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Abstract. A powerful approach to finding errors in computer software
is to translate a given program into a verification condition, a logical
formula that is valid if and only if the program is free of the classes of
errors under consideration. Finding errors in the program is then done
by mechanically searching for counterexamples to the verification condi-
tion. This paper gives an overview of the technology that goes into such
program checkers, reports on some of the progress and lessons learned in
the past ten years, and identifies some remaining challenges.

0 Introduction

Software plays an increasingly important role in everyday life. We’d like software
to be reliable, free of errors. The later an error is found, the more expensive it is
to correct. Thus, we would like to detect software errors as early as possible in
the software design process. Static program checkers analyze programs in search
of errors and can be applied as soon as program development commences.

Many kinds of static program checkers are possible. To facilitate comparison
between these from a user’s perspective, it is useful to assess checkers along two
dimensions, coverage and effort. The coverage dimension measures the propor-
tion of errors in a program that are detected by the checker, giving a sense of
what a user may expect to get out of the checker. The effort dimension measures
how arduous it is to put the checker to use, giving a sense of what a user has
to put in to benefit from the checker. Factors that contribute to the effort di-
mension include the time spent learning to use the checker, preparing a program
to be input to the checker, waiting for the checker to complete, deciphering the
checker’s output, and identifying and suppressing spurious warnings.

Figure 0 shows some classes of static checkers along the two dimensions. In
the lower left corner of the figure, depicting low coverage at low effort, we find
checkers like type checkers and lint-like [17] checkers. Many programmers use
checkers like these, because they perceive the benefit as outweighing the effort.
The overall coverage may be low, but the kinds of errors caught by these checkers
are common and relatively cheap to find.

In the upper right corner of the figure, depicting high coverage at high effort,
we find full functional program verification. Here, the coverage approaches 100
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Fig. 0. Some classes of static checkers plotted along the two dimensions coverage and
effort. The illustration is not to scale.

percent, but the effort required is tremendous, usually including tasks such as
formalizing every detail of the program’s desired behavior, axiomatizing mathe-
matical theories that are often quite subtle, and hand-guiding a theorem prover
through the proofs of correctness. Consequently, only for a small number of
application areas, where programs are very small or where the cost of a soft-
ware error could be devastating, does full functional program verification stand
a chance of being cost effective.

Figure 0 includes a horizontal line labeled decidability ceiling. This is a limit
along the coverage dimension below which the checker technology can provide
certain mathematical guarantees. For example, the techniques applied below the
decidability ceiling may run in, say, linear or cubic time, whereas the techniques
required to achieve coverage above the decidability ceiling may have infeasible
worst-time running times or may not even be decidable.

But giving up on the guarantees provided below the decidability ceiling may
not be so bad in practice. By aiming to ascend above the decidability ceiling,
one can explore uses of more powerful technology, hoping to find uses that will
be reasonable for most of the programs given as input to the checker.

This paper focuses on a particular class of checker, an extended static checker,
which (see Figure 1) analyzes a given program by generating verification condi-

tions, logical formulas that, ideally, are valid if and only if the program is free of
the kinds of errors under consideration, and passes these verification conditions
to an automatic theorem prover which searches for counterexamples. Any coun-
terexample context (predicate that, as far as the theorem prover can determine,
is consistent and implies the negation of the verification condition) reported by
the theorem prover is translated into a warning message that the programmer
can understand. Extended static checking lies above the decidability ceiling in
Figure 0, because it provides better coverage than traditional static checkers can
achieve; and it lies way to the left of full functional program verification on the
effort dimension, because the effort required to use it is considerably smaller.
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Fig. 1. Extended static checker architecture.

Early work with similar goals includes Dick Sites’s PhD thesis [37] and Steve
German’s Runcheck verifier [15].

The present paper draws on the experience with building and using two
extended static checkers during the last decade, both at the Compaq Systems
Research Center (which belonged to Digital Equipment Corporation for most
of that decade). Starting with some early experiments in 1991, the Extended
Static Checking for Modula-3 (ESC/Modula-3) project developed the underlying
checking technology in the years that followed [9]. By 1996, the checker proved
usable for a number of systems modules, but by that time the pool of Modula-3
programmers in the world had dried up. In 1997, the Extended Static Checking
for Java (ESC/Java) project began, seeking to build an extended static checker
that would appeal to a large number of programmers [12, 22]. ESC/Java adapted
the technology developed for ESC/Modula-3, and made some significant changes
in the annotation language in order to make the checker easier to use. Both of
these checkers have been applied to thousands or tens of thousands of lines of
code, and both have found errors in programs with many users.

