CTL Model checking

- **Assumptions:**
 1. finite number of processes, each having a finite number of finite-valued variables.
 2. finite length of CTL formula

- **Problem:** Determine whether formula f_0 is true in a finite structure M.

- **Algorithm overview:**
 1. $f_0 = \text{TRANSLATE}(f_0)$ (in terms of AF, EU, EX, \land, \lor, \bot)
 2. Label the states of M with the subformulas of f_0 that are satisfied there and work outwards towards f_0.
 - Ex: $\text{AF}(a \land \text{E}(b \lor c))$
 3. If starting state s_0 is labeled with f_0, then f_0 is holds on M, i.e.
 $$ (s_0 \in \{s \mid M, s \models f_0\}) \Rightarrow (M \models f_0) $$

Model-Checking

- Idea of model-checking: establish that the system is a model of a formula (doing a search).

- CTL Model Checking

- SMV input language and its semantics

- SMV examples

- Model checking with fairness

- Binary Decision Diagrams.

- Symbolic model-checking and fixpoints.
Labeling Algorithm (Cont’d)

- AF ψ_1:
 - If any state s is labeled with ψ_1, label it with AF ψ_1.
 - Repeat: label any state with AF ψ_1 if all successor states are labeled with AF ψ_1, until there is no change.

Ex:

\[
\begin{array}{c}
\text{AF}\psi_1 \\
\text{AF}\psi_1 \\
\text{AF}\psi_1 \\
\end{array}
\Rightarrow
\begin{array}{c}
\text{AF}\psi_1 \\
\text{AF}\psi_1 \\
\text{AF}\psi_1 \\
\end{array}
\]

Labeling Algorithm

Suppose ψ is a subformula of f and states satisfying all the immediate subformulas of ψ have already been labeled. We want to determine which states to label with ψ. If ψ is:

- \bot: then no states are labeled with \bot.
- p (prop. formula): label s with p if $p \in I(s)$.
- $\psi_1 \land \psi_2$: label s with $\psi_1 \land \psi_2$ if s is already labeled both with ψ_1 and with ψ_2.
- $\neg \psi_1$: label s with $\neg \psi_1$ if s is not already labeled with ψ_1.
- EX ψ_1: label any state with EX ψ_1 if one of its successors is labeled with ψ_1.

Handing $EG\psi_1$ directly

- $EG\psi_1$:
 - Label all the states with $EG\psi_1$.
 - If any state s is not labeled with ψ_1, delete the label $EG\psi_1$.
 - Repeat: delete the label $EG\psi_1$ from any state if none of its successors is labeled with $EG\psi_1$; until there is no change.

Labeling Algorithm (Cont'd)

- $E[\psi_1 \cup \psi_2]$:
 - If any state s is labeled with ψ_2, label it with $E[\psi_1 \cup \psi_2]$.
 - Repeat: label any state with $E[\psi_1 \cup \psi_2]$ if it is labeled with ψ_1 and at least one of its successors is labeled with $E[\psi_1 \cup \psi_2]$, until there is no change.

Ex:

Output states labeled with f.

Complexity: $O(|f| \times S \times (S + |R|))$ (linear in the size of the formula and quadratic in the size of the model).
Even Better Handling of EG

- restrict the graph to states satisfying ψ_1, i.e., delete all other states and their transitions;
- find the maximal strongly connected components (SCCs); these are maximal regions of the state space in which every state is linked with every other one in that region.
- use breadth-first searching on the restricted graph to find any state that can reach an SCC.

 Complexity: $O(|f| \times (S + |R|))$ (linear in size of model and size of formula).
Example

Verifying $E[\neg c_2 U c_1]$ on the mutual exclusion example.

CTL Model-Checking

- Michael Browne, CMU, 1989.
- Usually for verifying concurrent *synchronous* systems (hardware, SCR specs...)
- Specify correctness criteria: safety, liveness...
- Instead of keeping track of labels for each state, keep track of a set of states in which a certain formula holds.
Generating Counterexamples

Only works for universal properties
- $AX p$
- $AG(p \Rightarrow AF q)$
- etc.

Step 1: negate the property and express it using $EX, EU, \text{ and } EG$
- e.g. $AG(p \Rightarrow AF q)$ becomes $EF(p \land EG\neg q)$

Step 2:
- For $EX p$ – find a successor state labeled with p
- For $EG p$ – follow successors labeled with $EG p$ until a loop is found
- For $E [pU q]$ – remove all states not labeled with p or q, then look for path to q

Counterexamples and Witnesses

- Counterexamples
 - explains why a property is false
 - typically a violating path for universal properties
 - how to explain that something does not exist?

