressed as a Hoare
statement. It does not, as commonly done in verification
condition generators, split this up into smaller verifica-
tion conditions. Instead, this splitting up is done inside
the theorem prover PVS, using dedicated proof strate-
gies.

A more detailed overview of the LOOP project is
given in [39]. Case studies with the LOOP tool are dis-
cussed in [10,38].

A difference between LOOP and both ESC/Java and
JACK is that it provides a so-called shallow embedding
of Java and JML in PVS, defining a formal (denota-
tional) semantics of both Java and JML in PVS. This se-
mantics is still executable to a degree, and it has been ex-
tensively tested against real Java implementations. The
Hoare logic and wp-calculi that are used have also been
completely formalized and proved sound with respect to
these semantics in PVS. Both ESC/Java and JACK di-
rectly rely on an axiomatic semantics.

Verification of JML-annotated code with the LOOP
tool (more in particular, the interactive theorem proving
with PVS that this involves) can be very labor-intensive,
but allows verification of more complicated properties
than can be handled by extended static checking with
ESC/Java. Because of this labor-intensive nature, one
will typically first want to use other, less labor-intensive,
approaches, such as runtime assertion checking or ex-
tended static checking, to remove some of the errors in
the code or specifications before turning to the LOOP
tool. Experiences with such a combined approach are



Burdy et. al.: An overview of JML tools and applications 7

described in [9]. The possibility to do this is an impor-
tant —if not crucial— advantage of using a specification
language that is supported by a range of tools.

Another tool for the interactive verification of JML-
annotated Java code is Krakatoa [53]. This tool, which
currently covers only a subset of sequential Java, pro-
duces proof obligations for the theorem prover Coq [5].

5.5 Static Verification with JACK

The JACK [12] tool has been developed at the research
lab of Gemplus, a manufacturer of smartcards and smart-
card software. JACK aims to provide an environment for
Java and Java Card program verification using JML an-
notations. It implements a fully automated weakest pre-
condition calculus in order to generate proof obligations
from JML-annotated Java sources. Those proof obliga-
tions can then be discharged using a theorem prover.
Currently the proof obligations are generated for the B-
Method’s prover [1].

The approach taken in JACK is somewhere between
the approaches of ESC/Java and LOOP, but probably
closer to LOOP than to ESC/Java; JACK tries to pro-
vide the best features of both of these tools. On the one
hand, JACK is much more ambitious than ESC/Java,
in that it aims at real program verification rather than
just extended static checking, and JACK does not make
all the assumptions that result in soundness issues in
ESC/Java, some of which were made to speed up check-
ing. On the other hand, JACK does not require its users
to have expertise in the use of a theorem prover as LOOP
does.

An important design goal of the JACK tool is to be
usable by normal Java developers, allowing them to val-
idate their own code. Thus, care has been taken to hide
the mathematical complexity of the underlying concepts,
and JACK provides a dedicated proof obligation viewer.
This viewer presents the proof obligations as execution
paths within the program, highlighting the source code
relevant to the proof obligations. Moreover, goals and
hypotheses are displayed in a Java/JML-like notation.
To allow developers to work in a familiar environment,
JACK is integrated as a plug-in in the popular Eclipse2

IDE.
As earlier mentioned, JACK provides an interface to

the automatic theorem prover of the Atelier B toolkit.
The prover can usually automatically prove up to 90%
of the proof obligations; the remaining ones have to be
proved outside of JACK, using the classical B proof
tool. However, JACK is meant to be used by Java de-
velopers, who cannot be expected to use the B proof
tool. Therefore, in addition to the proved and unproved
states, JACK adds a checked state, that allows devel-
opers to indicate that they have manually checked the

2 http://www.eclipse.org

proof obligation. In order to better handle those cases,
other different approaches could be investigated, such
as integration with test tools such as jmlunit, integra-
tion of other proof assistants, or perhaps support from
a proof-expert team.

Like ESC/Java, JACK tries to hide the complica-
tions of the underlying theorem prover from the user, by
providing a push-button tool that normal Java develop-
ers, and not just formal methods experts, can and would
would like to use. We believe that this may be a way to
let non-experts venture into the formal world.

6 Generating Specifications

Apart from the whole issue of checking that implemen-
tations meet specifications, an important bottleneck in
the use of any formal specification language is writing
specifications in the first place. The JML tools discussed
so far assume the existence of a JML specification, and
leave the task of writing it to the programmer. However,
in practice this task can be time-consuming, tedious, and
error-prone, so tools that can help in this task can be of
great benefit.