Many research challenges were encountered during these two projects. For
example: Which errors should the checker check for? Is there a suitable semantics
for real (non-toy) programming languages? Can the theorem prover be automatic
and fast enough? Can the theorem prover produce counterexample contexts, and
can these be turned into useful warning messages? Is annotation of programs
possible and can it avoid being onerous? This paper addresses these challenges
and reports on the progress made toward overcoming the challenges as part of
the two extended static checking projects. The paper then sketches some future
challenges and possible research enterprises in this area of program checking for
the next decade.



4 K.R.M. Leino

1 Challenges

In this section, I describe five major research challenges faced in the course of
the two extended static checking projects and report on the status of our efforts
to overcome these challenges.

1.0 Deciding which errors to check for

A first research challenge in designing any kind of program checker is deciding
what the checker is going to be good for. That is, what kinds of programming
errors should the checker search for? This is an important decision, because some
errors may occur more frequently than others, may have more disastrous effects
than others, or may be more difficult than others to find using existing program
checkers.

But this basic question immediately leads to another fundamental question
that will no doubt send shivers down the spine of the purist: So what about

soundness? Using the terminology of program verification, a checker is sound if
it does not miss any errors in the program. Thus, deciding about which errors
to check for means deciding how sound the checker should be. Why would we
ever want to give up on soundness? Because soundness affects the complexity of
the annotation language and the annotation burden, both of which contribute
to the effort dimension of the checker.

Let me give an example. Suppose we were to check programs for arithmetic
overflows. Precisely tracking the possible values of integer variables in all possible
executions of a program is infeasibly difficult. The situation can be alleviated
by using approximations [7] or relying on the programmer to supply hints in
annotations. But the reason a particular integer operation does not overflow can
easily be quite complicated. If the approximation machinery is not up to the task,
the checker will produce many spurious warnings, which increases the effort in
using the checker. Similarly, it takes an advanced annotation language to allow,
say, writing down the precondition that guarantees that a matrix multiplication
routine does not cause an overflow. The learning curve for such a language
and the burden of actually annotating a program with the pertinent properties
increase the effort in using the checker. And after all that effort, does, say, a caller
of the matrix multiplication routine stand any chance of actually discharging the
precondition? Is this effort worthwhile?

Even if we could do the analysis perfectly for arithmetic overflow, it’s not
certain that the result would be desirable in many applications. In some pro-
grams, it is conceivable that a non-negligible fraction of arithmetic operations
may indeed overflow in certain runs of the program where the input is orders of
magnitude larger than anticipated by the program designers and programmers.
Then the many warnings produced by the checker may not be spurious after
all, but the programmer would still have no interest in changing the program
to properly handle such inputs—a sentence in the program’s user manual would
both be appropriate and require much less effort.
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This example illustrates various design decisions that the designer of a pro-
gram checker wrestles with daily. By introducing unsoundness in just the right
places, the checker can achieve a better position in the coverage-to-effort design
space.

We designed ESC/Modula-3 and ESC/Java to check for errors in three cat-
egories. First, they check for conditions for which the languages Modula-3 and
Java prescribe run-time checks: null dereferences, array index bounds errors, type
cast errors, division by zero, etc. Second, they are capable of checking for com-
mon synchronization errors: race conditions and deadlocks. Third, they check
for violations of program annotations: for example, the checkers warn if a call
site fails to meet a declared precondition or if a routine body fails to maintain a
declared invariant.

Users can disable checking for any of the kinds of errors on a line-by-line basis
by using a nowarn annotation or globally by using a command-line switch.

The checkers were designed not to look for problems with non-termination
(because of the difficulty in providing appropriate annotations, and because
some programs are designed to run continuously), arithmetic overflow, out of
memory conditions (because of the flood of warnings of doubtful utility that
this would produce), and various kinds of “leaking” and “rep exposure” prob-
lems (see, e.g., [8, 24, 22]). One of the changes from ESC/Modula-3 to ESC/Java
is that ESC/Java does not enforce modifies clauses (specifications that limit
which variables a routine is allowed to modify), because of the requirements that
modifies checking places on the annotation language [20, 21] and on the user of
the checker.

