
µ-Calculus, Cont’d
� Variables: free or bound (by a fixpoint operator)

E.g., f
�
Q1 � , µQ1 � f � Q1 ���� a � f – ” f holds in all states reachable in one step by making an a-transition”��� a 	 f – ” f holds in at least one state reachable in one step by making an a

transition”� µ, ν – least and greatest fixpoints� False – empty set of states� True – all states S� s
a
 s � means

�
s � s � �� a� f – set of states where f is true ( ��� f ��� Me, where M - transition system,

e : VAR 
 2S is an environment)� e �Q � W � – new environment that is same as e except that

e �Q � W � � Q ��� W
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Propositional µ-Calculus

Model: M � �
S � T � L � , where� S - nonempty set of states;� T – a set of transitions, such that � a  T � a � S � S� L : S 
 S 
 sAP gives the set of atomic propositions true in a state� VAR ��� Q � Q1 � Q2 � ������� – set of relational variables, where each Q  VAR

can be assigned a subset of S

µ-calculus formulae:� If p  AP, then p is a formula.� A relational variable is a formula.� If f and g are formulas, then � f , f � g, f � g are formulas.� If f is a formula, and a  T , then � a � f and � a 	 f are formulas.� If Q  VAR and f is a formula, then µQ � f and νQ � f are formulas, provided

that f is syntactically monotone in Q, i.e., all occurrences of Q within f fall under

an even number of negations in f
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Relationship between µ-calculus operators

� � a � f � � a 	 � f

� � a 	 f � � a � � f

� µQ � f � Q � � νQ � � f
� � Q �

� νQ � f � Q � � µQ � � f
� � Q �

How do we ensure existence of fixpoints?
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Semantics
����� p ��� Me ��� s �

p  L
�
s � ������Q ��� Me � e

�
Q ������ � f ��� Me � S � ��� f ��� Me����� f � g ��� Me � ��� f ��� Me � ��� g ��� Me����� f � g ��� Me � ��� f ��� Me � ��� g ��� Me����� � a 	 f ��� Me � � s ���

t � � s a
 t � t  ��� f ��� Me � �������� a � f ��� Me � � s � � t � � s a
 t � t  ��� f ��� Me � ������ µQ � f ��� Me is the least fixpoint of the predicate transformer τ : 2S 
 2S

defined by τ
�
W ��� ��� f ��� Me �Q � W ������ νQ � f ��� Me is the greatest fixpoint of the predicate transformer τ : 2S 
 2S

defined by τ
�
W ��� ��� f ��� Me �Q � W �
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Examples

ad
�
µX � p � � a 	 X � � 1

ad
�
νX � � � νY � p � � a � Y � � � a 	 X � � � 1

ad
�
νX � � p � � a 	 νY � � q � � a � Y � � a 	 X � � � 1

ad
�
νX � µY � � � p � X � � � a 	 Y � � � 2

Note that the nesting depth (longest chain of fixpoint-subformulas of ϕ that are

nested in one another) of the first formula is 1, but for all the rest, it is 2.

Note: negating (and moving negation to atom. props) a µ-calculus formula does

not change its alternation depth.

Also note that fair CTL has alternation depth 2:

� Fair EG (with fairness condition h)

ECG f � νZ � f � EX
�
E � f U

�
f � Z � h � � �

� νZ � � f � � a 	 �
µY � � f � Z � h � � � f � � a 	 Y � � �
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Alternation Depth

Def: Alternation depth of a formula is the number of alternations between

µ-formulas and ν-formulas along chains of nested fixpoint subformulas.

The definition is inductive:

� If ϕ is not a fixpoint-formula then,

ad
�
ϕ ��� max � ad

�
ψ � �ψ is a fixpoint-subformula of ϕ �

� else if ϕ � µX �ψ, then

ad
�
ϕ ��� max � 1 � ad

�
ψ � � 1 � max � ad

�
χ � � χ is open ν-subformula of ϕ � �

� else if ϕ � νX �ψ, then

ad
�
ϕ � � max � 1 � ad

�
ψ � � 1 � max � ad

�
χ � � χ is open µ-subformula of ϕ � �

A µ-calculus formula ϕ is said to be alternation-free if ad
�
ϕ ��� 1.

