
Automata-Theoretic LTL Model
Checking

Graph Algorithms for Software Model Checking

(based on Arie Gurfinkel’s csc2108 project)

Automata-Theoretic LTL Model Checking – p.1

Emptiness of Büchi Automata

a
b c

d

e

f

An automation is non-empty iff
there exists a path to an accepting state,
such that there exists a cycle containing it

Is this automaton empty?
No – it accepts

Automata-Theoretic LTL Model Checking – p.2

Emptiness of Büchi Automata

a
b c

d

e

f

An automation is non-empty iff
there exists a path to an accepting state,
such that there exists a cycle containing it

Is this automaton empty?

No – it accepts

Automata-Theoretic LTL Model Checking – p.2

Emptiness of Büchi Automata

a
b c

d

e

f

An automation is non-empty iff
there exists a path to an accepting state,
such that there exists a cycle containing it

Is this automaton empty?
No – it accepts � � � � � �

�

Automata-Theoretic LTL Model Checking – p.2

Emptiness of Büchi Automata

a
b c

d

e

f

a

An automation is non-empty iff
there exists a path to an accepting state,
such that there exists a cycle containing it

Is this automaton empty?
No – it accepts � � � � � �

�

Automata-Theoretic LTL Model Checking – p.2

Emptiness of Büchi Automata

a
b c

d

e

f

a
b

An automation is non-empty iff
there exists a path to an accepting state,
such that there exists a cycle containing it

Is this automaton empty?
No – it accepts � � � � � �

�

Automata-Theoretic LTL Model Checking – p.2

Emptiness of Büchi Automata

a
b c

d

e

f

a
b

e

An automation is non-empty iff
there exists a path to an accepting state,
such that there exists a cycle containing it

Is this automaton empty?
No – it accepts � � � � � �

�

Automata-Theoretic LTL Model Checking – p.2

Emptiness of Büchi Automata

a
b c

d

e

f

a
b

e

f

An automation is non-empty iff
there exists a path to an accepting state,
such that there exists a cycle containing it

Is this automaton empty?
No – it accepts � � � � � �

�

Automata-Theoretic LTL Model Checking – p.2

LTL Model-Checking

LTL Model-Checking = Emptiness of Büchi automata
a tiny bit of automata theory +
trivial graph-theoretic problem

typical solution – use depth-first search (DFS)

Problem: state-explosion

the graph is HUGE
The result

LTL model-checking is just a very elaborate DFS

Automata-Theoretic LTL Model Checking – p.3

Depth-First Search – Refresher

depth-first tree

Automata-Theoretic LTL Model Checking – p.4

Depth-First Search – Refresher

1

depth-first tree

Automata-Theoretic LTL Model Checking – p.4

Depth-First Search – Refresher

1

2

depth-first tree

Automata-Theoretic LTL Model Checking – p.4

Depth-First Search – Refresher

1

2

3

depth-first tree

Automata-Theoretic LTL Model Checking – p.4

Depth-First Search – Refresher

1

2

3 4

depth-first tree

Automata-Theoretic LTL Model Checking – p.4

Depth-First Search – Refresher

1

2

3 4

5

depth-first tree

Automata-Theoretic LTL Model Checking – p.4

Depth-First Search – Refresher

1

2

3 4

5

6

depth-first tree

Automata-Theoretic LTL Model Checking – p.4

Depth-First Search – Refresher

1

2

3 4

5

67

depth-first tree

Automata-Theoretic LTL Model Checking – p.4

Depth-First Search – Refresher

1

2

3 4

5

67

depth-first tree

1 2 3

7

4 5 6

Automata-Theoretic LTL Model Checking – p.4

DFS – The Algorithm

1: proc � � � � � �

2: add � to � � � � � � �

3: � 	 �
 � � � �
 �

4: � �
 � � � � �
 � � �

5: for all � � � � � � � � � do
6: if � �� � � � � � � � then
7: � � � � � �

8: end if
9: end for

10: � 	 �
 � � � �
 �

11: � �
 � � � � �
 � � �

12: end proc

Automata-Theoretic LTL Model Checking – p.5

DFS – Data Structures

implicit STACK
stores the current path through the graph

Visited table
stores visited nodes
used to avoid cycles

for each node
discovery time – array �

finishing time – array �

Automata-Theoretic LTL Model Checking – p.6

What we want

Running time
at most linear — anything else is not feasible

Memory requirements
sequentially accessed – like STACK

disk storage is good enough
assume unlimited supply – so can ignore

randomly accessed – like hash tables
must use RAM
limited resource – minimize
why cannot use virtual memory?