One final note about designing which errors to check for: by not checking
for one kind of error, other errors may be masked. For example, consider the
following (Java) program fragment:

if (0 ≤ x && 0 ≤ y) {
int z = x + y ;
int[ ] a = new int[z] ;
...

}

The call to new allocates an integer array of size z, so z is required to be non-
negative. In ordinary mathematics, this follows from the fact that z is the sum
of two non-negative integers, but due to the possibility of arithmetic overflow
(or addition modulo 232, which is what Java uses), z may actually be negative.
Thus, even if the checker generally looks for negative-size array allocation errors,
it may miss some such errors by not considering arithmetic overflow.

1.1 Defining formal semantics for modern languages

To build a static program checker that is capable of finding semantic errors in
programs, one needs a formal semantics for the source language. Through the
formal semantics, one can translate a given program into a set of verification
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conditions. But modern programming language like Modula-3 and Java include
not just loops and procedures (which sometimes are considered difficult in their
own right), but also object-oriented features like objects (which are references
to data records and method suites), subtypes, dynamically dispatched methods,
information hiding, and even concurrency features! Are these not difficult, or
impossible, to model?

Indeed, if these features were to be used in unrestricted ways, untangling
the mess into a formal semantics appears to be an impossible task [4]. Luckily,
good programmers impose a structure on the way they use the features of the
language; they follow a programming methodology. This helps them manage the
complexity of their programs. Not only can a program checker take advantage
of the fact that programmers use methodology, but it may also be a good idea
for the program checker to enforce certain parts of the methodology.

The general concept of using specifications is fundamental to good program-
ming methodologies. A specification is a contract that spells out how certain
variables, procedures, or other constructs are to be used within the program.
Once they are part of the source language, specifications help define the se-
mantics of the language. For example, by using the programming methodology
of associating a specification with every procedure, the formal semantics of a
procedure call can be defined in terms of the procedure’s specification alone,
independent of the procedure’s implementation. When making use of such a
methodology, it seems prudent also to enforce the methodology, which is done
by checking that every procedure implementation meets its specification. This
old and fundamental idea [33] too often seems to be forgotten.

Making use of programming methodology overcomes the impossibility of de-
signing a formal semantics, but the task may still seem unwieldy. To manage this
complexity, we have found it convenient to translate the source language into
a small intermediate language whose formal semantics is easy to define. Such a
translation task is comparable to the compiler task of translating a source lan-
guage into a more primitive intermediate language (like three-address codes [0]).
We have used a variation of Dijkstra’s guarded commands [10] as our interme-
diate language [23].

An intermediate language is good at capturing the essence of executable code
in the source language, but may not be well suited for capturing all important
information in the source language, especially if the intermediate language lacks
declarations and types. We have found that we can encode the remaining in-
formation into a logical formula that we refer to as the background predicate.
The background predicate, which is used as an antecedent of the verification
condition, formalizes properties of the source language’s expression operators
and type system. (For a full description of the background predicate of a small
object-oriented language, see Ecstatic [19].)

By giving a small example, I will attempt to convey a flavor of the translation
of source-language programs into verification conditions. Consider the following
Java class declaration:

class T extends S { . . . }
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which introduces T as a subclass of S, and consider the following Java program
fragment:

t = (T )s ;

where t is a variable of static type T and s is a variable of static type S, and
where the Java type-cast expression “(T )s” returns the value of s after checking
that this value is assignable to type T . The background predicate includes a
relation <:1 (“direct subtype”) on class names, and the Java class declaration
above contributes the following part of the definition of that relation:

T <:1 S

The background predicate defines a relation <: as the reflexive transitive closure
of <:1. It also includes a predicate is , where is(o, U) means that the value o is
assignable to type U . This predicate is defined as follows:

( ∀ o, U :: is(o, U) ≡ o = null ∨ typeof (o) <: U )

where typeof maps non-null objects to their (dynamic) types. The translation
of the assignment statement in the Java program fragment above produces the
intermediate-language command

assert is(s, T ) ; t = s

That is, before the actual assignment of s to t, the command explicitly checks
that the value of s is assignable to type T . After applying the semantics of
the intermediate language, for example using weakest preconditions [10], the
verification condition takes the shape

. . . T <:1 S ∧ ( ∀ o, U :: is(o, U) ≡ . . . ) . . . ⇒ . . . is(s, T ) ∧ . . .

This illustrates that one needs to prove is(s, T ) from the background predicate
and from what is known about s.