Alternation-free µ-calculus – a language of such ϕs.
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Model-Checking Algorithm (Cont’d)

11. if f � µQ � g � Q � then

12. Qval := False;

13. repeat

14. Qold := Qval ;

15. Qval := eval(g � e �Q � Qval � );
16. until Qval � Qold ;

17. return Qval ;

18. if f � νQ � g � Q � then

19. Qval := True;

20. repeat

21. Qold := Qval ;

22. Qval := eval(g � e �Q � Qval � );
23. until Qval � Qold ;

24. return Qval ;

25. end function
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Model-Checking Algorithm

1. function eval ( f , e)

2. if f � p then return � s �
p  L

�
s � � ;

3. if f � g1 � g2 then

4. return eval(g1 � e) � eval(g2 � e);

5. if f � g1 � g2 then

6. return eval(g1 � e) � eval(g2 � e);

7. if f � � a 	 g then

8. return � s � �
t � � s a
 t and t  eval

�
g � e � � � ;

9. if f � � a � g then

10. return � s � � t � � s a
 t implies t  eval
�
g � e � � � ;
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A Better Algorithm [Emerson, Lai]

Goal: decrease the number of fixpoint iterations to O
� �

f
� � n � d � , where d –

alternation depth of f .

Idea: exploit sequences of fixpoints that have the same type to reduce the

complexity of the algorithm:� It is unnecessary to reinitialize computations of inner fixpoints with False or

True!� Instead, to compute a least fixpoint, it is enough to start iterating with any

approximation known to be below the fixpoint. Similar, for greatest fixpoint.
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Complexity

1. Each loop executes at most n � 1 times (n � �
S
�
)

2. Each iteration does a recursive call to evaluate the body of fixpoint with a

different value for the fixpoint variable

3. It can also lead to recursive calls...

Complexity: O
�
nk � iterations of the fixpoint , where k – maximum nesting depth of

fixpoint operators in the formula.

Each iteration: O
� �

M
� � �

f
� � , where�

M
� � �

S
� � Σa � T

�
a
�

Overall complexity: O
� �

M
� � �

f
� � nk �
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Emerson-Lai Cont’d

19. if f � νQi � g � Qi � then

20. for all top-level least fixpoint subformulas

µQ j � g � � Q j � of g
21. do A[ j] := False;

22. repeat

23. Qold := A[i];
24. A[i] := eval(g � e �Qi � A � i ��� );
25. until A[i] = Qold ;

26. return A[i];
27. end function
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Emerson-Lai Algorithm

11. if f � µQi � g � Qi � then

12. for all top-level greatest fixpoint subformulas

νQ j � g � � Q j � of g
13. do A[ j] := True;

14. repeat

15. Qold := A[i];
16. A[i] := eval(g � e �Qi � A � i ��� );
17. until A[i] = Qold ;

18. return A[i];
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µ-calculus and CTL

Translation of CTL into µ-calculus (a is the only transition):

Tr
�
p � � p

Tr
� � f � � � Tr

�
f �

Tr
�
f � g � � Tr

�
f � � Tr

�
g �

Tr
�
EX f � � � a 	 Tr

�
f �

Tr
�
E � fUg � � � µY � � Tr

�
g � � � Tr

�
f � � � a 	 Y � �

Tr
�
EG f � � νY � � Tr

�
f � � � a 	 Y �

Any resulting µ-calculus formula is closed; so, omit environment e from

translation.
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Complexity

1.
�
f
�
– upper bound on the number of consecutive fixpoints of the same type in f

2. Number of iterations for each such sequences is O
� �

f
� � n � instead of n

�
f

�
as

before

3. Computation is reinitialized at the boundary between two sequences of

different types

Overall number of iterations: O
� � �

f
� � n � d �

Moreover, complexity of model-checking µ-calculus is in NP � co-NP (see book)

[Sterling’03] Complexity of model-checking µ-calculus is in P!
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food for slide eater
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µ-calculus and CTL, Cont’d

Example: Tr
�
EGE � pUq � � ���

νY � � µZ � � q � � p � � a 	 Z � � � � a 	 Y �
Theorem: Let M � �

S � T � L � be a Kripke structure. Assume that the transition a
in the translation algorithm Tr is the relation T of the Kripke structure. Let f be a

CTL formula. Then, for all s  S,

M � s � � f � s  ��� Tr
�
f � ��� M
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