Propositional μ -Calculus

Model: M = (S, T, L), where

- S nonempty set of states;
- T a set of transitions, such that $\forall a \in T \cdot a \subseteq S \times S$
- $L: S \rightarrow S \rightarrow s^{AP}$ gives the set of atomic propositions true in a state
- $VAR = \{Q, Q_1, Q_2, ...\}$ set of *relational variables*, where each $Q \in VAR$

can be assigned a subset of \boldsymbol{S}

 μ -calculus formulae:

- If $p \in AP$, then p is a formula.
- A relational variable is a formula.
- If f and g are formulas, then $\neg f$, $f \land g$, $f \lor g$ are formulas.
- If f is a formula, and $a \in T$, then [a]f and < a > f are formulas.
- If $Q \in VAR$ and f is a formula, then $\mu Q.f$ and $\nu Q.f$ are formulas, provided

that f is syntactically monotone in Q, i.e., all occurrences of Q within f fall under an even number of negations in f

115

μ -Calculus, Cont'd

• Variables: free or bound (by a fixpoint operator)

E.g., $f(Q_1), \mu Q_1.f(Q_1)$

• [a]f - "f holds in all states reachable in one step by making an *a*-transition"

• < a > f - "f holds in at least one state reachable in one step by making an a transition"

- μ , ν least and greatest fixpoints
- False empty set of states
- True all states S
- $s \stackrel{a}{\rightarrow} s'$ means $(s, s') \in a$
- f set of states where f is true ([[f]]_Me, where M transition system,
- $e: VAR \rightarrow 2^S$ is an *environment*)
- $e[Q \leftarrow W]$ new environment that is same as e except that
- $e[Q \leftarrow W](Q) = W$

Semantics

- $[[p]]_M e = \{s \mid p \in L(s)\}$ • $[[Q]]_M e = e(Q)$ • $[[\neg f]]_M e = S - [[f]]_M e$
- $[[f \land g]]_M e = [[f]]_M e \cap [[g]]_M e$
- $[[f \lor g]]_M e = [[f]]_M e \cup [[g]]_M e$
- $[[\langle a \rangle f]]_M e = \{s \mid \exists t \cdot [s \xrightarrow{a} t \land t \in [[f]]_M e]\}$
- $[[[a]f]]_{Me} = \{s \mid \forall t \cdot [s \xrightarrow{a} t \Rightarrow t \in [[f]]_{Me}]\}$
- $[[\mu Q.f]]_M e$ is the least fixpoint of the predicate transformer $\tau : 2^S \to 2^S$ defined by $\tau(W) = [[f]]_M e[Q \leftarrow W]$

• $[[vQ.f]]_M e$ is the greatest fixpoint of the predicate transformer $\tau : 2^S \to 2^S$ defined by $\tau(W) = [[f]]_M e[Q \leftarrow W]$

Relationship between μ -calculus operators

$$\neg [a]f \equiv \langle a \rangle \neg f$$

$$\neg \langle a \rangle f \equiv [a] \neg f$$

$$\neg \mu Q.f(Q) \equiv \nu Q. \neg f(\neg Q)$$

$$\neg \nu Q.f(Q) \equiv \mu Q. \neg f(\neg Q)$$

How do we ensure existence of fixpoints?

Alternation Depth

Def: Alternation depth of a formula is the number of alternations between μ -formulas and V-formulas along chains of nested fixpoint subformulas. The definition is inductive:

If φ is not a fixpoint-formula then,

$$ad(\mathbf{\phi}) = max\{ad(\mathbf{\psi})|\mathbf{\psi} ext{ is a fixpoint-subformula of } \mathbf{\phi}\}$$

• else if $\phi = \mu X \cdot \psi$, then

$$ad(\varphi) = max\{1, ad(\psi), 1 + max\{ad(\chi) \mid \chi \text{ is open } \nu\text{-subformula of } \varphi\}\}$$

• else if $\phi = vX.\psi$, then

 $ad(\varphi) = max\{1, ad(\psi), 1 + max\{ad(\chi) \mid \chi \text{ is open } \mu\text{-subformula of } \varphi\}\}$

A μ -calculus formula φ is said to be *alternation-free* if $ad(\varphi) \leq 1$. Alternation-free μ -calculus – a language of such φ s.

Examples

$$\begin{array}{lll} ad(\mu X.p \lor < a > X) &= 1\\ ad(\nu X.((\nu Y.p \land [a]Y) \lor < a > X)) &= 1\\ ad(\nu X.(p \land < a > \nu Y.(q \land [a]Y \lor < a > X)) &= 1\\ ad(\nu X.\mu Y.((p \land X) \lor < a > Y)) &= 2 \end{array}$$

Note that the *nesting depth* (longest chain of fixpoint-subformulas of ϕ that are nested in one another) of the first formula is 1, but for all the rest, it is 2.

Note: negating (and moving negation to atom. props) a μ -calculus formula does not change its alternation depth.