6.1 Invariant Detection with Daikon

The Daikon invariant detector [24,25] is a tool that pro-
vides assistance in creating a specification. Daikon out-
puts observed program properties in JML syntax (as well
as other output formats) and automatically inserts them
into a target program.

The Daikon tool dynamically detects likely program
invariants. In other words, given program executions,
it reports properties that were true over those execu-
tions. The set of reported properties is also known as
an operational abstraction. Invariant detection operates
by observing values that a program computes at run-
time, generalizing over those values, and reporting the
resulting properties. The properties reported by Daikon
encompass numbers (x ≤ y, y = ax+b), collections (x ∈
mytree, mylist is sorted), pointers (n = n.child .parent),
and conditionals (if p 6= null then p.value > x); a com-
plete list appears in the Daikon user manual. Daikon
is available at http://pag.lcs.mit.edu/daikon/. Several
other implementations of dynamic invariant detection
exist [35,66,37], but they do not presently produce out-
put in JML format.

Like any dynamic analysis, the accuracy of the in-
ferred invariants depends in part on the quality and com-
pleteness of the test cases, and other executions may fal-
sify some of the reported properties. (Furthermore, the
actual behavior of the program is not necessarily the
same as its intended behavior.) However, Daikon uses
static analysis, statistical tests, and other mechanisms
to reduce the number of false positives [26]. Even if a



8 Burdy et. al.: An overview of JML tools and applications

property is not true in general, Daikon’s output provides
valuable information about the test suite over which the
program was run. Combining invariant detection with a
static verifier such as ESC/Java helps to overcome the
problems of both techniques: the unsoundness of the dy-
namic analysis and the static analysis’s need for anno-
tations.

Even with modest test suites, Daikon’s output is re-
markably accurate. In one set of experiments [60], over
90% of the properties that it reported were verifiable by
ESC/Java (the other properties were true, but were be-
yond the capabilities of ESC/Java), and it reported over
90% of the properties that ESC/Java needed in order to
complete its verification. For example, if Daikon gener-
ated 100 properties, users had only to delete less than
10 properties and to add another 10 properties in order
to have a verifiable set of properties. In another experi-
ment [61], users who were provided with Daikon output
(even from unrealistically bad test suites) performed sta-
tistically significantly better on a program verification
task than did users who did not have such assistance.

In addition to aiding the task of static checking as
described above, operational abstractions generated by
the Daikon invariant detector have been used to gen-
erate and improve test suites [36,70,33], to automate
theorem-proving [58,59], to identify refactoring oppor-
tunities [43], to aid program analysis [22,23], and to to
detect anomalies and bugs [67,32,11], among other uses.

6.2 Inferring annotations with Houdini

An obstacle to using program verification tools such as
ESC/Java on legacy code is the lack of annotations in
such a program. The warnings more likely point out
missing annotations than errors in the code. The Hou-
dini tool [28,27] attempts to alleviate this problem by
supplying many of the missing annotations.

Houdini works by making up candidate annotations
for the given program. Such candidate annotations com-
pare fields and array lengths to -1, 0, 1, constants used
in array constructors, null, true, and false (depending
on the type of the field), and indicate that arrays and
sub-arrays contain no null elements. To find which of
the candidate annotations hold for the program, Houdini
repeatedly invokes ESC/Java, removing those candidate
annotations that ESC/Java finds to be inconsistent with
the code. When all remaining candidate annotations are
consistent with the code, Houdini invokes ESC/Java a fi-
nal time to produce warnings that are then presented to
the user. Houdini thus retains the precision of ESC/Java,
trading quick turnaround for a reduced annotation ef-
fort.

Note that any user-supplied JML annotations in the
program still get used by Houdini, since they become
part of each invocation of ESC/Java. Thus, the benefits
of using JML annotations are the same for Houdini as

for ESC/Java, but Houdini can find program errors from
a smaller set of user-supplied JML annotations.

7 Applications of JML to Java Card

Although JML is able to specify arbitrary sequential
Java programs, most of the serious applications of JML
and JML tools up to now have targeted Java Card.
Java CardTM is a dialect of Java specifically designed
for the programming of the latest generation of smart-
cards. Java Card is adapted to the hardware limitations
of smartcards; for instance, it does not support floating
point numbers, strings, object cloning, or threads.

