N B

Automata-Theoretic LTL Model
Checking

Graph Algorithms for Software Model Checking

(based on Arie Gurfinkel's csc2108 project)

Emptiness of Buchi Automata

N B

e An automation is non-empty iff
a there exists a path to an accepting state,
o such that there exists a cycle containing it



Emptiness of Blchi Automata

N N

e An automation is non-empty iff
o there exists a path to an accepting state,
e such that there exists a cycle containing it

e Is this automaton empty?

]

Automata-Theoretic LTL Model Checking — p.:

Emptiness of Buchi Automata

N N

e An automation is non-empty iff
o there exists a path to an accepting state,
e such that there exists a cycle containing it

e Is this automaton empty?
o No —it accepts a(bef )~

]

Automata-Theoretic LTL Model Checking — p.:



Emptiness of Blchi Automata

N N

e An automation is non-empty iff
o there exists a path to an accepting state,
e such that there exists a cycle containing it

e Is this automaton empty?
o No — it accepts a(bef)*

]

Automata-Theoretic LTL Model Checking — p.:

Emptiness of Buchi Automata

N N

e An automation is non-empty iff
o there exists a path to an accepting state,
e such that there exists a cycle containing it

e Is this automaton empty?
o No —it accepts a(bef )~

]

Automata-Theoretic LTL Model Checking — p.:



Emptiness of Blchi Automata

N N

e An automation is non-empty iff
o there exists a path to an accepting state,
e such that there exists a cycle containing it

e Is this automaton empty?
o No — it accepts a(bef)*

]

Automata-Theoretic LTL Model Checking — p.:

Emptiness of Buchi Automata

N N

e An automation is non-empty iff
o there exists a path to an accepting state,
e such that there exists a cycle containing it

e Is this automaton empty?
o No —it accepts a(bef )~

]

Automata-Theoretic LTL Model Checking — p.:



LTL Model-Checking

N B

e LTL Model-Checking = Emptiness of Biichi automata
e atiny bit of automata theory +

o trivial graph-theoretic problem
o typical solution — use depth-first search (DFS)

e Problem: state-explosion

o the graph is HUGE

e The result
e LTL model-checking is just a very elaborate DFS

L _

Automata-Theoretic LTL Model Checking — p.:

Depth-First Search — Refresher
| N

L _

Automata-Theoretic LTL Model Checking — p.«



Depth-First Search — Refresher

Depth-First Search — Refresher



Depth-First Search — Refresher
-

Depth-First Search — Refresher




Depth-First Search — Refresher
-

(2) (5)
Q.
O (O
L
Depth-First Search — Refresher
. (2) (5)
Q.
O (&)



Depth-First Search — Refresher

Depth-First Search — Refresher

e depth-first tree

[



DFS - The Algorithm
-

1: proc DFS(v)
2: add v to Visited
3:  dv] :=time
4: time:=time+ 1
5. for all w € succ(v) do
6 if w ¢ Visited then
7 DFS(w)
8 end if
9: end for
10:  flv] :==time
11: tzme:=time + 1
12: end proc

L _

Automata-Theoretic LTL Model Checking — p.!

DFS — Data Structures

N B

e implicit STACK

o stores the current path through the graph
e Visited table

o stores visited nodes

e used to avoid cycles

e for each node
o discovery time — array d
a finishing time — array f

L _

Automata-Theoretic LTL Model Checking — p.



What we want

f e Running time T
e at most linear — anything else is not feasible

e Memory requirements
o sequentially accessed — like STACK

o disk storage is good enough
e assume unlimited supply — so can ignore

o randomly accessed — like hash tables

e must use RAM
e limited resource — minimize
e why cannot use virtual memory?

L _

Automata-Theoretic LTL Model Checking — p.”

What else we want

f e Counterexamples T
e an automaton is non-empty iff exists an accepting

run
o this is the counterexample — we want it

e Approximate solutions
o partial result is better than nothing!

L _

Automata-Theoretic LTL Model Checking — p.



