Propositional μ-Calculus

Model: $M = (S, T, L)$, where
- S - nonempty set of states;
- T - a set of transitions, such that $\forall a \in T \cdot a \subseteq S \times S$
- $L : S \rightarrow S^{AP}$ gives the set of atomic propositions true in a state
- $VAR = \{Q, Q_1, Q_2, \ldots\}$ - set of relational variables, where each $Q \in VAR$ can be assigned a subset of S

μ-calculus formulae:
- If $p \in AP$, then p is a formula.
- A relational variable is a formula.
- If f and g are formulas, then $\neg f$, $f \land g$, $f \lor g$ are formulas.
- If f is a formula, and $a \in T$, then $[a]f$ and $<a>f$ are formulas.
- If $Q \in VAR$ and f is a formula, then $\mu Q.f$ and $\nu Q.f$ are formulas, provided that f is syntactically monotone in Q, i.e., all occurrences of Q within f fall under an even number of negations in f.

μ-Calculus, Cont’d

- Variables: free or bound (by a fixpoint operator)
 E.g., $f(Q_1), \mu Q_1.f(Q_1)$
- $[a]f$ - "f holds in all states reachable in one step by making an a-transition"
- $<a>f$ - "f holds in at least one state reachable in one step by making an a transition"
- μ, ν - least and greatest fixpoints
- False - empty set of states
- True - all states S
- $s \xrightarrow{a} s'$ means $(s, s') \in a$
- f - set of states where f is true ($[[f]]_M e$, where M - transition system, $e : VAR \rightarrow 2^S$ is an environment)
- $e[Q \leftarrow W]$ - new environment that is same as e except that $e[Q \leftarrow W](Q) = W$
Semantics

- $[[p]]_{Me} = \{s \mid p \in L(s)\}$
- $[[Q]]_{Me} = e(Q)$
- $[[\neg f]]_{Me} = S - [[f]]_{Me}$
- $[[f \land g]]_{Me} = [[f]]_{Me} \cap [[g]]_{Me}$
- $[[f \lor g]]_{Me} = [[f]]_{Me} \cup [[g]]_{Me}$
- $[[< a > f]]_{Me} = \{s \mid \exists t \cdot [s \xrightarrow{a} t \land t \in [[f]]_{Me}]\}$
- $[[[a].f]]_{Me} = \{s \mid \forall t \cdot [s \xrightarrow{a} t \Rightarrow t \in [[f]]_{Me}]\}$
- $[[\mu Q.f]]_{Me}$ is the least fixpoint of the predicate transformer $\tau : 2^S \rightarrow 2^S$ defined by $\tau(W) = [[f]]_{Me}[Q \leftarrow W]$
- $[[\nu Q.f]]_{Me}$ is the greatest fixpoint of the predicate transformer $\tau : 2^S \rightarrow 2^S$ defined by $\tau(W) = [[f]]_{Me}[Q \leftarrow W]$

Relationship between μ-calculus operators

- $\neg [a]f \equiv < a > \neg f$
- $\neg < a > f \equiv [a] \neg f$
- $\neg \mu Q.f(Q) \equiv \nu Q.f(\neg Q)$
- $\neg \nu Q.f(Q) \equiv \mu Q.\neg f(\neg Q)$

How do we ensure existence of fixpoints?
Alternation Depth

Def: *Alternation depth* of a formula is the number of alternations between \(\mu \)-formulas and \(\nu \)-formulas along chains of nested fixpoint subformulas.

The definition is inductive:

- If \(\varphi \) is not a fixpoint-formula then,
 \[
 ad(\varphi) = \max\{ad(\psi) | \psi \text{ is a fixpoint-subformula of } \varphi\}
 \]
- else if \(\varphi = \mu X.\psi \), then
 \[
 ad(\varphi) = \max\{1, ad(\psi), 1 + \max\{ad(\chi) | \chi \text{ is open } \nu \text{-subformula of } \varphi\}\}
 \]
- else if \(\varphi = \nu X.\psi \), then
 \[
 ad(\varphi) = \max\{1, ad(\psi), 1 + \max\{ad(\chi) | \chi \text{ is open } \mu \text{-subformula of } \varphi\}\}
 \]

A \(\mu \)-calculus formula \(\varphi \) is said to be *alternation-free* if \(ad(\varphi) \leq 1 \).

Alternation-free \(\mu \)-calculus – a language of such \(\varphi \)s.

Examples

\[
\begin{align*}
ad(\mu X. p \lor < a > X) &= 1 \\
ad(\nu X. ((\nu Y. p \land [a]Y) \lor < a > X)) &= 1 \\
ad(\nu X. (p \land < a > \nu Y. (q \land [a]Y \lor < a > X))) &= 1 \\
ad(\nu X. \mu Y. ((p \land X) \lor < a > Y)) &= 2
\end{align*}
\]

Note that the *nesting depth* (longest chain of fixpoint-subformulas of \(\varphi \) that are nested in one another) of the first formula is 1, but for all the rest, it is 2.

Note: negating (and moving negation to atom. props) a \(\mu \)-calculus formula does not change its alternation depth.