Java Card is a well-suited target for the application
of formal methods. It is a relatively simple language
with a restricted API. Moreover, Java Card programs,
called applets are small, typically on the order of several
KBytes of bytecode. Additionally, correctness of Java
Card programs is of crucial importance, since they are
used in sensitive applications, e.g. as bank cards, identity
cards, and in mobile phones.

JML, and several tools for JML, have been used for
Java Card, especially in the context of the EU-supported
project VerifiCard (www.verificard.org).

JML has been used to write a formal specification
of almost the entire Java Card API [65]. This experi-
ence has shown that JML is expressive enough to specify
non-trivial existing API classes. The runtime assertion
checker has been used to specify and verify a component
of a smartcard operating system [64].

ESC/Java has been used with great success to verify
a realistic example of an electronic purse implementation
in Java Card [13]. This case study was instrumental in
convincing industrial users of the usefulness of JML and
feasibility of automated program checking by ESC/Java
for Java Card applets. In fact, this case study provided
the motivation for the development of the JACK tool
discussed earlier, which is specifically designed for Java
Card programs. One of the classes of the electronic purse
has also been verified using the LOOP tool [10]. An
overview of the work on this electronic purse, and the
way in which ESC/Java and LOOP can be used to com-
plement each other, is given in [9].

As witnessed by the development of the JACK tool
by Gemplus, Java Card smartcard programs may be
one of the niche markets where formal methods have
a promising future. Here, the cost that companies are
willing to pay to ensure the absence of certain kinds of
bugs is quite high. It seems that, given the current state
of the art, using static checking techniques to ensure
relatively simple properties (e.g., that no runtime ex-
ception ever reaches the top-level without being caught)
seems to provide an acceptable return-on-investment. It
should be noted that the very simplicity of Java Card is
not without its drawbacks. In particular, the details of



Burdy et. al.: An overview of JML tools and applications 9

its very primitive communication with smartcards (via
a byte array buffer) is not easily abstracted away from.
It will be interesting to investigate if J2ME (Java 2 Mi-
cro Edition), which targets a wider range of electronic
consumer products, such as mobile phones and PDAs, is
also an interesting application domain for JML.

8 Related Work

8.1 Other runtime assertion checkers for Java

Many runtime assertion checkers for Java exist, for ex-
ample Jass, iContract, and Parasoft’s jContract, to name
just a few. Each of these tools has its own specification
language, thus specifications written for one tool do not
work in any other tool. And while some of these tools
support higher-level constructs such as quantifiers, all
are quite primitive when compared to JML. For exam-
ple, none include support for purity specification and
checking, model methods, refinements, or unit test inte-
gration. The developers of Jass have expressed interest
in moving to JML as their specification language.

8.2 SparkAda

SPARK (www.sparkada.com, [4]) is an initiative similar
to JML in many respects, but much more mature, and
targeting Ada rather than Java. SPARK (which stands
for Spade Ada Kernel) is a language designed for pro-
gramming high-integrity systems. It is a subset of Ada95
enriched with annotations to enable tool support. This
includes tools for data- and information-flow analysis,
and for code verification, in particular to ensure the ab-
sence of runtime exceptions [2]. Spark has been succes-
fully used to construct high-integrity systems that have
been certified using the Common Criteria, the ISO stan-
dard for the certification of information technology se-
curity. SPARK and the associated tools are marketed
by Praxis Critical System Ltd., demonstrating that this
technology is commercially viable.

8.3 JML vs. OCL

Despite the similarity in the acronyms, JML is very dif-
ferent in its aims from UML [68]. The most basic differ-
ence is that the UML aims to cover all phases of anal-
ysis and design with many notations, and tries to be
independent of programming language, while JML only
deals with detailed designs (for APIs) and is tied to Java.
The model in JML refers to abstract, specification-only
fields that can be used to describe the behavior of vari-
ous types. By contrast, the model of UML refers to the
general modeling process (analysis and design) and is
not limited to abstractions of individual types.

JML does have some things in common with the Ob-
ject Constraint Language (OCL) [69], which is part of
the UML standard. Like JML, OCL can be used to spec-
ify invariants and pre- and postconditions. An important
difference is that JML explicitly targets Java, whereas
OCL is not specific to any one programming language.
One could say that JML is related to Java in the same
way that OCL is related to UML.