DFS — Complexity
| N

e Running time
a each node is visited once
a linear in the size of the graph

e Memory

o the STACK
o accessed sequentially
e can store on disk — ignore

e Visited table
o randomly accessed — important
e |Visited| =S xn
e n —number of nodes in the graph
e S —number of bits needed to represent each node

L _

Automata-Theoretic LTL Model Checking — p.¢

Take 1 — Tarjan’s SCC algorithm
| N

e lIdea: find all maximal SCCs: SCC;, SCC,, etc.

a an automaton is non-empty iff exists SCC;
containing an accepting state

L _

Automata-Theoretic LTL Model Checking — p.1(



Take 1 — Tarjan’s SCC algorithm
| N

e lIdea: find all maximal SCCs: SCC;, SCC,, etc.

a an automaton is non-empty iff exists SCC;
containing an accepting state

e Fact: each SCC is a sub-tree of DFS-tree
e need to find roots of these sub-trees

L _

Automata-Theoretic LTL Model Checking — p.1(

Take 1 — Tarjan’s SCC algorithm
| N

e lIdea: find all maximal SCCs: SCC;, SCC,, etc.

a an automaton is non-empty iff exists SCC;
containing an accepting state

e Fact: each SCC is a sub-tree of DFS-tree
e need to find roots of these sub-trees

Automata-Theoretic LTL Model Checking — p.1(



Finding a Root of an SCC
-

e For each node v, compute lowlink[v]

e lowlink[v] is the minimum of
o discovery time of v

o discovery time of w, where
o w belongs to the same SCC as v
o the length of a path from v to w is at least 1

e Fact: v is a root of an SCC iff

e d[v] = lowlink[v]

L _

Automata-Theoretic LTL Model Checking — p.1:

Finally: the algorithm
ﬁl: proc SCC_SEARCH (v) 13: end if T

2:  addwvto Visited 14:  end for
3. d[v] :=time 15:  if lowlink[v] = d[v] then
4:  time:=time+1 16: repeat
5:  lowlink[v] :=d[v] 17: pop z from top of STACK
6: pushwvon STACK 18: if z € Fthen
7:  forall w e suce(v) do 19: terminate with “Yes”
8 if w¢ Visited then 20: end if
9: SCC_SEARCH (w) 21: until z = v
10: lowlink[v] := min(lowlink[v], lowlink[w]) 22:  endif
11: else if dlw] < d[v] and wis on STACK then 23: end proc
12: lowlink[v] := min(d[w], lowlink[v])

L _

Automata-Theoretic LTL Model Checking — p.1:



Finally: the algorithm
ﬁl: proc SCC_SEARCH (v) 13: end if T

2:  addwvto Visited 14: end for
3. d[v] :=time 15:  if lowlink[v] = d[v] then
4:  time:=time+1 16: repeat
5. lowlink[v] :=d[v] 17: pop z from top of STACK
6: pushwvon STACK 18: if z € Fthen
7. forall w € succ(v) do 19: terminate with “Yes”
8 if w ¢ Visited then 20: end if
9: SCC_SEARCH (w) 21: until z = v
10: lowlink[v] := min(lowlink[v], lowlink[w]) 22:  endif
11: else if dlw] < d[v] and wis on STACK then 23: end proc
12: lowlink[v] := min(d[w], lowlink[v])

@ &)
L _

Automata-Theoretic LTL Model Checking — p.1:

Tarjan’s SCC algorithm — Analysis

N B

e Running time
e linear in the size of the graph
e Memory
o STACK - sequential, ignore
o Visited — O(S x n)
e lowlink —logn x n (wasted space?)
a n Is not known a priori
e assume n is at least > 232
e Counterexamples
o can be extracted from the STACK
a even more — get multiple counterexamples

L e If we sacrifice some of generality, can we do better? J

Automata-Theoretic LTL Model Checking — p.1:



Take 2 — Two Sweeps
a N

e Don’t look for maximal SCCs
e Find a reachable accepting state that is on a cycle

e |dea: use two sweeps
o sweep one: find all accepting states
o sweep two: look for cycles from accepting states

L _

Automata-Theoretic LTL Model Checking — p.1+

Take 2 — Two Sweeps
a N

e Don’t look for maximal SCCs
e Find a reachable accepting state that is on a cycle

e |dea: use two sweeps
o sweep one: find all accepting states
o sweep two: look for cycles from accepting states

e Problem?

