Automata-Theoretic LTL Model Checking

Graph Algorithms for Software Model Checking

(based on Arie Gurfinkel's csc2108 project)

Automata-Theoretic LTL Model Checking - p.

Emptiness of Büchi Automata

An automation is non-empty iff

- there exists a path to an accepting state,
- such that there exists a cycle containing it

Emptiness of Büchi Automata

- An automation is non-empty iff
 - there exists a path to an accepting state,
 - such that there exists a cycle containing it
- Is this automaton empty?

Automata-Theoretic LTL Model Checking - p.2

Emptiness of Büchi Automata

- An automation is non-empty iff
 - there exists a path to an accepting state,
 - such that there exists a cycle containing it
- Is this automaton empty?
 - No it accepts $a(bef)^{\omega}$

Automata-Theoretic LTL Model Checking - p.2

Emptiness of Büchi Automata

- An automation is non-empty iff
 - there exists a path to an accepting state,
 - such that there exists a cycle containing it
- Is this automaton empty?
 - No it accepts $a(bef)^{\omega}$

Automata-Theoretic LTL Model Checking - p.2

Emptiness of Büchi Automata

- An automation is non-empty iff
 - there exists a path to an accepting state,
 - such that there exists a cycle containing it
- Is this automaton empty?
 - No it accepts $a(bef)^{\omega}$

Automata-Theoretic LTL Model Checking - p.2

Emptiness of Büchi Automata

- An automation is non-empty iff
 - there exists a path to an accepting state,
 - such that there exists a cycle containing it
- Is this automaton empty?
 - No it accepts $a(bef)^{\omega}$

Automata-Theoretic LTL Model Checking - p.2

Emptiness of Büchi Automata

- An automation is non-empty iff
 - there exists a path to an accepting state,
 - such that there exists a cycle containing it
- Is this automaton empty?
 - No it accepts $a(bef)^{\omega}$

Automata-Theoretic LTL Model Checking - p.2

LTL Model-Checking

- LTL Model-Checking = Emptiness of Büchi automata
 - a tiny bit of automata theory +
 - trivial graph-theoretic problem
 - typical solution use depth-first search (DFS)
- Problem: state-explosion
 - the graph is HUGE
- The result
 - LTL model-checking is just a very elaborate DFS

Automata-Theoretic LTL Model Checking – p.3

Automata-Theoretic LTL Model Checking - p.4

Automata-Theoretic LTL Model Checking - p.4

Automata-Theoretic LTL Model Checking - p.4

Automata-Theoretic LTL Model Checking - p.4

Depth-First Search – Refresher

• depth-first tree

DFS – The Algorithm

1: proc DFS(v)

- 2: add v to Visited
- **3**: d[v] := time
- $4: \quad time := time + 1$
- 5: for all $w \in succ(v)$ do
- 6: if $w \notin Visited$ then
- 7: DFS(w)
- 8: **end if**
- 9: end for
- **10**: f[v] := time
- 11: time := time + 1
- 12: **end proc**

Automata-Theoretic LTL Model Checking - p.§

DFS – Data Structures

- implicit STACK
 - stores the current path through the graph
- Visited table
 - stores visited nodes
 - used to avoid cycles
- for each node
 - discovery time array d
 - finishing time array f

What we want

Running time

- at most linear anything else is not feasible
- Memory requirements
 - sequentially accessed like STACK
 - disk storage is good enough
 - assume unlimited supply so can ignore
 - randomly accessed like hash tables
 - must use RAM
 - limited resource minimize
 - why cannot use virtual memory?

Automata-Theoretic LTL Model Checking – p.7

What else we want

- Counterexamples
 - an automaton is non-empty iff exists an accepting run
 - this is the counterexample we want it
- Approximate solutions
 - partial result is better than nothing!

DFS – Complexity

• Running time

- each node is visited once
- Iinear in the size of the graph
- Memory
 - L the STACK
 - accessed sequentially
 - can store on disk ignore
 - Visited table
 - randomly accessed important
 - |Visited| = $S \times n$
 - n number of nodes in the graph
 - S number of bits needed to represent each node

Automata-Theoretic LTL Model Checking – p.§

Take 1 – Tarjan's SCC algorithm

- Idea: find all maximal SCCs: SCC₁, SCC₂, etc.
 - an automaton is non-empty iff exists SCC_i containing an accepting state

Take 1 – Tarjan's SCC algorithm

- Idea: find all maximal SCCs: SCC₁, SCC₂, etc.
 - an automaton is non-empty iff exists SCC_i containing an accepting state
- Fact: each SCC is a sub-tree of DFS-tree
 - need to find roots of these sub-trees

Automata-Theoretic LTL Model Checking - p.10

Take 1 – Tarjan's SCC algorithm

Automata-Theoretic LTL Model Checking - p.1(

Finding a Root of an SCC

• For each node v, compute low link[v]

- *lowlink*[v] is the minimum of
 - $\hfill \square$ discovery time of v
 - discovery time of w, where
 - w belongs to the same SCC as v
 - the length of a path from v to w is at least 1
- Fact: v is a root of an SCC iff