JML clearly has the disadvantage that it can not be
used for, say, C++ programs, whereas OCL can. But it
also has obvious advantages when it comes to syntax,
semantics, and expressivity. Because JML sticks to the
Java syntax and typing rules, a typical Java programmer
will prefer JML notation over OCL notation, and, for
instance, prefer to write (in JML):

invariant pin != null && pin.length == 5;

rather than the OCL:

inv: pin <> null and pin->size() = 5

JML supports all the Java modifiers such as static,
private, public, etc., and these can be used to record
detailed design decisions for different readers. Further-
more, there are legal Java expressions that can be used
in JML specifications but that cannot be expressed in
OCL.

More significant than these limitations, or differences
in syntax, are differences in semantics. JML builds on
the (well-defined) semantics of Java. So, for instance,
equals has the same meaning in JML and Java, as does
==, and the same rules for overriding, overloading, and
hiding apply. One cannot expect this for OCL, although
efforts to define a semantics for OCL are underway.

In all, we believe that a language like JML, which
is tailored to Java, is better suited for recording the de-
tailed design of a Java programs than a generic language
like OCL. Even if one uses UML in the development of
a Java application, it may be better to use JML rather
than OCL for the specification of object constraints, es-
pecially in the later stages of the development.

9 Conclusions

We believe that JML presents a promising opportunity
to gently introduce formal specification into industrial
practice. It has the following strong points:

1. JML is easy to learn for any Java programmer, since
its syntax and semantics are very close to Java.
We believe this a crucial advantage, as the biggest
hurdle to introducing formal methods in industry is
often that people are not willing, or do not have the
time, to learn yet another language.

2. There is no need to invest in the construction of a
formal model before one can use JML. Or rather: the
source code is the formal model. This brings further
advantages:



10 Burdy et. al.: An overview of JML tools and applications

– It is easy to introduce the use of JML gradually,
simply by adding the odd assertion to some Java
code.

– JML can be used for existing (legacy) code and
APIs. Indeed, most applications of JML and its
tools to date have involved existing APIs and
code.

– There is no discrepancy between the actual code
and the formal model. In traditional applications
of formal methods there is often a gap between
the formal model and the actual implementation,
which means that some bugs in the implementa-
tion cannot be found, because they are not part
of the formal model, and, conversely, some prob-
lems discovered in the formal model may not be
relevant for the implementation.

3. There is a growing availability of a wide range of tool
support for JML.

Unlike B, JML does not impose a particular design
methodology on its users. Unlike UML, VDM, and Z,
JML is tailored to specifying both the syntactic interface
of Java code and its behavior. Therefore, JML is better
suited than these alternative languages for documenting
the detailed design of existing Java programs.

As a common notation shared by many tools, JML
offers users multiple tools supporting the same notation.
This frees them from having to learn a whole new lan-
guage before they can start using a new tool. The shared
notation also helps the economics both for users and tool
builders. Any industrial use of formal methods will have
to be economically justified, by comparing the costs (the
extra time and effort spent) against the benefits (im-
provements in quality, number of bugs found). Having
a range of tools, offering different levels of assurance
at different costs, makes it much easier to start using
JML. One can begin with a technique that requires the
least time and effort (perhaps runtime assertion check-
ing) and then move to more labor-intensive techniques if
and when that seems worthwhile, until one has reached a
combination of tools and techniques that is cost-effective
for a particular situation.

There are still many opportunities for further devel-
opment of both the JML language and its tools. For
instance, we would also like to see support for JML in
integrated development environments (such as Eclipse)
and integration with other kinds of static checkers. We
believe that, as a common language, JML can provide an
important vehicle to transfer more tools and techniques
from academia to industry.

Of course, with more tools supporting JML, and the
specification language JML growing in complexity due
to the different features that are useful for the different
tools, one important challenge is maintaining agreement
on the semantics of the language between the different
tools.

More generally, there are still many open research
issues involving the specification of object-oriented sys-
tems that the JML effort is investigating. For instance,
when exactly should invariants hold [57]? How should
concurrency properties be specified? JML’s specification
inheritance forces behavioral subtyping [21,47], but sub-
typing in Java is used for implementation inheritance as
well; is it practical to always weaken the specifications of
supertypes enough so that their subtypes are behavioral
subtypes? There are also semantics issues with frame ax-
ioms, pure methods, and aliasing, and practical ways to
constrain the potential of aliasing, e.g. as proposed in
[56].