As alluded to above, ESC/Modula-3 and ESC/Java reason about each call
in terms of the specification of the callee. This allows the checkers to perform
modular checking, which means that to check one module (or class) M , the
checker only needs the declarations and specifications in the modules (or classes)
that M imports (that is, builds on or uses). In particular, the implementations of
the imported modules (or classes) are not needed. Consequently, one can check
code that calls into a library module whose implementation details are hidden,
and one can check the uses and implementation of a class without needing all
its future subclasses. Modular checking is an important asset of the checkers;
unfortunately, as we shall see later, it is also a liability.

1.2 Using a theorem prover

Once a verification condition has been produced, the next checker task is to
attempt to find counterexamples to it. In many ways, the structure of verifica-
tion conditions mimics that of the statement and expression constructs of the
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program. Typical verification conditions thus include many cases to be checked,
but each case tends to be mathematically shallow. This makes the task ideally
suited for a mechanical theorem prover.

The desire to keep the effort of using the program checker low places three
requirements on the theorem prover. First, the theorem prover must run entirely
automatically, with no user interaction. Any degree of user interactivity would
mean that users of the program checker would need to learn to operate the
theorem prover, something which takes a lot of training. Second, the output of
the theorem prover needs to include a list of counterexample contexts. When
a program contains errors and the verification condition is invalid, it would be
unacceptable if the theorem prover’s failure to prove the verification condition
were not accompanied with a reason for the failure. Third, the theorem prover
must be reasonably fast, because any program checker that is to be part of the
program development process will need to be run frequently. Can these three
requirements be met?

In our experience, we have found that it is indeed feasible to use a theorem
prover in a program checker to do semantic analysis. Our theorem prover, called
Simplify, works on the kinds of formulas that our extended static checkers pro-
duce as verification conditions, is entirely automatic, outputs counterexample
contexts, and usually performs well. We have used the same theorem prover for
both ESC/Modula-3 and ESC/Java.

The theorem prover Simplify is based on the Nelson-Oppen algorithm for
cooperating decision procedures [30, 31]. Simplify’s decision procedures include
an Egraph for the theory of equality including congruence closure, a simplex
solver for linear arithmetic, a backtracking search for disjunctions, a matcher for
universally quantified formulas, and an ordering-theory procedure for various
partial orders. When Simplify was built as part of the ESC/Modula-3 project,
we developed various heuristics that make it work well for the kinds of formulas
that arise as verification conditions. We have since added some theorem prover
features that have allowed us to enhance the output of ESC/Java, but the built-
in heuristics have remained the same as they were for ESC/Modula-3.

There are many mathematically equivalent ways in which one can formulate
verification conditions. Alternative formulations may differ dramatically in how
they impact the theorem prover’s performance. In building an extended static
checker, one must pay ample attention to crafting the verification conditions
carefully, and doing so requires both expertise with and experimentation with
the underlying theorem prover.

An important desideratum of a program checker is that it not get stuck for
too long (or forever!) in trying to find errors in some part of the given program.
Consequently, we impose a time limit for each verification condition in ESC/Java
(the default is 5 minutes, which is occasionally reached).

In Section 1.0, I emphasized the importance of allowing unsoundness into the
design space of program checkers. However, unsoundness should be confined to
areas that can be explained in the checker’s user manual, so that programmers
can understand the limitations. This suggests that it is prudent not to design
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unsoundness into the underlying theorem prover, because it may be hard to
predict where such unsoundness may strike and to explain what the programmer
can do to avoid the unsoundness.

1.3 Producing meaningful warning messages

The next challenge is to turn verification-condition counterexample contexts,
as output by the theorem prover, into meaningful warning messages. Users of
the program checker should not be required to grok the theorem prover or the
particular encoding of verification conditions in order to understand the checker’s
warning messages.

Because the structure of verification conditions mimics the structure of the
program, particular parts of the verification condition correspond to checks be-
ing made at particular points in the program. By tracking which parts of a
verification condition the theorem prover uses in the counterexample contexts it
reports, we have found that one can accurately recover the kind of error (null
dereference, array index bounds errors, etc.) and source location of the error,
even an execution trace leading to the error, from the theorem prover’s output.