e no longer a linear algorithm (revisit the states
multiple times)

L _

Automata-Theoretic LTL Model Checking — p.1¢



Take 2 — Two Sweeps
a N

e Don’t look for maximal SCCs
e Find a reachable accepting state that is on a cycle

e |dea: use two sweeps
o sweep one: find all accepting states
o sweep two: look for cycles from accepting states

e Problem?

e no longer a linear algorithm (revisit the states
multiple times)

O—@—0@—0—0F
L _

Automata-Theoretic LTL Model Checking — p.1¢

Fixing non-linearity: Graph Theoretic Rest

N B

e Fact: let v and « be two nodes, such that
e flv] < flu]
e v is noton a cycle

o then, no cycle containing u contains nodes
reachable from v

L _

Automata-Theoretic LTL Model Checking — p.1!



Fixing non-linearity: Graph Theoretic Rest

N B

e Fact: let v and « be two nodes, such that
e flv] < flu]
e v is noton a cycle

o then, no cycle containing u contains nodes
reachable from v

L _

Automata-Theoretic LTL Model Checking — p.1!

Fixing non-linearity: Graph Theoretic Rest

N B

e Fact: let v and « be two nodes, such that
e flv] < flu]
e v is notona cycle

o then, no cycle containing u contains nodes
reachable from v

L _

Automata-Theoretic LTL Model Checking — p.1!



Take 3 — Double DFS
ﬁ : proc DFS1(v) T

1
2 add v to Visited
3:  forall w € suce(v) do 1: proc SWEEP2(Q)
4: if w ¢ Visited then 2:  while@ #[] do
5 DFS1(w) 3: f = dequeue(Q)
6 end if 4: DFS2(f, f)
7 end for 5.  end while
8 if v € F then 6: terminate with “No”
9: addvto Q 7: end proc
10: endif
11: end proc
1: proc DFS2(v, f)
2 add v to Visited 1: proc DDFS(v)
3:  for all w € succ(v) do )
. 2. Q=0
4 if v = fthen ) .
; . 3 Visited =10
5: terminate with “Yes”
. . 4:  DFS1(v)
6 else if w & Visited then 5 Visited = 0
. . isited =
5 DFS2(w, f) 6: SWEEP2(Q)
8: end if 7 end proc
9: end for ' P
10: end proc

Automata-Theoretic LTL Model Checking — p.1¢

Double DFS — Analysis

N B

e Running time

e linear! (single Visited table for different final states,
SO no state is processed twice)

e Memory requirements
a O(nx59)
e Problem
a where is the counterexample?!

L _

Automata-Theoretic LTL Model Checking — p.1°



Take 4 — Nested DFS
-

e ldea

o when an accepting state is finished
o stop first sweep

a start second sweep
o if cycle is found, we are done

a otherwise, restart the first sweep

e As good as double DFS, but
o does not need to always explore the full graph

o counterexample is readily available
e a path to an accepting state is on the stack of the
first sweep
o acycle is on the stack of the second

L _

Automata-Theoretic LTL Model Checking — p.1¢

A Few More Tweaks

N B

e No need for two Visited hashtables
e empty hashtable wastes space
o merge into one by adding one more bit to each node
e (v,0) € Visited iff v was seen by the first sweep
e (v,1) € Visited iff v was seen by the second sweep
e Early termination condition

e nested DFS can be terminated as soon as it finds a
node that is on the stack of the first DFS

L _

Automata-Theoretic LTL Model Checking — p.1¢



On-the-fly Model-Checking

N B

e Typical problem consists of
o description of several process Py, Ps, ...
e property ¢ in LTL

e Before applying DFS algorithm
e construct graph for P =1I7_ F;
e construct Blchi automaton A, for —¢
e construct Buchi automaton for PN A-,

L _

Automata-Theoretic LTL Model Checking — p.2(

On-the-fly Model-Checking

N B

e Typical problem consists of
o description of several process Py, Ps, ...
e property ¢ in LTL

e Before applying DFS algorithm
e construct graph for P =1I7_ F;
e construct Blchi automaton A, for —¢
e construct Blchi automaton for PN A-,

e But,
a all constructions can be done in DFS order
o combine everything with the search
a result: on-the-fly algorithm, only the necessary part