Also note that fair CTL has alternation depth 2:

• Fair EG (with fairness condition *h*)

$$E_C G f = \nu Z \cdot f \wedge EX(E[f U (f \wedge Z \wedge h)])$$

= $\nu Z \cdot (f \wedge \langle a \rangle (\mu Y \cdot (f \wedge Z \wedge h) \lor (f \wedge \langle a \rangle Y)))$

Model-Checking Algorithm

- 1. function eval (f, e)
- 2. if f = p then return $\{s \mid p \in L(s)\}$;
- 3. if $f = g_1 \land g_2$ then
- 4. return $eval(g_1, e) \cap eval(g_2, e);$
- 5. if $f = g_1 \lor g_2$ then
- 6. return $eval(g_1, e) \cup eval(g_2, e)$;
- 7. if $f = \langle a \rangle g$ then
- 8. return $\{s \mid \exists t \cdot [s \xrightarrow{a} t \text{ and } t \in eval(g, e)]\};$
- 9. if f = [a]g then
- 10. return $\{s \mid \forall t \cdot [s \xrightarrow{a} t \text{ implies } t \in eval(g, e)]\};$

121

Model-Checking Algorithm (Cont'd)

- 11. if $f=\mu Q.g(Q)$ then
- 12. *Q_{val}* := *False*;
- 13. repeat

14.
$$Q_{old} := Q_{val};$$

- 15. $Q_{val} := eval(g, e[Q \leftarrow Q_{val}]);$
- 16. until $Q_{val} = Q_{old}$;
- 17. return Q_{val} ;
- 18. if f = vQ.g(Q) then
- 19. $Q_{val} := True;$
- 20. repeat
- 21. $Q_{old} := Q_{val};$
- 22. $Q_{val} := eval(g, e[Q \leftarrow Q_{val}]);$
- 23. until $Q_{val} = Q_{old}$;
- 24. return Q_{val} ;
- 25. end function

Complexity

1. Each loop executes at most n + 1 times (n = |S|)

2. Each iteration does a recursive call to evaluate the body of fixpoint with a different value for the fixpoint variable

3. It can also lead to recursive calls...

Complexity: $O(n^k)$ iterations of the fixpoint , where k – maximum nesting depth of fixpoint operators in the formula.

Each iteration: O(|M| imes |f|), where

 $|M| = |S| + \sum_{a \in T} |a|$

Overall complexity: $O(|M| \times |f| \times n^k)$

123

A Better Algorithm [Emerson, Lai]

Goal: decrease the number of fixpoint iterations to $O(|f| \times n)^d)$, where d – alternation depth of f.

Idea: exploit sequences of fixpoints that have the same type to reduce the complexity of the algorithm:

• It is unnecessary to reinitialize computations of inner fixpoints with *False* or *True*!

• Instead, to compute a least fixpoint, it is enough to start iterating with any approximation known to be below the fixpoint. Similar, for greatest fixpoint.

Emerson-Lai Algorithm

- 11. if $f = \mu Q_i g(Q_i)$ then
- 12. for all top-level greatest fixpoint subformulas $vQ_i.g'(Q_i)$ of g
- 13. do A[j] := True;
- 14. repeat
- 15. $Q_{old} := A[i];$
- 16. A[*i*] := eval($g, e[Q_i \leftarrow A[i]]$);
- 17. until $A[i] = Q_{old};$
- 18. return A[*i*];

Emerson-Lai Cont'd

- 19. if $f = vQ_i g(Q_i)$ then
- 20. for all top-level least fixpoint subformulas

$$\mu Q_j.g'(Q_j)$$
 of g

- 21. do A[*j*] := *False*;
- 22. repeat
- 23. $Q_{old} := A[i];$
- 24. $A[i] := eval(g, e[Q_i \leftarrow A[i]]);$
- 25. until $A[i] = Q_{old};$
- 26. return A[*i*];
- 27. end function

Complexity

1. $\left|f\right|$ – upper bound on the number of consecutive fixpoints of the same type in f

2. Number of iterations for each such sequences is $O(|f| \times n)$ instead of $n^{|f|}$ as before

3. Computation is reinitialized at the boundary between two sequences of different types

Overall number of iterations: $O((|f| \times n)^d)$

Moreover, complexity of model-checking μ -calculus is in NP \cap co-NP (see book)

[Sterling'03] Complexity of model-checking µ-calculus is in P!

127

μ -calculus and CTL

Translation of CTL into μ -calculus (*a* is the only transition):

$$Tr(p) = p$$

$$Tr(\neg f) = \neg Tr(f)$$

$$Tr(f \land g) = Tr(f) \land Tr(g)$$

$$Tr(EXf) = \langle a \rangle Tr(f)$$

$$Tr(E[fUg]) = \mu Y.(Tr(g) \lor (Tr(f) \land \langle a \rangle Y))$$

$$Tr(EGf) = \lor Y.(Tr(f) \land \langle a \rangle Y)$$

Any resulting μ -calculus formula is closed; so, omit environment *e* from translation.

μ -calculus and CTL, Cont'd

Example: Tr(EGE[pUq])) =vY.($\mu Z.(q \lor (p \land \langle a \rangle Z)) \land \langle a \rangle Y)$

Theorem: Let M = (S, T, L) be a Kripke structure. Assume that the transition a in the translation algorithm Tr is the relation T of the Kripke structure. Let f be a CTL formula. Then, for all $s \in S$,

$$M, s \models f \Leftrightarrow s \in [[Tr(f)]]_M$$

129

food for slide eater