The subtleties involved in such open problems are ev-
idenced by the slightly different ways in which different
tools approach these problems. This reflects the research
(as opposed to industrial development) focus of most of
those involved in JML and its tools. Nevertheless, JML
seems to be successful in providing a common notation
and a semantics that is, at least for a growing core sub-
set, shared by many tools, and as a common notation,
JML is already proving to be useful to both tool devel-
opers and users.

Acknowledgements. Despite our long list of co-authors, still
more people have been involved in developing the tools dis-
cussed in this paper, including Joachim van den Berg, Cees-
Bart Breunesse, Néstor Cataño, Cormac Flanagan, Mark Lil-
libridge, Marieke Huisman, Bart Jacobs, Jean-Louis Lanet,
Todd Millstein, Greg Nelson, Jeremy Nimmer, Antoine Re-
quet, Clyde Ruby, James B. Saxe, and Martijn Warnier.
Thanks to Raymie Stata for his initiative in getting the JML
and ESC/Java projects to agree on a common syntax, and
to Michael Möller for the logo. Work on the JML tools at
Iowa State builds on the MultiJava compiler written by Cur-
tis Clifton as an adaptation of the Kopi Java compiler.

References

1. J.-R. Abrial. The B-Book: Assigning Programs to Mean-
ings. Cambridge University Press, 1996.

2. Peter Amey and Roderick Chapman. Industrial strength
exception freedom. In ACM SigAda 2002, pages 1–9.
ACM, 2002.

3. Sergio Antoy and Dick Hamlet. Automatically checking
an implementation against its formal specification. IEEE
Transactions on Software Engineering, 26(1):55–69, Jan-
uary 2000.

4. John Barnes. High Integrity Software: The SPARK Ap-
proach to Safety and Security. Addison Wesley, 2003.

5. B. Barras, S. Boutin, C. Cornes, J. Courant, J.-Chr.
Filliâtre, E. Giménez, H. Herbelin, G. Huet, C. Muñoz,
C. Murthy, C. Parent, C. Paulin-Mohring, A. Säıbi, and
B. Werner. The Coq Proof Assistant User’s Guide Ver-
sion 6.1. Technical Report 203, INRIA Rocquencourt,
France, May 1997.

6. D. Bartetzko, C. Fischer, M. Moller, and H. Wehrheim.
Jass — Java with assertions. In Workshop on Runtime



Burdy et. al.: An overview of JML tools and applications 11

Verification at CAV’01, 2001. Published in ENTCS, K.
Havelund and G. Rosu (eds.), 55(2), 2001.

7. Kent Beck and Erich Gamma. Test infected: Program-
mers love writing tests. Java Report, 3(7):37–50, 1998.

8. Joachim van den Berg and Bart Jacobs. The LOOP
compiler for Java and JML. In T. Margaria and W. Yi,
editors, TACAS’01, number 2031 in LNCS, pages 299–
312. Springer, 2001.

9. C.-B. Breunesse, N. Cataño, M. Huisman, and B.P.F.
Jacobs. Formal methods for smart cards: an experience
report. Technical report, University of Nijmegen, 2003.
NIII Technical Report NIII-R0316.

10. Cees-Bart Breunesse, Joachim van den Berg, and Bart
Jacobs. Specifying and verifying a decimal representation
in Java for smart cards. In H. Kirchner and C. Ringeis-
sen, editors, AMAST’02, number 2422 in LNCS, pages
304–318. Springer, 2002.

11. Yuriy Brun. Software fault identification via dynamic
analysis and machine learning. Master’s thesis, MIT De-
partment of Electrical Engineering and Computer Sci-
ence, Cambridge, MA, August 16, 2003.

12. Lilian Burdy, Antoine Requet, and Jean-Louis Lanet.
Java applet correctness: A developer-oriented approach.
In D. Mandrioli K. Araki, S. Gnesi, editor, FME 2003,
volume 2805 of LNCS, pages 422–439. Springer-Verlag,
2003.

13. Néstor Cataño and Marieke Huisman. Formal specifica-
tion of Gemplus’s electronic purse case study. In L. H.
Eriksson and P. A. Lindsay, editors, FME 2002, volume
LNCS 2391, pages 272–289. Springer, 2002.

14. Néstor Cataño and Marieke Huisman. CHASE: A static
checker for JML’s assignable clause. In Lenore D.
Zuck, Paul C. Attie, Agostino Cortesi, and Supratik
Mukhopadhyay, editors, VMCAI: Verification, Model
Checking, and Abstract Interpretation, volume 2575 of
LNCS, pages 26–40. Springer, 2003.