Also note that *fair CTL* has alternation depth 2:

- Fair EG (with fairness condition \(h \))
 \[
 E C G f = \nu Z. f \land EX(E[f U (f \land Z \land h)])
 = \nu Z. (f \land < a > (\mu Y. (f \land Z \land h) \lor (f \land < a > Y)))
 \]
Model-Checking Algorithm

1. function eval (f, e)
2. if $f = p$ then return $\{ s \mid p \in L(s) \}$;
3. if $f = g_1 \land g_2$ then
4. return eval(g_1, e) \cap eval(g_2, e);
5. if $f = g_1 \lor g_2$ then
6. return eval(g_1, e) \cup eval(g_2, e);
7. if $f = a > g$ then
8. return $\{ s \mid \exists t \cdot [s, a] \rightarrow t \text{ and } t \in \text{eval}(g, e) \}$;
9. if $f = [a]g$ then
10. return $\{ s \mid \forall t \cdot [s, a] \rightarrow t \text{ implies } t \in \text{eval}(g, e) \}$;

Model-Checking Algorithm (Cont’d)

11. if $f = \mu Q.g(Q)$ then
12. $Q_{val} := \text{False}$;
13. repeat
14. $Q_{old} := Q_{val}$;
15. $Q_{val} := \text{eval}(g, e[Q \leftarrow Q_{val}])$;
16. until $Q_{val} = Q_{old}$;
17. return Q_{val};
18. if $f = vQ.g(Q)$ then
19. $Q_{val} := \text{True}$;
20. repeat
21. $Q_{old} := Q_{val}$;
22. $Q_{val} := \text{eval}(g, e[Q \leftarrow Q_{val}])$;
23. until $Q_{val} = Q_{old}$;
24. return Q_{val};
25. end function
Complexity

1. Each loop executes at most $n + 1$ times ($n = |S|$)
2. Each iteration does a recursive call to evaluate the body of fixpoint with a different value for the fixpoint variable
3. It can also lead to recursive calls...

Complexity: $O(n^k)$ iterations of the fixpoint, where k – maximum nesting depth of fixpoint operators in the formula.

Each iteration: $O(|M| \times |f|)$, where

$|M| = |S| + \sum_{a \in T}|d|

Overall complexity: $O(|M| \times |f| \times n^k)$

A Better Algorithm [Emerson, Lai]

Goal: decrease the number of fixpoint iterations to $O(|f| \times n^d)$, where d – alternation depth of f.

Idea: exploit sequences of fixpoints that have the same type to reduce the complexity of the algorithm:

- It is unnecessary to reinitialize computations of inner fixpoints with False or True!
- Instead, to compute a least fixpoint, it is enough to start iterating with any approximation known to be below the fixpoint. Similar, for greatest fixpoint.
Emerson-Lai Algorithm

11. if $f = \mu Q_i.g(Q_i)$ then
12. for all top-level greatest fixpoint subformulas
 $\nu Q_j.g'(Q_j)$ of g
14. repeat
15. $Q_{old} := A[i]$;
16. $A[i] := eval(g, e[Q_i \leftarrow A[i]]);$
17. until $A[i] = Q_{old}$;
18. return $A[i]$;

Emerson-Lai Cont’d

19. if $f = \nu Q_i.g(Q_i)$ then
20. for all top-level least fixpoint subformulas
 $\mu Q_j.g'(Q_j)$ of g
22. repeat
23. $Q_{old} := A[i]$;
25. until $A[i] = Q_{old}$;
26. return $A[i]$;
27. end function
Complexity

1. $|f|$ – upper bound on the number of consecutive fixpoints of the same type in f
2. Number of iterations for each such sequences is $O(|f| \times n)$ instead of $n|f|$ as before.
3. Computation is reinitialized at the boundary between two sequences of different types.

Overall number of iterations: $O((|f| \times n)^d)$

Moreover, complexity of model-checking μ-calculus is in $\text{NP} \cap \text{co-NP}$ (see book).

[Sterling'03] Complexity of model-checking μ-calculus is in P!

μ-calculus and CTL

Translation of CTL into μ-calculus (a is the only transition):

\[
\begin{align*}
Tr(p) & = p \\
Tr(\neg f) & = \neg Tr(f) \\
Tr(f \land g) & = Tr(f) \land Tr(g) \\
Tr(\exists x f) & = \langle a > Tr(f) \\
Tr(\exists fUg) & = \mu Y.(Tr(g) \lor (Tr(f) \land \langle a > Y)) \\
Tr(\exists Ef) & = \forall Y.(Tr(f) \land \langle a > Y)
\end{align*}
\]

Any resulting μ-calculus formula is closed; so, omit environment e from translation.
\(\mu \)-calculus and CTL, Cont’d

Example: \(Tr(EGE[pUq]) = \)
\[\forall Y.(\mu Z.(q \lor (p \land <a >Z)) \land <a >Y) \]

Theorem: Let \(M = (S, T, L) \) be a Kripke structure. Assume that the transition \(a \) in the translation algorithm \(Tr \) is the relation \(T \) of the Kripke structure. Let \(f \) be a CTL formula. Then, for all \(s \in S \),

\[M, s \models f \iff s \in [[Tr(f)]]_M \]