- Witnesses
 - explains why a property is true
 - typically a satisfying path for existential properties
 - how to explain that something holds on all paths?
Counterexamples and Witnesses (Cont’d)

- What about properties that combine universal and existential operators?
 - Are they really different?
 - a counterexample for φ is a witness to its negation
 - a counterexample for a universal property is a witness to some existential property
 - e.g. AGp and $EF\neg p$
 - One alternative
 - build a proof instead of a counterexample
 - works for all properties (but proofs can be big)
 - see:

Are counterexamples always linear?

- SMV only supports linear counterexamples
- But what about $(AXp) \lor (AXq)$?
- Counterexample for $AF(\neg y \land AX\neg x)$

State Explosion

Imagine that you a Kripke structure of size n. What happens if we add another boolean variable to our model?

How to deal with this problem?

- Symbolic model checking with efficient data structures (BDDs). Don’t need to represent and manipulate the entire model. Model-checker SMV [McMillan, 1993].
- Abstraction: we abstract away variables in the model which are not relevant to the formula being checked (see later in the course).
- Partial order reduction: for asynchronous systems, several interleavings of component traces may be equivalent as far as satisfaction of the formula to be checked is concerned.
- Composition: break the verification problem down into several simpler verification problems.

SMV

Symbolic model verifier – a model-checker that uses symbolic model checking algorithm. The language for describing the model is a simple parallel assignment.

- Can have synchronous or asynchronous parallelism.
- Model environment non-deterministically.
- Also use non-determinism for systems which are not fully implemented or are abstract models of complex systems.
First SMV Example

MODULE main
VAR
 request : boolean;
 state : {ready, busy};
ASSIGN
 init(state) := ready;
 next(state) := case
 request : busy;
 1: {ready, busy}
 esac;
SPEC
 AG(request -> AF state = busy)

Note that request never receives an assignment – this models input.
Another Example

MODULE main
VAR
 bit0 : counter_cell(1);
 bit1 : counter_cell(bit0.carry_out);
 bit2 : counter_cell(bit1.carry_out);
SPEC
 AG AF bit2.carry_out
SPEC AG(!bit2.carry_out)

MODULE counter_cell(carry_in)
VAR
 value : boolean;
ASSIGN
 init(value) := 0;
 next(value) := (value + carry_in) mod 2;
DEFINE
 carry_out := value & carry_in;

More About the Language

- Program may consist of several modules, but one has to be called main.
- Each variable is a state machine, described by init and next.
- Variables are passed into modules by reference.
- Comment – anything starting with -- and ending with a newline.
- No loop construct.
- Datatypes: boolean, enumerated types, user-defined modules, arrays, integer subranges.

VAR
 state : {on, off};
 state1 : array 2..5 of {on, off};
 state2 : computeState(1);
 state3 : compute;
 state4 : array 2..5 of state; <- error
 state5 : array on..off of boolean; <- error
Modeling Interleaving

Keyword process for modeling interleaving. The program executes a step by non-deterministically choosing a process, then executing all of its assignment statements in parallel.

MODULE main
VAR
 gate1 : process inverter(gate3.output);
 gate2 : process inverter(gate1.output);
 gate3 : process inverter(gate2.output);
SPEC
 (AG AF gate1.output) & (AG AF !gate1.output)

MODULE inverter(input)
VAR
 output : boolean;
ASSIGN
 init(output) := 0;
 next(output) := !input;

Notation Used

• $a.b$ – component b of module a.
• DEFINE – same as ASSIGN but
 - cannot be given values non-deterministically
 - is dynamically typed
 - does not increase the size of state space.
 - like #define in C
Fixing the Example

MODULE main
VAR
 gate1 : process inverter(gate3.output);
 gate2 : process inverter(gate1.output);
 gate3 : process inverter(gate2.output);
SPEC
 (AG AF gate1.output) & (AG AF !gate1.output)

MODULE inverter(input)
VAR
 output : boolean;
ASSIGN
 init(output) := 0;
 next(output) := !input;
FAIRNESS
 running
 -- specification AG AF gate1.output .. is true

Output of Running SMV

-- specification AG AF gate1.output & ... is false
-- as demonstrated by the following execution sequence
-- loop starts here --
state 1.1:
gate1.output = 0
gate2.output = 0
gate3.output = 0
[stuttering]

state 1.2:
[stuttering]

resources used:
user time: 0.11 s, system time: 0.16 s
BDD nodes allocated: 303
Bytes allocated: 1245184
BDD nodes representing transition relation: 32 + 1

What went wrong? We never specified that each process has to execute infinitely often – a fairness constraint.
Advantages of Interleaving Model

- Allows for a particularly efficient representation of the transition relation:

 The set of states reachable by one step of the program is the union of the sets reachable by each individual process. So, do not need reachability graph.