15. Yoonsik Cheon. A runtime assertion checker for the Java
Modeling Language. Technical Report 03-09, Depart-
ment of Computer Science, Iowa State University, Ames,
IA, April 2003. The author’s Ph.D. dissertation. Avail-
able from archives.cs.iastate.edu.

16. Yoonsik Cheon and Gary T. Leavens. The
Larch/Smalltalk interface specification language. ACM
Transactions on Software Engineering and Methodology,
3(3):221–253, July 1994.

17. Yoonsik Cheon and Gary T. Leavens. A runtime as-
sertion checker for the Java Modeling Language (JML).
In Hamid R. Arabnia and Youngsong Mun, editors, the
International Conference on Software Engineering Re-
search and Practice (SERP ’02), pages 322–328. CSREA
Press, June 2002.

18. Yoonsik Cheon and Gary T. Leavens. A simple and prac-
tical approach to unit testing: The JML and JUnit way.
In Boris Magnusson, editor, ECOOP 2002, volume 2374
of LNCS, pages 231–255. Springer, June 2002.

19. Yoonsik Cheon, Gary T. Leavens, Murali Sitaraman, and
Stephen Edwards. Model variables: Cleanly supporting
abstraction in design by contract. Technical Report 03-
10, Department of Computer Science, Iowa State Univer-
sity, April 2003. Available from archives.cs.iastate.

edu.

20. David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and
James B. Saxe. Extended static checking. Research Re-
port 159, Compaq Systems Research Center, December
1998.

21. Krishna Kishore Dhara and Gary T. Leavens. Forcing
behavioral subtyping through specification inheritance.
In 18th International Conference on Software Engineer-
ing, pages 258–267. IEEE Computer Society Press, 1996.

22. Nii Dodoo, Alan Donovan, Lee Lin, and Michael D.
Ernst. Selecting predicates for implications in program
analysis, March 16, 2002. Draft. http://pag.lcs.mit.
edu/~mernst/pubs/invariants-implications.ps.

23. Nii Dodoo, Lee Lin, and Michael D. Ernst. Selecting,
refining, and evaluating predicates for program analysis.
Technical Report MIT-LCS-TR-914, Massachusetts In-
stitute of Technology, Laboratory for Computer Science,
Cambridge, MA, July 21, 2003.

24. Michael D. Ernst. Dynamically Discovering Likely Pro-
gram Invariants. PhD thesis, University of Washington
Department of Computer Science and Engineering, Seat-
tle, Washington, August 2000.

25. Michael D. Ernst, Jake Cockrell, William G. Griswold,
and David Notkin. Dynamically discovering likely pro-
gram invariants to support program evolution. IEEE
Transactions on Software Engineering, 27(2):1–25, 2001.

26. Michael D. Ernst, Adam Czeisler, William G. Griswold,
and David Notkin. Quickly detecting relevant program
invariants. In ICSE 2000, Proceedings of the 22nd In-
ternational Conference on Software Engineering, pages
449–458, 2000.

27. Cormac Flanagan, Rajeev Joshi, and K. Rustan M.
Leino. Annotation inference for modular checkers. In-
formation Processing Letters, 77(2–4):97–108, February
2001.

28. Cormac Flanagan and K. Rustan M. Leino. Houdini, an
annotation assistant for ESC/Java. In J. N. Oliveira and
P. Zave, editors, FME 2001, volume LNCS 2021, pages
500–517. Springer, 2001.

29. Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge,
Greg Nelson, James B. Saxe, and Raymie Stata. Ex-
tended static checking for Java. In ACM SIGPLAN 2002
Conference on Programming Language Design and Im-
plementation (PLDI’2002), pages 234–245, 2002.

30. Cormac Flanagan and James B. Saxe. Avoiding expo-
nential explosion: Generating compact verification con-
ditions. In Conference Record of the 28th Annual ACM
Symposium on Principles of Programming Languages,
pages 193–205. ACM, January 2001.

31. Lisa Friendly. The design of distributed hyperlinked
programming documentation. In S. Fräissè, F. Gar-
zotto, T. Isakowitz, J. Nanard, and M. Nanard, editors,
IWHD’95, pages 151–173. Springer, 1995.

32. Alex Groce and Willem Visser. What went wrong: Ex-
plaining counterexamples. In 10th International SPIN
Workshop on Model Checking of Software, pages 121–
135, Portland, Oregon, May 9–10, 2003.