Automata-Theoretic LTL Model Checking – p.7

What else we want

Counterexamples
an automaton is non-empty iff exists an accepting
run
this is the counterexample – we want it

Approximate solutions
partial result is better than nothing!

Automata-Theoretic LTL Model Checking – p.8

DFS – Complexity

Running time
each node is visited once
linear in the size of the graph

Memory
the STACK

accessed sequentially
can store on disk – ignore

Visited table
randomly accessed – important

� Visited � � � � �
� – number of nodes in the graph

� – number of bits needed to represent each node

Automata-Theoretic LTL Model Checking – p.9

Take 1 – Tarjan’s SCC algorithm

1

2

3

7 4

5

6

1

2

3 4

5

67

Idea: find all maximal SCCs: SCC � , SCC � , etc.
an automaton is non-empty iff exists SCC �

containing an accepting state

Fact: each SCC is a sub-tree of DFS-tree
need to find roots of these sub-trees

Automata-Theoretic LTL Model Checking – p.10

Take 1 – Tarjan’s SCC algorithm

1

2

3

7 4

5

6

1

2

3 4

5

67

Idea: find all maximal SCCs: SCC � , SCC � , etc.
an automaton is non-empty iff exists SCC �

containing an accepting state

Fact: each SCC is a sub-tree of DFS-tree
need to find roots of these sub-trees

Automata-Theoretic LTL Model Checking – p.10

Take 1 – Tarjan’s SCC algorithm

1

2

3

7 4

5

6

1

2

3 4

5

67

Idea: find all maximal SCCs: SCC � , SCC � , etc.
an automaton is non-empty iff exists SCC �

containing an accepting state

Fact: each SCC is a sub-tree of DFS-tree
need to find roots of these sub-trees

Automata-Theoretic LTL Model Checking – p.10

Finding a Root of an SCC

For each node �, compute � � � � � � � 	 �

� � � � � � � 	 �
 is the minimum of
discovery time of �

discovery time of �, where

� belongs to the same SCC as �

the length of a path from � to � is at least 1

Fact: � is a root of an SCC iff

� 	 �
 � � � � � � � � 	 �

Automata-Theoretic LTL Model Checking – p.11

Finally: the algorithm

1: proc � � �_ � � � � � � 	
 �

2: add
 to �
 �
 � � �

3: � �
 � � � �
 � �

4: �
 � � � � �
 � � � �

5: � � � �
 � � �
 � � � � �
 �

6: push
 on � � � � �

7: for all � � ! " " 	
 � do
8: if � # �
 �
 � � � then
9: � � �_ � � � � � � 	 � �

10: � � � �
 � � �
 � � � $ % & 	 � � � �
 � � �
 � ' � � � �
 � � � � � �

11: else if � � � � (� �
 � and � is on � � � � � then
12: � � � �
 � � �
 � � � $ % & 	 � � � � ' � � � �
 � � �
 � �

13: end if
14: end for
15: if � � � �
 � � �
 � � � �
 � then
16: repeat
17: pop) from top of � � � � �

18: if) * then
19: terminate with “Yes”
20: end if
21: until) �

22: end if
23: end proc

1

2

3 4

5

67

Automata-Theoretic LTL Model Checking – p.12

Finally: the algorithm

1: proc � � �_ � � � � � � 	
 �

2: add
 to �
 �
 � � �

3: � �
 � � � �
 � �

4: �
 � � � � �
 � � � �

5: � � � �
 � � �
 � � � � �
 �

6: push
 on � � � � �

7: for all � � ! " " 	
 � do
8: if � # �
 �
 � � � then
9: � � �_ � � � � � � 	 � �

10: � � � �
 � � �
 � � � $ % & 	 � � � �
 � � �
 � ' � � � �
 � � � � � �

11: else if � � � � (� �
 � and � is on � � � � � then
12: � � � �
 � � �
 � � � $ % & 	 � � � � ' � � � �
 � � �
 � �

13: end if
14: end for
15: if � � � �
 � � �
 � � � �
 � then
16: repeat
17: pop) from top of � � � � �

18: if) * then
19: terminate with “Yes”
20: end if
21: until) �

22: end if
23: end proc

1

2

3 4

5

67

Automata-Theoretic LTL Model Checking – p.12

Tarjan’s SCC algorithm – Analysis

Running time
linear in the size of the graph

Memory
STACK – sequential, ignore

� � � � � � � – � � � � � �
� � � � � � � – � � � � � � (wasted space?)

