
Computation Tree Logic

Computational tree logic - propositional branching time logic, permitting explicit

quantification over all possible futures.

Fixed set of atomic formulas (p, q, r), standing for atomic descriptions of a

system:

The printer is busy

There are currently no requested jobs for the printer

Conveyer belt is stopped

Choice of atomic propositions depends on our intension (but usually does not

involve time)

2

Temporal Logics
� CTL: definition, relationship between operators, adequate sets, specifying

properties, safety/liveness/fairness

� Modeling: sequential, concurrent systems; maximum parallelism/interleaving

� LTL: definition, relationship between operators, CTL vs. LTL

� Property patterns

� CTL*

1

CTL Syntax - Cont’d

Which of these are well-formed and which are not:

EG r
FG r
AG AF r
E [A [p1 U p2] U p3]

AF [(r U q)
�

(p U r)]

EF E[r U q] AF[(r U q)
�

(p U r)]

4

Computation Tree Logic (Cont’d)
� Syntax:

1. � , � , and every atomic proposition is a CTL formula

2. If f and g are CTL formulae, then so are � f , f
�

g, f � g, AX f , EX f ,

A[f Ug], E[f Ug], AF f , EF f , AG f , EG f , A[f Rg], E[f Rg], A[f Wg],

E[f Wg]

� Temporal operators - quantifier (A or E) followed by F (future), G (global), U

(until), R (release), W (week until) or X (next).

3

Semantics of CTL

M � s � � f – means that formula f is true in state s. M is often omitted since we

always talk about the same model.

E.g. s
� ���

x
�

1 � ���
n : nat � y � 2 	 n

means that in state s, variable x has value 1 and variable y has an even natural

value.

π = π0 π1 π2
�
�
 is a path

π0 is the current state (root)

πi � 1 is πi’s successor state. Then,

AX f =
 π � π1 � � f
EX f =

� π � π1 � � f
AG f =
 π ��
 i � πi � � f
EG f =

� π ��
 i � πi � � f
AF f =
 π � � i � πi � � f
EF f =

� π � � i � πi � � f

6

Formulas, Subformulas and Parse Trees

Draw parse tree for E[A[p U q] U r]

Draw parse tree for AG(p � A[p U (� p
�

A[� p U q])])

Definition: A subformula of a CTL formula φ is any formula ψ whose parse tree is

a subtree of φ’s parse tree.
5

Examples

A process is enabled infinitely often on every computation path.

A process will eventually be deadlocked.

It is always possible to get to a restart state.

An elevator does not change direction when it has passengers wishing to go in

the same direction.

An elevator can remain idle on the third floor with its doors closed

Which situation does this signify: AG(p � AF(s
�

AX(AF(t)))

8

Semantics (Cont’d)

A[f U g] =
 π � � i � πi � � g
�
 j � 0 � j � i � π j � � f

E[f U g] =
� π � � i � πi � � g

�
 i � 0 � j � i � π j � � f
A[f R g] =
 π �
 j � 0 � �
 i � j � πi �� � f � � π j � � g
E[f R g] =

� π �
 j � 0 � �
 i � j � πi �� � f � � π j � � g

Note: the i in
�
i � could be 0.

7

Adequate Sets

Definition: A set of connectives is adequate if all connectives can be expressed

using it.

Example: � � � ���
is adequate for propositional logic

Theorem: The set of operators � , � and
�

together with EX, EG, and EU are

adequate for CTL.

Other adequate sets: � AU, EU, EX
�
, � AF, EU, EX

�

Theorem: Every adequate set has to include EU.

10

Relationship between CTL operators

� AX f = EX � f
� AF f = EG � f
� EF f = AG � f

AF f = A[� U f]

EF f = E[� U f]

A[� U f] = E[� U f] = f

A[f U g] = � E[� g U (� f � � g)] � � EG � g

A[f W g] = � E[� g U (� f � � g)]

E[f U g] = � A[� g W (� f � � g)]

AG f = f � AX AG f

EG f = f � EX EG f

AF f = f � AX AF f

EF f = f � EX EF f

A[f U g] = g �	� f � AX A[f U g])

E[f U g] = g �	� f � EX E[f U g])
� E[f U g] = A[� f R � g]
� A[f U g] = E[� f R � g]