L of the graph is built J

Automata-Theoretic LTL Model Checking — p.2(



State Explosion Problem

N B

e the size of the graph to explore is huge

e on real programs
o DFS dies after examining just 1% of the state space

e What can be done?

o abstraction
o false negatives

o partial order reduction. (to be covered)
e exact — but not applicable to full LTL

o partial exploration — explore as much as possible
o false positives

e In practice — combine all 3

L _

Automata-Theoretic LTL Model Checking — p.2:

Partial exploration techniques

N B

e Explore as much of the graph as possible

e The requirements

a must be compatible with
o on-the-fly model-checking
o nested depth-first search

a size of the graph not known a priori
o must perform as good as full exploration when
enough memory is available

o must degrade gracefully

e We will look at two techniques
e bitstate hashing
o hashcompact — a type of state compression

L _

Automata-Theoretic LTL Model Checking — p.2:



Bitstate Hashing
-

e a hashtable is
e an array d of k£ entries
e a hash function hash : States — 0.k — 1
o a collision resolution protocol
e toinsert v into a hashtable
o compute hash(v)
a if dlhash(v)] is empty, d[hash(v)] = v
o otherwise, apply collision resolution
e to lookup v
o if d[hash(v)] is empty, v is not in the table
o else if dlhash(v)] = v, v is in the table
L o otherwise, apply collision resolution J

Automata-Theoretic LTL Model Checking — p.2:

Bitstate Hashing
-

e If there are no collisions, don’'t need to store v at all!
e instead, just store one bit — empty or not

e even better, use two hash functions
e to insert v, set d[hashi(v)] = 1 and d[hasha(v)] =1

e sound with respect to false answers
o if a counterexample is found, it is found!

e In practice, up to 99% coverage
e collisions increase gradually when not enough memory
e coverage decreases at the rate collisions increase

L _

Automata-Theoretic LTL Model Checking — p.2:



-

[

e If nested DFS stops when a successor to v in DF'S2 is

o Assume a large virtual hashtable, say 24 entries

Why does this work?
-

on the stack of DF'S1, how is soundness guaranteed,
l.e., why is the counterexample returned by
model-checker real?

Answer: States are stored on the stack without hashing,
since stack space does not need to be saved.

_

Automata-Theoretic LTL Model Checking — p.2!

Hashcompact

-

For each node v,
e instead of using v,
a use hash(v), its hash value in the large table

Store hash(v) in a normal hashtable,

o or even the one with bitstate hashing
When there is enough memory

o probability of missing a node is < 1073

Degradation

o expected coverage decreases rapidly, when not
enough memory

_

Automata-Theoretic LTL Model Checking — p.2¢



Symbolic LTL Model-Checking

N B

e LTL Model-Checking = Finding a reachable cycle

e Represent the graph symbolically
a and use symbolic techniques to search

e There exists an infinite path from s, iff || EG truel|(s)
o the graph is finite
o infinite = cyclic!
e exists a cycle containing an accepting state q iff a

occurs infinitely often
e use fairness to capture accepting states

e LTL Model-Checking = EG true under fairness!

L _

Automata-Theoretic LTL Model Checking — p.2°

N B

food for slide eater

L _

Automata-Theoretic LTL Model Checking — p.2¢



	Emptiness of B"{u}chi Automata
	LTL Model-Checking
	Depth-First Search -- Refresher
	DFS -- The Algorithm
	DFS -- Data Structures
	What we want
	What else we want
	DFS -- Complexity
	Take 1 -- Tarjan's SCC algorithm
	Finding a Root of an SCC
	Finally: the algorithm
	Tarjan's SCC algorithm -- Analysis
	Take 2 -- Two Sweeps
	Fixing non-linearity: Graph Theoretic Result
	Take 3 -- Double DFS
	Double DFS -- Analysis
	Take 4 -- Nested DFS
	A Few More Tweaks
	On-the-fly Model-Checking
	State Explosion Problem
	Partial exploration techniques
	Bitstate Hashing
	Bitstate Hashing
	Why does this work?
	Hashcompact
	Symbolic LTL Model-Checking
	