� is not known a priori
assume � is at least � � � �

Counterexamples
can be extracted from the STACK
even more – get multiple counterexamples

If we sacrifice some of generality, can we do better?

Automata-Theoretic LTL Model Checking – p.13

Take 2 – Two Sweeps

1 2 3 4 5

Don’t look for maximal SCCs

Find a reachable accepting state that is on a cycle

Idea: use two sweeps
sweep one: find all accepting states
sweep two: look for cycles from accepting states

Problem?
no longer a linear algorithm (revisit the states
multiple times)

Automata-Theoretic LTL Model Checking – p.14

Take 2 – Two Sweeps

1 2 3 4 5

Don’t look for maximal SCCs

Find a reachable accepting state that is on a cycle

Idea: use two sweeps
sweep one: find all accepting states
sweep two: look for cycles from accepting states

Problem?
no longer a linear algorithm (revisit the states
multiple times)

Automata-Theoretic LTL Model Checking – p.14

Take 2 – Two Sweeps

1 2 3 4 5

Don’t look for maximal SCCs

Find a reachable accepting state that is on a cycle

Idea: use two sweeps
sweep one: find all accepting states
sweep two: look for cycles from accepting states

Problem?
no longer a linear algorithm (revisit the states
multiple times)

Automata-Theoretic LTL Model Checking – p.14

Fixing non-linearity: Graph Theoretic Result

Fact: let � and � be two nodes, such that

� 	 �
 � � 	 �

� is not on a cycle

then, no cycle containing � contains nodes
reachable from �

Automata-Theoretic LTL Model Checking – p.15

Fixing non-linearity: Graph Theoretic Result

Fact: let � and � be two nodes, such that

� 	 �
 � � 	 �

� is not on a cycle

then, no cycle containing � contains nodes
reachable from �

Automata-Theoretic LTL Model Checking – p.15

Fixing non-linearity: Graph Theoretic Result

Fact: let � and � be two nodes, such that

� 	 �
 � � 	 �

� is not on a cycle

then, no cycle containing � contains nodes
reachable from �

Automata-Theoretic LTL Model Checking – p.15

Take 3 – Double DFS

1: proc � * � � 	
 �

2: add
 to �
 �
 � � �

3: for all � � ! " " 	
 � do
4: if � # �
 �
 � � � then
5: � * � � 	 � �

6: end if
7: end for
8: if
 * then
9: add
 to �

10: end if
11: end proc

1: proc � � � � � � 	 � �

2: while � # � � � do
3: � � � � � � ! � ! � 	 � �

4: � * � � 	 � ' � �

5: end while
6: terminate with “No”
7: end proc

1: proc � * � � 	
 ' � �

2: add
 to �
 �
 � � �

3: for all � � ! " " 	
 � do
4: if
 � � then
5: terminate with “Yes”
6: else if � # �
 �
 � � � then
7: � * � � 	 � ' � �

8: end if
9: end for
10: end proc

1: proc � � * � 	
 �

2: � � �

3: �
 �
 � � � � �

4: � * � � 	
 �

5: �
 �
 � � � � �

6: � � � � � � 	 � �

7: end proc

Automata-Theoretic LTL Model Checking – p.16

Double DFS – Analysis

Running time
linear! (single � � � � � � � table for different final states,
so no state is processed twice)

Memory requirements

� � � � � �

Problem
where is the counterexample?!

Automata-Theoretic LTL Model Checking – p.17

Take 4 – Nested DFS

Idea
when an accepting state is finished

stop first sweep
start second sweep

if cycle is found, we are done
otherwise, restart the first sweep

As good as double DFS, but
does not need to always explore the full graph
counterexample is readily available

a path to an accepting state is on the stack of the
first sweep
a cycle is on the stack of the second

Automata-Theoretic LTL Model Checking – p.18

A Few More Tweaks

No need for two Visited hashtables
empty hashtable wastes space
merge into one by adding one more bit to each node

� � � � � � � � � � � � � iff � was seen by the first sweep

� � � � � � � � � � � � � iff � was seen by the second sweep

Early termination condition
nested DFS can be terminated as soon as it finds a
node that is on the stack of the first DFS

Automata-Theoretic LTL Model Checking – p.19

On-the-fly Model-Checking

Typical problem consists of
description of several process � � � � � � � � �

property � in LTL

Before applying DFS algorithm
construct graph for � � � �

� � �
� �

construct Büchi automaton � � 	 for
 �

construct Büchi automaton for � � � � 	

But,
all constructions can be done in DFS order
combine everything with the search
result: on-the-fly algorithm, only the necessary part
of the graph is built