- But sometimes have increased complexity in representing the set of states reachable in \(n \) steps (can have up to \(s^n \) possibilities).

Mutual Exclusion Again

\(st \) – status of the process (critical section, or not, or trying)
\(other\text{-}st \) – status of the other process
\(turn \) – ensures that they take turns

MODULE main

VAR
 pr1 : process prc(pr2.st, turn, 0);
 pr2 : process prc(pr1.st, turn, 1);
 turn : boolean;
ASSIGN
 init(turn) := 0;
--safety
SPEC AG!((pr1.st = c) \& (pr2.st = c))
--liveness
SPEC AG((pr1.st = t) \rightarrow AF (pr1.st = c))
SPEC AG((pr2.st = t) \rightarrow AF (pr2.st = c))
--no strict sequencing
SPEC EF(pr1.st = c \& E[pr1.st = c U

(!pr1.st = c \& E[! pr2.st = c U pr1.st = c])]))
MODULE prc(other-st, turn, myturn)

VAR
 st : {n, t, c};

ASSIGN
 init(st) := n;
 next(st) := case
 (st = n) : {t, n};
 (st = t) & (other-st = n) : c;
 (st = t) & (other-st = t) & (turn = myturn) : c;
 (st = c) : {c, n};
 1 : st;
 esac;

 next(turn) := case
 turn = myturn & st = c : !turn;
 1 : turn;
 esac;

FAIRNESS running
FAIRNESS !(st = c)
The labels in the slide above denote the process which can make the move.

Variable \texttt{turn} was used to differentiate between states \(s_3\) and \(s_9\), so we now distinguish between \(\texttt{ct0}\) and \(\texttt{ct1}\). But transitions out of them are the same.

Removed the assumption that the system moves on each tick of the clock. So, the process can get stuck, and thus the fairness constraint.

In general, what is the difference between the single fairness constraint \(\psi_1 \land \psi_2 \land \ldots \land \psi_n\) and \(n\) fairness constraints \(\psi_1, \psi_2, \text{etc.}\), written on separate lines under \texttt{FAIRNESS}?
Guidelines for Modeling with SMV

- Identify inputs from the environment.
- Make sure that the environment is non-deterministic. All constraints on the environment should be carefully justified.
- Determine the states of the system and its outputs. Model them in terms of the environmental inputs.
- Specify fairness criteria, if any. Justify each criterium. Remember that you can over-specify the system. Fairness may not be implementable, and in fact may result in no behaviors.
- Specify correctness properties (in CTL or LTL). Comment each property in English.
- Ensure that desired properties are not satisfied vacuously.

Algorithm for $\text{ECG} \phi$

- Restrict the graph to states satisfying ϕ; of the resulting graph, we want to know from which states there is a fair path.
- Find the maximal strongly connected components (SCCs) of the restricted graph;
- Remove an SCC if, for some ψ_i, it does not contain a state satisfying ψ_i. The resulting SCCs are the fair SCCs. Any state of the restricted graph that can reach one has a fair path from it.
- Use breadth-first search backward to find the states on the restricted graph that can reach a fair SCC.

Complexity: $O(n \times |f| \times (S + |R|))$
(still linear in the size of the model and formula).
Vacuity in Temporal Logic

- Let $\varphi[\psi]$ be a formula with subformula ψ
- ψ affects $\varphi[\psi]$ if replacing ψ with another subformula changes the value of φ
- $\varphi[\psi]$ is vacuous in ψ if ψ does not affect φ
- φ is vacuous if there exists a subformula ψ such that φ is vacuous in ψ
- To check if $\varphi[\psi]$ is vacuous in an occurrence of ψ
 - check $\varphi[\psi \leftarrow \text{true}]$
 - check $\varphi[\psi \leftarrow \text{false}]$
 - φ is vacuous if both results are the same

Further reading