33. Neelam Gupta and Zachary V. Heidepriem. A new struc-
tural coverage criterion for dynamic detection of program
invariants. In Proceedings of the 13th Annual Interna-
tional Conference on Automated Software Engineering
(ASE 2003), Montreal, Canada, October 8–10, 2003.



12 Burdy et. al.: An overview of JML tools and applications

34. John V. Guttag, James J. Horning, et al. Larch: Lan-
guages and Tools for Formal Specification. Springer, New
York, NY, 1993.

35. Sudheendra Hangal and Monica S. Lam. Tracking down
software bugs using automatic anomaly detection. In
ICSE’02, Proceedings of the 24th International Confer-
ence on Software Engineering, pages 291–301, Orlando,
Florida, May 22–24, 2002.

36. Michael Harder, Jeff Mellen, and Michael D. Ernst.
Improving test suites via operational abstraction. In
ICSE’03, Proceedings of the 25th International Confer-
ence on Software Engineering, pages 60–71, Portland,
Oregon, May 6–8, 2003.

37. Johannes Henkel and Amer Diwan. Discovering alge-
braic specifications from Java classes. In ECOOP 2003
— Object-Oriented Programming, 15th European Con-
ference, Darmstadt, Germany, July 23–25, 2003.

38. B. Jacobs, J. Kiniry, and M. Warnier. Java program
verification challenges. In FMCO 2002, volume 2852 of
LNCS, pages 202–219. Springer, 2003.

39. B. Jacobs and E. Poll. Java program verification at Ni-
jmegen: Developments and perspectiv e. Technical re-
port, University of Nijmegen, 2003. NIII Technical Re-
port NIII-R0316.

40. Bart Jacobs. Weakest precondition reasoning for Java
programs with JML annotations. JLAP, 2002. To ap-
pear.

41. Bart Jacobs and Erik Poll. A logic for the Java Model-
ing Language JML. In H. Hussmann, editor, Fundamen-
tal Approaches to Software Engineering (FASE), volume
2029 of LNCS, pages 284–299. Springer, 2001.

42. Cliff B. Jones. Systematic Software Development Using
VDM. International Series in Computer Science. Prentice
Hall, Englewood Cliffs, N.J., second edition, 1990.

43. Yoshio Kataoka, Michael D. Ernst, William G. Griswold,
and David Notkin. Automated support for program
refactoring using invariants. In ICSM 2001, Proceed-
ings of the International Conference on Software Main-
tenance, pages 736–743, Florence, Italy, November 6–10,
2001.

44. Reto Kramer. iContract – the Java design by con-
tract tool. TOOLS 26: Technology of Object-Oriented
Languages and Systems, Los Alamitos, California, pages
295–307, 1998.

45. Gary T. Leavens. An overview of Larch/C++: Behav-
ioral specifications for C++ modules. In Haim Kilov
and William Harvey, editors, Specification of Behav-
ioral Semantics in Object-Oriented Information Model-
ing, chapter 8, pages 121–142. Kluwer Academic Publish-
ers, Boston, 1996. An extended version is TR #96-01d,
Department of Computer Science, Iowa State University,
Ames, Iowa, 50011.

46. Gary T. Leavens, Albert L. Baker, and Clyde Ruby.
JML: A notation for detailed design. In Haim Kilov,
Bernhard Rumpe, and Ian Simmonds, editors, Behav-
ioral Specifications of Businesses and Systems, pages
175–188. Kluwer Academic Publishers, Boston, 1999.

47. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Pre-
liminary design of JML: A behavioral interface specifica-
tion language for Java. Technical Report 98-06u, Iowa
State University, Department of Computer Science, April
2003. See www.jmlspecs.org.

48. Gary T. Leavens, Yoonsik Cheon, Curtis Clifton, Clyde
Ruby, and David R. Cok. How the design of JML accom-
modates both runtime assertion checking and formal ver-
ification. In FMCO 2002, volume 2852 of LNCS, pages
262–284. Springer, 2003. Also appears as technical re-
port TR03-04, Dept. of Computer Science, Iowa State
University.

49. K. Rustan M. Leino. Extended static checking: A
ten-year perspective. In Reinhard Wilhelm, editor,
Informatics—10 Years Back, 10 Years Ahead, volume
2000 of LNCS. Springer, 2000.