Automata-Theoretic LTL Model Checking – p.20

On-the-fly Model-Checking

Typical problem consists of
description of several process � � � � � � � � �

property � in LTL

Before applying DFS algorithm
construct graph for � � � �

� � �
� �

construct Büchi automaton � � 	 for
 �

construct Büchi automaton for � � � � 	

But,
all constructions can be done in DFS order
combine everything with the search
result: on-the-fly algorithm, only the necessary part
of the graph is built

Automata-Theoretic LTL Model Checking – p.20

State Explosion Problem

the size of the graph to explore is huge

on real programs
DFS dies after examining just 1% of the state space

What can be done?
abstraction

false negatives
partial order reduction. (to be covered)

exact – but not applicable to full LTL
partial exploration – explore as much as possible

false positives

In practice – combine all 3

Automata-Theoretic LTL Model Checking – p.21

Partial exploration techniques

Explore as much of the graph as possible

The requirements
must be compatible with

on-the-fly model-checking
nested depth-first search

size of the graph not known a priori
must perform as good as full exploration when
enough memory is available

must degrade gracefully

We will look at two techniques
bitstate hashing
hashcompact – a type of state compression

Automata-Theoretic LTL Model Checking – p.22

Bitstate Hashing

a hashtable is
an array � of � entries
a hash function � � � � � States � � � � � � �

a collision resolution protocol

to insert � into a hashtable
compute � � � � � � �

if � 	 � � � � � � �
 is empty, � 	 � � � � � � �
 � �

otherwise, apply collision resolution

to lookup �

if � 	 � � � � � � �
 is empty, � is not in the table
else if � 	 � � � � � � �
 � �, � is in the table
otherwise, apply collision resolution

Automata-Theoretic LTL Model Checking – p.23

Bitstate Hashing

if there are no collisions, don’t need to store � at all!
instead, just store one bit – empty or not

even better, use two hash functions
to insert �, set � 	 � � � � � � � �
 � � and � 	 � � � � � � � �
 � �

sound with respect to false answers
if a counterexample is found, it is found!

in practice, up to � � � coverage

collisions increase gradually when not enough memory

coverage decreases at the rate collisions increase

Automata-Theoretic LTL Model Checking – p.24

Why does this work?

If nested DFS stops when a successor to � in � � � � is
on the stack of � � � � , how is soundness guaranteed,
i.e., why is the counterexample returned by
model-checker real?

Answer: States are stored on the stack without hashing,
since stack space does not need to be saved.

Automata-Theoretic LTL Model Checking – p.25

Hashcompact

Assume a large virtual hashtable, say � � � entries

For each node �,
instead of using �,
use � � � � � � � , its hash value in the large table

Store � � � � � � � in a normal hashtable,
or even the one with bitstate hashing

When there is enough memory

probability of missing a node is � � �
� �

Degradation
expected coverage decreases rapidly, when not
enough memory

Automata-Theoretic LTL Model Checking – p.26

Symbolic LTL Model-Checking

LTL Model-Checking = Finding a reachable cycle

Represent the graph symbolically
and use symbolic techniques to search

There exists an infinite path from �, iff � � � � true � � � � �

the graph is finite
infinite � cyclic!

exists a cycle containing an accepting state � iff �

occurs infinitely often
use fairness to capture accepting states

LTL Model-Checking = � � true under fairness!

Automata-Theoretic LTL Model Checking – p.27

food for slide eater

Automata-Theoretic LTL Model Checking – p.28

	Emptiness of B"{u}chi Automata
	LTL Model-Checking
	Depth-First Search -- Refresher
	DFS -- The Algorithm
	DFS -- Data Structures
	What we want
	What else we want
	DFS -- Complexity
	Take 1 -- Tarjan's SCC algorithm
	Finding a Root of an SCC
	Finally: the algorithm
	Tarjan's SCC algorithm -- Analysis
	Take 2 -- Two Sweeps
	Fixing non-linearity: Graph Theoretic Result
	Take 3 -- Double DFS
	Double DFS -- Analysis
	Take 4 -- Nested DFS
	A Few More Tweaks
	On-the-fly Model-Checking
	State Explosion Problem
	Partial exploration techniques
	Bitstate Hashing
	Bitstate Hashing
	Why does this work?
	Hashcompact
	Symbolic LTL Model-Checking
	