•
$$d[v] = low link[v]$$

Automata-Theoretic LTL Model Checking - p.1

Finally: the algorithm

- 1: proc $SCC_SEARCH(v)$
- 2: add v to Visited
- **3**: d[v] := time
- 4: time := time + 1
- 5: lowlink[v] := d[v]
- 6: push v on STACK
- 7: for all $w \in succ(v)$ do
- 8: if $w \notin Visited$ then
- 9: $SCC_SEARCH(w)$
- **10:** low link[v] := min(low link[v], low link[w])
- 11: else if d[w] < d[v] and w is on STACK then
- **12:** low link[v] := min(d[w], low link[v])

- 13: end if
- 14: end for
- 15: if low link[v] = d[v] then
- 16: repeat
- 17: pop x from top of STACK
- 18: if $x \in F$ then
- 19: terminate with "Yes"
- 20: end if
- 21: until x = v
- 22: end if
- 23: end proc

Finally: the algorithm

- 1: proc $SCC_SEARCH(v)$
- 2: add v to Visited
- **3**: d[v] := time
- 4: time := time + 1
- 5: lowlink[v] := d[v]
- 6: push v on STACK
- 7: for all $w \in succ(v)$ do
- 8: **if** $w \notin Visited$ then
- 9: $SCC_SEARCH(w)$
- **10:** low link[v] := min(low link[v], low link[w])
- 11: else if d[w] < d[v] and w is on STACK then
- **12:** low link[v] := min(d[w], low link[v])

- 13: end if
- 14: end for
- 15: if low link[v] = d[v] then
- 16: repeat
- 17: pop x from top of STACK
- 18: if $x \in F$ then
- 19: terminate with "Yes"
- 20: end if
- 21: **until** x = v
- 22: end if
- 23: end proc

Automata-Theoretic LTL Model Checking – p.12

Tarjan's SCC algorithm – Analysis

Running time

Iinear in the size of the graph

- Memory
 - STACK sequential, ignore
 - $Visited O(S \times n)$
 - $low link log n \times n$ (wasted space?)
 - n is not known a priori
 - assume *n* is at least $\geq 2^{32}$
- Counterexamples
 - can be extracted from the STACK
 - even more get multiple counterexamples
- If we sacrifice some of generality, can we do better?

Take 2 – Two Sweeps

- Don't look for maximal SCCs
- Find a reachable accepting state that is on a cycle
- Idea: use two sweeps
 - sweep one: find all accepting states
 - sweep two: look for cycles *from* accepting states

Automata-Theoretic LTL Model Checking - p.14

Take 2 – Two Sweeps

- Don't look for maximal SCCs
- Find a reachable accepting state that is on a cycle
- Idea: use two sweeps
 - sweep one: find all accepting states
 - sweep two: look for cycles from accepting states
- Problem?
 - no longer a linear algorithm (revisit the states multiple times)

Take 2 – Two Sweeps

- Don't look for maximal SCCs
- Find a reachable accepting state that is on a cycle
- Idea: use two sweeps
 - sweep one: find all accepting states
 - sweep two: look for cycles from accepting states
- Problem?
 - no longer a linear algorithm (revisit the states multiple times)

Automata-Theoretic LTL Model Checking – p.14

Fixing non-linearity: Graph Theoretic Resi

- Fact: let v and u be two nodes, such that
 - f[v] < f[u]
 - v is not on a cycle
 - then, no cycle containing *u* contains nodes reachable from *v*

Fixing non-linearity: Graph Theoretic Resi

- Fact: let v and u be two nodes, such that
 - f[v] < f[u]
 - v is not on a cycle
 - then, no cycle containing *u* contains nodes reachable from *v*

Automata-Theoretic LTL Model Checking - p.15

Fixing non-linearity: Graph Theoretic Resi

- Fact: let v and u be two nodes, such that
 - f[v] < f[u]
 - v is not on a cycle
 - then, no cycle containing *u* contains nodes reachable from *v*

Take 3 – Double DFS

```
2:
      add v to V is ited
 3:
      for all w \in succ(v) do
 4:
         if w \notin V is ited then
 5:
           DFS1(w)
 6:
         end if
 7:
      end for
 8:
      if v \in F then
 9:
        add v to Q
10:
      end if
11: end proc
 1: proc DFS2(v, f)
 2:
      add v to V is ited
 3:
      for all w \in succ(v) do
 4:
         if v = f then
 5:
           terminate with "Yes"
 6:
         else if w \notin Visited then
 7:
           DFS2(w, f)
 8:
         end if
 9:
      end for
10: end proc
```

1: proc DFS1(v)

```
1: proc SWEEP2(Q)
```

- 2: while $Q \neq []$ do
- **3**: f := dequeue(Q)
- **4**: DFS2(f, f)
- 5: end while
- 6: terminate with "No"
- 7: end proc

- $2: \quad Q = \emptyset$
- **3**: $Visited = \emptyset$
- 4: DFS1(v)
- **5**: $Visited = \emptyset$
- 6: SWEEP2(Q)
- 7: end proc

Automata-Theoretic LTL Model Checking - p.16

Double DFS – Analysis

- Running time
 - linear! (single *Visited* table for different final states, so no state is processed twice)
- Memory requirements
 - $O(n \times S)$
- Problem
 - where is the counterexample?!