9

Property Types: Safety
� Safety: nothing bad ever happens

– Invariants: ”x is always less than 10”

– Deadlock freedom: ”the system never reaches a state where no moves are

possible”

– Mutual exclusion: ”the system never reaches a state where two processes

are in the critical section”

As soon as you see the ”bad thing”, you know the property is false (so they

are falsified by a finite prefix of an execution trace)

12

Sublanguages of CTL

ACTL - CTL with only universal path quantifiers (AX, AF, AG, AU, AR)

ECTL - CTL with only existential path quantifiers (EX, EF, EG, EU, ER)

Positive normal form(pnf) – negations applied only to atomic propositions. Then,

need
�

, � , and both U and R operators.

Exercise: convert � (AG A[p U � q]) to pnf:

11

Using CTL

Mutual Exclusion Problem. Aimed to ensure that two processes do not have

access to some shared resource (database, file on disk, etc.) at the same time.

Identify critical sections and ensure that at most one process is in that section.

Interested in the following properties:

(Type?): The protocol allows only one process to be in its critical section at any

time.

Formalization:

Why is this not enough?

(Type?): Whenever any process wants to enter its critical section, it will eventually

be permitted to do so.

Formalization:

(Type?): A process can always request to enter its critical section.

Formalization:

14

Liveness Properties
� Liveness: something good will eventually happen

– Termination: ”the system eventually terminates”

– Response: ”if action X occurs then eventually action Y will occur”

� Need to keep looking for the ”good thing” forever

� Liveness can only be falsified by an infinite-suffix of an execution trace

– Practically, a counter-example here is a set of states starting from initial

one and going through a loop where you get stuck and never reach the

”good thing”.

13

Second modeling attempt

Works!

s0 n1 n2

s1

s2

s4

s3

t1 n2

c1 n2

c1 t2

s5

n1 c2

s7

n1 t2

t1 c2

t1 t2t1 t2

s9 s6

The problem is a bit simplified (cannot stay in critical forever!)

What happens if we do want to model this?

16

The first modeling attempt

n1 n2

t1 n2

c1 n2 t1 t2

n1 t2

n1 c2

t1 c2c1 t2

s0

s1

s2

s3

s4

s5

s6

s7

Does it work?

15

Formal Definition of Fairness

Let C
� � ψ1 � ψ2 �
�

 � ψn

�
be a set of n fairness constraints. A computation path

s0 � s1 �

�
 is fair w.r.t. C if for each i there are infinitely many j s.t. s j
� �

ψi, that is,

each ψi is true infinitely often along the path.

We use AC and EC for the operators A and E restricted to fair paths.

ECU, ECG and ECX form an adequate set.

ECG � holds in a state if it is the beginning of a fair path.

Also, a path is fair iff any suffix of it is fair. Finally,

EC � φUψ � � E � φU
�
ψ �

ECG � ���

ECXφ
�

EX
�
φ �

ECG � �
Can fairness be expressed in CTL?

18

Notion of Fairness

Fairness: a path π is fair w.r.t. property ψ if ψ is true on π infinitely often.

We may want to evaluate A and E constraints only over those paths.

Examples: each process will run infinitely often; a process can stay in a critical

section arbitrarily long, as long as it eventually leaves.

Two types of fairness: simple

Property φ is true infinitely often.

and compound

If φ is true infinitely often, then ψ is also true infinitely often.

In this course we will deal only with simple fairness.

17

Where Do Models Come from?

Example:

x, y: {0, 1}

x := (x + y) mod 2

initial state: x = 1, y = 1

Description:

S0
�
x � y ��� x

�
1

�
y
�

1
R
�
x � y � x � � y � ��� x

� ���
x
�

y � mod 2
�

y
� �

y

Pictorially:

Which states are reachable?
20

Kripke Structures (Our Model)

Formula is defined with respect to a model M
���

AP� S � s0 � R � I � , where

AP is a set of atomic propositions

S is a set of states

s0 � S is the start state

R is a transition relation (every state has a successor)

I is a set of interpretations specifying which propositions are true in each state.

Example:

s1

s3

s0

s2

s4

s1

s3

s0

s2

s4

sd

How to deal with deadlock states?
19

Modeling systems (Cont’d)
� Communication: shared vars, message passing, handshaking

� Sequential statements: atomic (assignment, skip, wait, lock, unlock),

composition (P1; P2), condition (if b then P1 else P2), loop (while b do P)

� Concurrency: cobegin P1
���

P2
���

...
���

Pn coend

Model state of each process using variable pc.

