Propositional p-Calculus

Model: M = (S, T,L), where

e S - nonempty set of states;

e T — a set of transitions, suchthatVae T -a C Sx S

oL:S—S—sAP gives the set of atomic propositions true in a state

e VAR = {Q,Q1,Q2, ...} — set of relational variables, where each Q € VAR
can be assigned a subset of S

M-calculus formulae:

e If p € AP, then p is a formula.

® A relational variable is a formula.

e If f and g are formulas, then = f, f A g, f V g are formulas.

o If fisaformula,anda € T, then [a]f and < a > f are formulas.

e IfQ € VAR and f is a formula, then uQ. f and vQ. f are formulas, provided
that f is syntactically monotone in Q, i.e., all occurrences of Q within f fall under
an even number of negations in f

115

M-Calculus, Cont'd

e Variables: free or bound (by a fixpoint operator)

E.g., f(Q1), HQ1.(Q1)

° [a] f —”f holds in all states reachable in one step by making an a-transition”
e < a> f —~f holds in at least one state reachable in one step by making an a
transition”

® |1, V — least and greatest fixpoints

e False — empty set of states

e True — all states S

es-3 5 means (s,5) € a

o f —set of states where f is true ([[f]]m€, where M - transition system,

e : VAR — 2Sis an environment)

e e[Q < W] — new environment that is same as € except that

e[Q <~ WJ(Q) =W

116

Semantics

glJme =[[f]lwen[[g]]me

glJme =[[fllmeu[[g]]me

a> fllve={s|3t-[s 3t Atelf]me]}

[f]]me = {s | Vt-[s >t =t e[[f]]me]}

o [[UQ.f]]me is the least fixpoint of the predicate transformer T : 25 — 25
defined by T(W) = [[f]]me[Q <+ W]

e [[VQ. f]]me is the greatest fixpoint of the predicate transformer T : 25 — 25
defined by T(W) = [[f]]me[Q < W]

117

Relationship between [-calculus operators

—[af = <a>-f
~<a>f = [a]-f
—pQ.f(Q) = vQ.—~f(-Q)
~vQ.f(Q) = uQ.~f(-Q)

How do we ensure existence of fixpoints?

118

Alternation Depth

Def: Alternation depth of a formula is the number of alternations between
H-formulas and V-formulas along chains of nested fixpoint subformulas.

The definition is inductive:

e If ¢ is not a fixpoint-formula then,

ad(¢) = max{ad () |y is a fixpoint-subformula of ¢ }

e elseif ¢ = uX. 4, then
ad(¢) = max{1,ad(P),1+max{ad(X) | X is open v-subformula of ¢ } }

e else if § = vX.{, then

ad(¢) = max{1,ad(P),1+max{ad(x) | X is open U-subformula of ¢ } }

A U-calculus formula ¢ is said to be alternation-free if ad (¢) < 1.
Alternation-free [I-calculus — a language of such s.

119

Examples

ad(pX.pv <a>X) =
ad(vX.((vY.p A [a]Y)V <a> X)) =
ad(vX.(pA <a>W.(gA[aYv<a>X)) =
ad(vX.pY.((p A X)v<a>Y))

Note that the nesting depth (longest chain of fixpoint-subformulas of ¢ that are

N PR

nested in one another) of the first formula is 1, but for all the rest, it is 2.

Note: negating (and moving negation to atom. props) a |i-calculus formula does
not change its alternation depth.

Also note that fair CTL has alternation depth 2:

e Fair EG (with fairness condition h)

EcGf =vZ.f A EX(E[fU (f A Z A D))
= VZ.(fA <a>(W.(fAZAhV(fA <a>Y)))

120

Model-Checking Algorithm

function eval (f, €)
if f=pthenreturn{s|peL(s)};
if f =01 A g2then
return eval(gy, €) N eval(gz, €);
if f =01V Q2then
return eval(gp, €) U eval(gz, €);
if f =<a>gthen
return {s | 3t-[s >t andt € eval(g,e)]};
if f =[a]gthen
10. return {s | Vt-[s > timpliest € eval(g,e)]};

© ® No g~ wDdhP

121

Model-Checking Algorithm (Cont’d)

11. if f = pQ.g(Q) then
12. Qyg := False;

13. repeat

14. Qold = Qval;

15. Qua =eval(g,e[Q < Qual);
16. until Qua = Qoid;

17. return Qyql;

18. if f =vQ.g(Q) then

19. Qug = True;

20. repeat

21 Qold = Qual;

22, Qual =eval(g,e[Q < Qual);
23. until Qva; = Qold;

24. return Qyg;

25. end function

122

Complexity

1. Each loop executes at most N+ 1 times (N = |S|)

2. Each iteration does a recursive call to evaluate the body of fixpoint with a
different value for the fixpoint variable

3. It can also lead to recursive calls...

Complexity: O(nk) iterations of the fixpoint , where K — maximum nesting depth of

fixpoint operators in the formula.

Each iteration: O(|M| x | f|), where
M| =[S +Zaer|a]

Overall complexity: O(|M| x | f| x nk)

123

A Better Algorithm [Emerson, Lai]

Goal: decrease the number of fixpoint iterations to O(| f| x n)9), where d —
alternation depth of f.

Idea: exploit sequences of fixpoints that have the same type to reduce the
complexity of the algorithm:

® |t is unnecessary to reinitialize computations of inner fixpoints with False or
True!

e |nstead, to compute a least fixpoint, it is enough to start iterating with any
approximation known to be below the fixpoint. Similar, for greatest fixpoint.

124

11

12.

13.
14.
15.
16.
17.
18.

1

©

20.

21.
22.
23.
24.
25.
26.

27

Emerson-Lai Algorithm

Cif f=pQ;i.g(Q;) then

for all top-level greatest fixpoint subformulas

vQj.g'(Qj) of g

do A[]] := True;
repeat
Qold := Alll;

Ali] := eval(g, e[Qi + A[i]]);
until A[l] = Qold;
return A[i];

125

Emerson-Lai Cont'd

it f =vQ;i.g(Qj) then

for all top-level least fixpoint subformulas

HQ;.9'(Qj) of g

do A[]] := False;
repeat
Qold := All];

Ali] := eval(g, e[Qi <— A[i]]);
until Afi] = Qold;
return A[i];
. end function

126

Complexity

1. | f | — upper bound on the number of consecutive fixpoints of the same type in f
2. Number of iterations for each such sequences is O(| f| x n) instead of n!fl as
before

3. Computation is reinitialized at the boundary between two sequences of
different types

Overall number of iterations: O((] f| x n)9)
Moreover, complexity of model-checking H-calculus is in NP M co-NP (see book)

[Sterling’03] Complexity of model-checking J-calculus is in P!

127

H-calculus and CTL

Translation of CTL into H-calculus (@ is the only transition):

Tr(p) = p

Tr(ﬂf) = —|Tr(f)

Tr(f Ag) = Tr(f) ATr(g)

Tr(EXf) = <a>Tr(f)

Tr(E[fUg]) = Ww.(Tr(@V(Tr(f)A <a>Y))
Tr(EGT) = V.(Tr(f)A <a>Y)

Any resulting [-calculus formula is closed; so, omit environment € from
translation.

128

M-calculus and CTL, Cont'd

Example: Tr(EGE[pUq])) =
VY.(WZ.(qV(pPA <a>Z) A <a>Y)

Theorem: Let M = (S, T, L) be a Kripke structure. Assume that the transition &
in the translation algorithm Tr is the relation T of the Kripke structure. Let f be a
CTL formula. Then, forall s € S,

M,sf=fese[[Tr(f)]]m

129

food for slide eater

130