Take 4 – Nested DFS

- 🔍 Idea
 - when an accepting state is finished
 - stop first sweep
 - start second sweep
 - if cycle is found, we are done
 - otherwise, restart the first sweep
- As good as double DFS, but
 - does not need to always explore the full graph
 - counterexample is readily available
 - a path to an accepting state is on the stack of the first sweep
 - a cycle is on the stack of the second

Automata-Theoretic LTL Model Checking – p.18

A Few More Tweaks

- No need for two Visited hashtables
 - empty hashtable wastes space
 - merge into one by adding one more bit to each node
 - $(v,0) \in Visited$ iff v was seen by the first sweep
 - $(v,1) \in Visited \text{ iff } v \text{ was seen by the second sweep}$
- Early termination condition
 - nested DFS can be terminated as soon as it finds a node that is on the stack of the first DFS

On-the-fly Model-Checking

- Typical problem consists of
 - description of several process P_1, P_2, \ldots
 - property φ in LTL
- Before applying DFS algorithm
 - construct graph for $P = \prod_{i=1}^{n} P_i$
 - construct Büchi automaton $A_{\neg \varphi}$ for $\neg \varphi$
 - construct Büchi automaton for $P \cap A_{\neg \varphi}$

Automata-Theoretic LTL Model Checking - p.20

On-the-fly Model-Checking

- Typical problem consists of
 - description of several process P_1, P_2, \ldots
 - $\hfill \ensuremath{\, \mathbf{ \ensuremath{ property}}}$ for the property φ in LTL
- Before applying DFS algorithm
 - construct graph for $P = \prod_{i=1}^{n} P_i$
 - construct Büchi automaton $A_{\neg \varphi}$ for $\neg \varphi$
 - construct Büchi automaton for $P \cap A_{\neg \varphi}$
- But,
 - all constructions can be done in DFS order
 - combine everything with the search
 - result: on-the-fly algorithm, only the necessary part of the graph is built

State Explosion Problem

- the size of the graph to explore is huge
- on real programs
 - DFS dies after examining just 1% of the state space
- What can be done?
 - abstraction
 - false negatives
 - partial order reduction. (to be covered)
 - exact but not applicable to full LTL
 - partial exploration explore as much as possible
 - false positives
- In practice combine all 3

Automata-Theoretic LTL Model Checking – p.2

Partial exploration techniques

- Explore as much of the graph as possible
- The requirements
 - must be compatible with
 - on-the-fly model-checking
 - nested depth-first search
 - size of the graph not known a priori
 - must perform as good as full exploration when enough memory is available
 - must degrade gracefully
- We will look at two techniques
 - bitstate hashing
 - hashcompact a type of state compression

Bitstate Hashing

a hashtable is

- an array d of k entries
- a hash function hash : States $\rightarrow 0..k 1$
- a collision resolution protocol
- to insert v into a hashtable
 - compute hash(v)
 - if d[hash(v)] is empty, d[hash(v)] = v
 - otherwise, apply collision resolution
- to lookup v
 - if d[hash(v)] is empty, v is not in the table
 - else if d[hash(v)] = v, v is in the table
 - otherwise, apply collision resolution

Automata-Theoretic LTL Model Checking - p.23

Bitstate Hashing

- if there are no collisions, don't need to store v at all!
 instead, just store one bit empty or not
- even better, use two hash functions
 - to insert v, set $d[hash_1(v)] = 1$ and $d[hash_2(v)] = 1$
- sound with respect to false answers
 - if a counterexample is found, it is found!
- in practice, up to 99% coverage
- collisions increase gradually when not enough memory
- coverage decreases at the rate collisions increase

Why does this work?

- If nested DFS stops when a successor to v in DFS2 is on the stack of DFS1, how is soundness guaranteed, i.e., why is the counterexample returned by model-checker real?
- Answer: States are stored on the stack without hashing, since stack space does not need to be saved.

Automata-Theoretic LTL Model Checking - p.25

Hashcompact

- Assume a large virtual hashtable, say 2^{64} entries
- For each node v,
 - instead of using v,
 - use hash(v), its hash value in the large table
- Store hash(v) in a normal hashtable,
 - or even the one with bitstate hashing
- When there is enough memory
 - probability of missing a node is $< 10^{-3}$
- Degradation
 - expected coverage decreases rapidly, when not enough memory

Symbolic LTL Model-Checking

- LTL Model-Checking = Finding a reachable cycle
- Represent the graph symbolically
 - and use symbolic techniques to search
- There exists an infinite path from s, iff ||EG true||(s)
 - the graph is finite
 - infinite \Rightarrow cyclic!
 - exists a cycle containing an accepting state *a* iff *a* occurs infinitely often
 - use fairness to capture accepting states
- LTL Model-Checking = *EG* true under fairness!

Automata-Theoretic LTL Model Checking - p.27

food for slide eater