Tracking the parts of the verification condition that the theorem prover is
currently considering can be done in several ways. One effective way involves
a theorem-prover labeling mechanism. The theorem prover Simplify allows sub-
predicates to be labeled and outputs with its counterexample context the labels
of those labeled subpredicates that somehow contributed to the counterexam-
ple context. For example, consider a Java program that contains the following
assignment statement:

p.f = 10 ;

Ordinarily, this would be translated into an intermediate-language command like

assert p 6= null ; p.f = 10

which in turn would give rise to a verification condition of the form

. . . ⇒ . . . p 6= null ∧ . . .

To use the labeling mechanism, the subpredicate p 6= null in this verification
condition is instead written as the logically equivalent

(label L: p 6= null)

where L is a fresh label that encodes which program check the subpredicate
represents. If the theorem prover outputs the label L with a counterexample
context, the checker will report a warning of a possible null dereference in the
Java assignment statement above.

We have found that the error kind, source location, and execution trace
usually suffice to diagnose a warning produced by the checker. Therefore, the
default in ESC/Java is to hide the theorem prover’s full counterexample context
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from the user. However, there are times when the rest of the counterexample
context does contain useful information. Though we have tried, we have not
succeeded in finding a general scheme for automatically extracting all interesting
parts of a counterexample context. Instead, we have focused on detecting a couple
of common situations that without further information can be quite confusing
to users [28].

1.4 Grappling with annotations

The last of the five big challenges regards program annotation. Is program an-
notation a task that programmers can reasonably be expected to perform? Are
annotations understandable? Is the task of adding annotations too big a burden?

For both of the extended static checkers and their (different) annotation lan-
guages, we have found that the annotations describe programmer design deci-
sions. That is, the annotations give properties that are relevant to the program’s
correctness, not obscure hints to the checking machinery that enable it to grind
through the analysis of the given program. For example, an annotation may de-
scribe the decision that a particular method parameter should never be passed
in as null or that the value of a particular integer field should always lie between
0 and the size of some array. This is good, because it means that programmers
can understand what they write down as annotations. Moreover, the annotations
serve as useful program documentation. And, unlike documentation written in a
natural language, which can get out of sync with the program text, annotations
can be mechanically checked to agree with the program text.

There are choices in the creation of a program checker’s annotation lan-
guage, because there are several different kinds of annotations that can be used
to describe the same programmer design decisions. An important example of this
choice is found in how the annotation languages of the two extended static check-
ers support writing down how data structures are represented. In ESC/Modula-3,
the annotation language included abstract variables (fictitious variables whose
values are given as functions of program variables) and abstraction dependencies
(declarations that specify which program variables may be used in the represen-
tation of which abstract variables) [21, 18]. An annotation idiom commonly used
in ESC/Modula-3 is to introduce an abstract field called valid in each object
type, with the meaning that an object is valid if it has been properly initialized
and its fields are in a consistent state [21, 9]. The field valid is then used as an ex-
plicit precondition of every routine that operates on such objects. To reduce the
annotation burden involved in writing these pre- and postconditions, ESC/Java
dispensed with abstract variables and abstraction dependencies in favor of ob-
ject invariants, which declare what it means for the fields of an object to be
in a consistent state, and which are then automatically used as preconditions of
methods. The design choice to use object invariants led to further design choices,
for example choosing when exactly an object invariant is supposed to hold. With
its present object-invariant design, ESC/Java gives up on soundness in several
ways where the abstract-variable design in ESC/Modula-3 did not have to. But
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the overall effect seems to be that the ESC/Java annotation language is easier to
use. Trade-offs like this are essential to making more usable program checkers.

A critically important feature of the annotation language of an extended
static checker is an escape hatch that suppresses the static checking performed,
to be used when the checker issues spurious warnings that otherwise would be
difficult or impossible to eliminate. Such escape hatches exist in traditional pro-
gram checkers as well. For example, both Modula-3 and Java include type-cast
expressions, which circumvent the strictness of the static type checker. To ensure
the type safety of the running program, such type casts in Java and in the safe
subset of Modula-3 are checked at run-time. Since ESC/Modula-3 and ESC/Java
don’t introduce run-time checks, their escape hatches belong under the rubric of
unsound features.