50. K. Rustan M. Leino, Greg Nelson, and James B. Saxe.
ESC/Java user’s manual. Technical Note 2000-002, Com-
paq SRC, October 2000.

51. K. Rustan M. Leino, James B. Saxe, and Raymie Stata.
Checking Java programs via guarded commands. Tech-
nical Note 1999-002, Compaq SRC, May 1999.

52. Barbara Liskov and Jeannette Wing. A behavioral notion
of subtyping. ACM Transactions on Programming Lan-
guages and Systems, 16(6):1811–1841, November 1994.

53. Claude Marché, Christine Paulin, and Xavier Urbain.
The Krakatoa tool for JML/Java program certification.
Available at http://krakatoa.lri.fr, 2003.

54. Bertrand Meyer. Object-oriented Software Construction.
Prentice Hall, New York, NY, second edition, 1997.

55. Carroll Morgan. Programming from Specifications: Sec-
ond Edition. Prentice Hall International, Hempstead,
UK, 1994.

56. P. Müller, A. Poetzsch-Heffter, and G.T. Leavens. Modu-
lar specification of frame properties in JML. Concurrency
and Computation: Practice and Experience, 15(2):117–
154, 2003.

57. Peter Müller, Arnd Poetzsch-Heffter, and Gary T. Leav-
ens. Modular invariants for object structures. Technical
Report 424, ETH Zurich, October 2003.

58. Toh Ne Win and Michael D. Ernst. Verifying distributed
algorithms via dynamic analysis and theorem proving.
Technical Report 841, Massachusetts Institute of Tech-
nology, Laboratory for Computer Science, Cambridge,
MA, May 25, 2002.

59. Toh Ne Win, Michael D. Ernst, Stephen J. Garland, Dil-
sun Kırlı, and Nancy Lynch. Using simulated execution
in verifying distributed algorithms. Software Tools for
Technology Transfer, 2004.

60. Jeremy W. Nimmer and Michael D. Ernst. Automatic
generation of program specifications. In ISSTA 2002,
International Symposium on Software Testing and Anal-
ysis, pages 232–242, Rome, Italy, 2002.

61. Jeremy W. Nimmer and Michael D. Ernst. Invariant
inference for static checking: An empirical evaluation. In
ACM SIGSOFT 10th International Symposium on the
Foundations of Software Engineering (FSE 2002), pages
11–20, 2002.

62. S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M. Sri-
vas. PVS: Combining specification, proof checking, and
model checking. In R. Alur and T.A. Henzinger, editors,
Computer Aided Verification, number 1102 in LNCS,
pages 411–414. Springer, 1996.

63. Dennis K. Peters and David Lorge Parnas. Using test
oracles generated from program documentation. IEEE
Transactions on Software Engineering, 24(3):161–173,
1998.



Burdy et. al.: An overview of JML tools and applications 13

64. Erik Poll, Pieter Hartel, and Eduard de Jong. A Java
reference model of transacted memory for smart cards.
In Smart Card Research and Advanced Application Con-
ference (CARDIS’2002), pages 75–86. USENIX, 2002.

65. Erik Poll, Joachim van den Berg, and Bart Jacobs. For-
mal specification of the Java Card API in JML: the
APDU class. Computer Networks, 36(4):407–421, 2001.

66. Brock Pytlik, Manos Renieris, Shriram Krishnamurthi,
and Steven P. Reiss. Automated fault localization using
potential invariants. In AADEBUG’2003, Fifth Interna-
tional Workshop on Automated and Algorithmic Debug-
ging, Ghent, Belgium, September8–10, 2003.

67. Orna Raz, Philip Koopman, and Mary Shaw. Se-
mantic anomaly detection in online data sources. In
ICSE’02, Proceedings of the 24th International Confer-
ence on Software Engineering, pages 302–312, Orlando,
Florida, May 22–24, 2002.

68. Jim Rumbaugh, Ivar Jacobson, and Grady Booch. The
Unified Modeling Language Reference Manual. Addison-
Wesley Publishing Company, 1998.

69. Jos Warmer and Anneke Kleppe. The Object Constraint
Language: Precise Modeling with UML. Addison-Wesley
Publishing Company, 1999.

70. Tao Xie and David Notkin. Tool-assisted unit test selec-
tion based on operational violations. In Proceedings of
the 13th Annual International Conference on Automated
Software Engineering (ASE 2003), Montreal, Canada,
October 8–10, 2003.