22

Models of Concurrency

Maximum parallelism (synchronous) – ”simultaneous execution of atomic actions

in all system modules capable of performing an operation.”

Interleaving (asynchronous) – ”concurrent execution of modules is represented by

interleaving of their atomic actions”.

Example:

A

COMB: AD
AE
BD
...

C

B D E

MP: AD
BE
CD
BE
AD
...

INT: A
D
B
C
E
B
A
B
D
...

21

Translation

pc
�

m
�

pc
�
0

�
l0

�
pc
�
1

�
l1

�
pc
� �

�
� pc0

�
l
�
0

�
pc1

�
l
�
1

�
pc
� �

m
� �

pc
�
0

�
�

�
pc
�
1

�
�

� C
�
l0 � P0 � l �0 � �

same
�
pc � pc1 �

� C
�
l1 � P1 � l �1 � �

same
�
pc � pc0 �

pci
�

li
�

pc
�
i

�
NCi

�
True

�
same

�
turn �

� pci
�

NCi
�

pc
�
i

�
CRi

�
turn

�
i

�
same

�
turn �

� pci
�

CRi
�

pc
�
i

�
li

�
turn

� ���
i
�

1 � mod 2

� pci
�

NCi
�

pc
�
i

�
NCi

�
turn �� i

�
same

�
turn �

� pci
�

li
�

pc
�
i

�
l
�
i

�
False

�
same

�
turn �

24

Example

P0::l0: while True do

NC0: wait (turn=0);

CR0: turn := 1;

end while

l0’

P1:: l1: while True do

NC1: wait (turn=1);

CR1: turn := 0;

end while

l1’

Variables:

pc : � m � m � � � �
pci : � li � l �i � NCi � CRi � � �
turn: shared, initial value = ???

Initial:

S0
�
V � PC � � pc

�
m

�
pc0

�
� �

pc1
�

�
23

LTL
� If p is an atomic propositional formula, it is a formula in LTL.
� If p and q are LTL formulas, so are p

�
q, p � q, � p, p U q, p W q, p R q, � p

(next), � p(eventually),
�

p (always)

Interpretation: over computations π : ω � 2AP which assigns truth values to the

elements of AP at each time instant:

� π
� � � f iff π1 � � f

� π
� �

f U g iff
�

i � πi � � f
�
 j � 0 � j � i � π j � � f

� π
� � �

f iff
 i � πi � � f
� π

� �
� f iff

�
i � πi � � f

Here, π0 – initial state of the system

Two other operators:
� p W q =

�
p �

�
p U q � (p unless q, p waiting for q, p week-until q)

� p R q = �
�

� p U � q � (release)

26

Picture

Scan in picture from p. 26

25

Expressing Properties in LTL

Good for safety (
� �) and liveness (�) properties.

� p � � q – If p holds in initial state s0, then q holds at s j for some j � 0.
� �

� q – Each path contains infinitely many q’s.
� �

�
q – At most a finite number of states in each path satisfy � q. Property q

eventually stabilizes.
� � �

p U q � – always p remains true at least until q becomes true.
� �

�
�
�
p U q � � – never is there a point in the execution such that p remains true

at least until q becomes true.

Express: it is not true that p is true at least until the point s.t. for all paths q is true

at least until r is true

28

Some Temporal Properties

� � p
� � � p

� p
�

True U p
�

p
�

� � � p

p W q
� �

p �
�
p U q �

p R q
�

�
�

� p U � q �
�

p
�

p
� � �

p

� p
�

p � � � p

p U q
�

q �
�
p

� � � p U q � �
A property ϕ holds in a model if it holds on every path emanating from the initial

state.

27

Comparison of LTL and CTL

Syntactically: LTL simpler than CTL

Semantically: incomparable!

� CTL formula EF p is not expressible in LTL

� LTL formula
�

� p not expressible in CTL.

Question: What about AG AF p?

Model: self-loop on p, transition on � p to a state with a self-loop on p.

Most useful formulas expressible in both:
� Invariance:

�
p and AG p

� Liveness (response):
� �

p � � q � and AG(p � AFq).