For example, consider the following Java program fragment:

y = x ∗ x + 2 ∗ x + 1 ;
z = new int[y] ;

Because of properties of integers, y is always assigned a non-negative value (ig-
noring issues of arithmetic overflow), so the subsequent array allocation will
never result in a negative-size array allocation error. However, an extended static
checker is not likely to be equipped with the appropriate integer properties to
deduce this fact automatically, so it will spuriously issue a warning. This warn-
ing can be suppressed in ESC/Java by adding a nowarn annotation on the line
of the allocation:

y = x ∗ x + 2 ∗ x + 1 ;
z = new int[y] ; //@ nowarn

or by instructing the checker to blindly assume the condition 0 ≤ y after the
assignment to y:

y = x ∗ x + 2 ∗ x + 1 ;
//@ assume 0 ≤ y ;
z = new int[y] ;

In this example, the escape hatch is needed because of the checker’s limited
support for non-linear arithmetic. In other situations, an escape hatch may be
used as an alternative to writing down some complex program invariant. When
an escape hatch is used, the user takes responsibility for those execution paths
that are not checked by the checker.

We have found that annotating a program increases its number of source lines
by about 10 percent. For programming teams that are serious about building
quality into their software, this number does not seem excessively high. Program-
mers on such teams are already accustomed to writing similar annotations in
natural language comments. But the start-up cost is still too high. For program-
ming teams with large amounts of already written code, the initial investment
of adding annotations to the legacy code seems daunting. The argument that
the checker performs modular checking, which means one can annotate a class
at a time, does not make the situation compelling enough, judging from our lim-
ited experience with programmers outside our projects. Even for programming
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teams that are just starting a new project, there’s still the initial training cost
before the team acquires at least one expert at the new checker. The fact that
the technology is still new means the risk of using an extended static checker is
higher than if its use were common.

Like type declarations, extended static checking annotations impose stronger
invariants on the program. Decades ago, when the benefits of static type check-
ing weren’t generally accepted, the type checking community faced problems
similar to the ones I’ve outlined above. But with the continued design and use
of statically typed programming languages, the fact that type declarations must
be given explicitly no longer poses a barrier to entry for such languages. (When
was the last time you heard, “I don’t want to use Java, because the burden of
writing explicit type declarations is just too large”?) This piece of history gives
hope to extended static checking technology, but more research is called for.

2 Future challenges

In the last ten years, the two extended static checking projects saw many re-
search challenges, the first tier of which were overcome. More research challenges
remain. In this section, I mention four of these and refer to some related work.

2.0 Reduce annotation burden

Although annotations capture programmer design decisions and provide a styl-
ized way to record these, the reluctance to cope with the burden of annotating
programs remains the major obstacle in the adoption of extended static check-
ing technology into practice. Are there ways to use this more powerful checking
technology at a reduced annotation cost?

One way to reduce the annotation burden is to not insist on modular check-
ing. By spanning routine and module boundaries, the checker will need fewer
annotations. Even if such a checker comes at a price of increased demand for
computational resources (time, memory, disk space) or more complicated anal-
ysis techniques, it may reduce the overall effort of using the checker. Recently,
an annotation-less static program checker called PREfix [34] has achieved good
success in this area. Abstract interpretation [6, 5] is another program analysis
technique that can find errors in whole programs without requiring annotation.

Another way to reduce the annotation burden is to develop annotation as-

sistants, which infer annotations automatically from the program text. A tool
called Daikon [11], which uses a mix of static and dynamic analysis techniques,
infers likely invariants of a given program. An annotation assistant for ESC/Java,
called Houdini [14, 13], is under development at Compaq SRC.

2.1 Understand sound modular checking

The input to a program checker includes not just the routine or class imple-
mentations to be checked, but also the declarations given in the scope of such
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routines and classes. For example, if the implementation of a routine r calls
another routine p, then conventional programming-language rules for resolving
names ensure that the declaration of p is in the scope of r’s implementation. On
the other hand, other procedure declarations, and the implementation of p, may
not be in the scope of r’s implementation. Modular checking can be performed so
long as the input to the checker includes the scopes of the routines or classes to
be checked. But is this modular checking meaningful? Is a verification condition
produced in a limited scope somehow related to the verification condition that
would have been generated if the whole program were in scope?

Modular checking is sound with respect to a verification-condition generator,
if it doesn’t miss any errors that the same verification-condition generator would
have detected if given the whole program [18, 21]. For example, consider a limited
scope M that’s part of a program P , and consider an implementation r in M . (In
Modula-3, the limited scope M corresponds to a module closed under imports,
and P corresponds to all of the modules in the program.) Then, a theorem of
sound modular checking takes the form

M ⊆ P ∧ WellFormed (M, P ) ∧ r ∈ M ∧ Pass(r, M) ⇒ Pass(r, P )

where for any (limited or whole-program) scope X , the predicate Pass(r, X)
means that the checker issues no complaints about r when the checking is per-
formed in the context of X . Soundness of modular checking is non-trivial and
doesn’t hold unless one restricts the programs under consideration. The predicate
WellFormed (M, P ) says that module M and program P obey such restrictions.