LTL and CTL coincide if the model has only one path!

30

Fairness properties

Fairness (strong): ”if something is attempted or requested infinitely often, then it

will be successful/allocated infinitely often”

Example:

 p � processes � �
� ready

�
p � � �

� run
�
p �

Different forms of fairness:
� (

�
� attempt � � � �

� succeed �
� (

�
� attempt � � �

� succeed �
� (

�
attempt � � � �

� succeed �
� (

�
attempt � � �

� succeed �

29

Manna & Pnueli Classification

Canonical forms:

� Safety:
�

p

� Guarantee: � p

� Obligation:
�

q � � p

� Response:
�

� p

� Persistence: �
�

p

� Reactivity:
�

� p � �
�

q

Source: Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent

Systems: Specification. Springer-Verlag, 1992

A preferred classification: based on the semantics rather than syntax of

properties so that non-experts can use it!

32

Property Patterns: Motivations

1. Temporal properties are not always easy to write or read.
� Ex:

� � �
Q

� � R
�

� R � � �
P � �

� R U
�
S

� � R � � U R �
� Meaning: P triggers S between Q (e.g., end of system initialization) and R

(start of system shutdown)

2. Most useful properties: specifiable both in CTL and LTL.
� Ex: Action Q must respond to action P:

– CTL: AG(P � AF Q)

– LTL:
� �

P � � Q �
� Ex: Action S precedes P after Q

– CTL: A[� Q U (Q
�

A[� P U S]))

– LTL:
� � Q � �

�
Q

� �
� P U S � �

31

Pattern Hierarchy (Cont’d)

Property Patterns

Absence Bounded
Existence

Response
Response

Universality

Precedence
Precedence
Chain Chain

Occurrence Order

Existence

� Order Patterns - constrain the order of states/events

– Precedence: A state/event P must always be preceded by a state/event Q
within a scope

– Response: A state/event P must always be followed by a state/event Q
with a scope

– Chain precedence: A sequence of states/events P1, ..., Pn must always be

preceded by a sequence of states/events Q1 �
�

 � Qm with a scope

– Chain Response: A sequence of states/events P1, ..., Pn must always be

followed by a sequence of states/events Q1, ..., Qm within a scope

34

Pattern Hierarchy

http://www.cis.ksu.edu/santos/spec-patterns

Developed by Dwyer, Avrunin, Corbett

Goal: specifying and reusing property specifications for model-checking

Property Patterns

Absence Bounded
Existence

Response
Response

Universality

Precedence
Precedence
Chain Chain

Occurrence Order

Existence

� Occurrence Patterns - require states/events to occur or not

– Absence: A given state/event does not occur within a given scope

– Existence: A given state/event must occur within a given scope

– Bounded existence: A given state/event must occur k times (at least k
times, at most k times) within a given scope

– Universality: A given state/event must occur throughout a given scope

33

Using the System

Example: Between an enqueue() and empty() there must be a

dequeue()

Propositions: enqueue(), empty(), dequeue()

Pattern and Scope: ”existence” pattern with ”between” scope

Property: dequeue() exists between enqueue() and empty()

LTL:
�

((enqueue()
� � empty()) � (� empty() W (dequeue()

�

� empty())))

CTL: AG(enqueue()
� � empty() � A[� empty() W (dequeue()

� � empty())])

Homework: more usage of patterns, some subtle points (open/closed intervals,

between vs. after-until)

36

Pattern Scopes

Q R Q Q R Q

After Q Until R

State/Event
Sequence

Before R

Global

Between Q and R

After Q

35

food for the slide eater

38

CTL*: Unifying CTL and LTL
� Path quantifiers: A and E

� Temporal quantifiers: X (�), F (�), G (
�

), U, R

� State formulas:

1. p � AP

2. If f and g are state formulas, then � f , f � g, f
�

g are state formulas.

3. If f is a path formula then E f and A f are state formulas

� Path formulas:

1. every state formula

2. If f and g are path formulas, then � f , f � g, f
�

g, X f , G f , F f , f U g,

f R g are path formulas.

CTL* – the set of all state formulas.

� Examples: A(FG p), AG p, A(FG p) � AG(EF p)

� Formal semantics: see the book, p. 29.

� How to think of LTL as a subset of CTL*?
37