In ESC/Modula-3, we tried hard to achieve sound modular checking. In con-
trast, we deliberately gave up on this chivalrous goal in ESC/Java, because it
was not clear that the increased coverage that sound modular checking provides
justifies the extra effort that it entails. But even if the extra coverage doesn’t
justify the extra effort, it may be enlightening to understand what sound modu-
lar checking really involves. As it stands, the soundness of modular checking for
modern programming languages is an open problem [21].

2.2 Investigate more-than-types systems

Static type systems have had considerable success in popular programming lan-
guages. Consequently, the type checker helps enforce program invariants like
“this variable is null or contains the address of a data record of type T”. Ex-
perience has shown that the invariants imposed by a type system are easy to
teach to programmers, helpful in finding common errors, and flexible enough for
large classes of programs that programmers actually want to write. The flexibil-
ity comes in part from the fact that certain checks are not performed statically,
but are instead enforced by simple dynamic checks. What are some stronger in-
variants that a programming language can reasonably enforce by a combination
of static and dynamic checks? Can we do better than traditional type systems?

Extended static checking is a technique for finding errors in a program, not
for providing guarantees about the program. Nonetheless, as a gedanken exper-
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iment, let us consider the possibility of making up for the (deliberate) unsound-
ness in ESC/Java’s static checking by prescribing dynamic checks. Recall from
Section 1.0 that by not checking for one kind of error, a checker may miss errors
of others kinds, too. Thus, to guarantee any program invariant at all, we must
examine every kind of unsoundness in the static checking.

One unsoundness in ESC/Java stems from assume annotations. The annota-
tion statement assume p inhibits, from that program point onwards, ESC/Java’s
static checking for those program executions that reach the assume statement
when p does not hold. An obvious way to make sure the inhibited checking is
immaterial is to dynamically check p at the point of the annotation (reporting
an error and halting the program if p does not hold). To keep the dynamic check
simple may require restricting the annotation language, for example forbidding
universal and existential quantifications.

Another unsoundness stems from the fact that ESC/Java does not enforce
modifies clauses. For proper checking of the caller of a routine, one needs to
know what parts of the program state the callee may modify. This is specified
in modifies clauses, which require some form of abstraction in the annotation
language [20, 21]. Lacking such support for abstraction (as in ESC/Java), one can
turn to some form of approximation, but this gets tricky. Overestimating what
the callee modifies results in spurious warnings in the caller; overestimating what
the caller assumes to go unchanged by the call results in spurious warnings in the
callee. To reduce spurious warnings, ESC/Java uses declared modifies clauses
when reasoning about calls, but omits the corresponding checking for the callee.
Using dynamic checking to make up for the lack of static modifies checking
is difficult. Naively, it would require taking a snapshot of the entire program
state on entry to a routine and then comparing the snapshot with the program
state on exit from the routine. To implement more efficient checks may require
enforcing a stricter programming methodology or restricting the expressiveness
of the programming language.

A third unsoundness in ESC/Java stems from the relaxed rules about where
object invariants are checked to hold. On entry to a call, ESC/Java assumes
that all object invariants hold for all objects. But at call sites, ESC/Java checks
the object invariants only for the actual parameters of the call. Adding dynamic
checks to restore soundness would involve analyzing the program to determine
which variables and object fields the callee may read or write. If this analysis
is to be precise enough, one may need to rely on additional annotations or pro-
gramming methodologies that restrict which objects may be reached from where.
Several methodologies have been proposed to restrict “aliasing” of objects (see,
e.g., [3, 32, 38, 16, 1, 29]), but it seems there is still no practical and checkable
solution to the part of this problem known as “rep exposure” or “abstract alias-
ing” [8].

Clearly, judging even from just the three kinds of unsoundness above, there
are several hard problems to be solved before dynamic checking could comple-
ment extended static checking to achieve a sound system. Trying to increase
the strength of guaranteed program invariants by instead adding static checks
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to systems that already prescribe dynamic checks can lead to similar problems.
Many programming systems can dynamically check user-supplied assertions (see,
for example, the pioneering work by Satterthwaite [35]). The object-oriented
programming language Eiffel [27] and the Ada annotation language Anna [26]
provide facilities for systematically introducing dynamic checks of assertions like
preconditions and object invariants, but these languages have not been designed
for the purpose of supporting complementary static checking. In fact, neither
language includes modifies clauses, and in neither language is it possible to
infer, from the specifications visible to a caller, what conditions the caller is
responsible for establishing prior to a call (cf. [18]). So is there any hope of in-
creasing the strength of program invariants that programming-language designs
can incorporate and enforce?

A simple measure for increasing the strength of program invariants is to
augment object-oriented type systems with may-be-null types. A may-be-null
type is a variant record representing either the special value null or a value of
some (non-null) object type. A deference expression E.f , where f is an object
field, is then defined only when the static type of the expression E is a non-null
object type. An expression of a may-be-null type can be cast to the corresponding
non-null type; the cast fails (dynamically) if the expression evaluates to null.
May-be-null types were used in CLU [25], but they seem mostly to have been
forgotten since.

Another possible measure for increasing the strength of program invariants
enforced by a programming language is to augment the type system with depen-

dent types (see, e.g., [2, 39]). These are essentially record, map, array, or object
types with additional invariants. There is a temptation to stay within the realm
of invariants whose checking is decidable, but I say why not leap above the
decidability ceiling: by suitably restricting the annotation language, if an invari-
ant cannot be checked statically, one can either fall back on dynamic checking
or rely on the programmer to supply an assume statement (which may also
require dynamic checking).

There are still problems with dependent types. One problem is the question
of when to enforce the invariants. This problem is reminiscent of the problem
of when to enforce object invariants, described above. Maybe one can restrict
operations on values of dependent types in such a way that it becomes clear when
the invariants should be enforced. Another problem with dependent types is the
need for modifies clauses. To reason about particular program variables, one
generally needs to know which variables may be modified by a call, but this leads
to the problems with enforcing modifies clauses described above. It is possible
that one could restrict the regions of a program where variables of dependent
types are updated, in such a way that one does not rely on the exact values
of these variables on entry to the regions, thereby possibly avoiding the need
for modifies clauses. Another possible way out is to restrict one’s attention
to a functional language (in which variables are never changed), an approach
explored by Augustsson in Cayenne [2] and by Xi and Pfenning [39].
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In summary, the gap between the program invariants enforced by traditional
type systems and the program invariants that extended static checkers check a
program against seems to be wide. In response, I suggest investigating “more-
than-types systems” which aspire to guarantee stronger program invariants than
those guaranteed by traditional type systems, and which may rely on a combina-
tion of static checking above the decidability ceiling and dynamic checking. The
research challenge is to investigate this space of programming-language designs
to determine if there are more-than-types systems that are substantially more
useful than traditional type systems. (In this volume, Schneider, Morrisett, and
Harper discuss the combination of various static and dynamic checking tech-
niques to enforce stronger security policies [36].)

2.3 Teach

One of the barriers to entry for extended static checking is that a regrettably
large number of programmers don’t really understand preconditions and invari-
ants. When these concepts are taught in computer science curriculums, students
tend to practice them only on paper. There’s a large difference between turning
in a homework assignment that is returned graded a week later and getting in-
stant feedback from a mechanical checker. It seems to me that the current state
of the art in extended static checkers, although designed to support program-
ming in the large, would be quite instructional to use along with the compiler
and type checker in early (and more advanced) programming classes. Even if the
students wouldn’t continue using an extended static checker outside the classes,
the experience of using one with their programming assignments may teach them
to think in terms of preconditions and invariants, which is likely to breed a new,
better generation of programmers.

3 Conclusions

After a decade of research in the area of extended static checking, the first
tier of research challenges has been overcome. Extended static checking seems
promising as a technique to improve the quality of programs produced while
programming in the large. However, challenges remain before extended static
checking technology will be used routinely in program development in practice.
As with the adoption of anything new, there are political and cultural barriers
to break through. But I think there are also technical research challenges in
getting the technology adopted. By investigating more-than-types systems, we
may design programming languages that enforce stronger program invariants. By
working on reducing the annotation burden and otherwise improving the user
experience in applying extended static checking, we may produce better program
checkers. By teaching a new generation of computer science students, we may
raise better programmers. We can then hope for a future in which computer
programs are more reliable.
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