An Automata Theoretic Approach to Branching Time Model Checking

Arie Gurfinkel

arie@cs.toronto.edu

University of Toronto

An Automata Theoretic Approach to Branching Time Model Checking - p.

CTL Satisfiability

- Bounded branching property of CTL
 - a CTL formula φ is satisfiable iff it is satisfiable on a tree with branching degree bounded by $|\varphi|$
- Satisfiability via alternating automata
 - Given a CTL formula φ
 - build an ATA A_{φ} that works over $|\varphi|$ -ary trees
 - φ is satisfiable iff A_{φ} is non-empty
- Non-emptiness problem for ATA is EXPTIME-complete
 - satisfiability problem for CTL is in EXPTIME

CTL Model-Checking

- K is a Kripke structure with branching degrees in \mathcal{D}
- φ is a CTL formula
- Build an ATA $A_{\mathcal{D},\varphi}$ such that
 - $\mathcal{L}(A_{\mathcal{D},\varphi})$ contains all \mathcal{D} -trees that satisfy φ
- $K \models \varphi$ iff the computation tree T_K induced by K is in $\mathcal{L}(A_{\mathcal{D},\varphi})$
- Automata-based model-checking algorithm
 - build a product automaton of K and $A_{\mathcal{D},\varphi}$ whose language is $\mathcal{L}(A_{\mathcal{D},\varphi}) \cap T_K$
 - check if it is empty or not

An Automata Theoretic Approach to Branching Time Model Checking – p.:

Complexity

- In general, checking non-emptiness of an ATA is expensive
- But, we are dealing with a special case
 - only interested in automata that arise from CTL formulas
 - the language of the product automaton either empty, or contains a single tree
- Using the above we obtain a linear automata-based CTL algorithm

Weak Alternating Automata

- A Büchi ATA $A = (\Sigma, Q, q_0, \delta, F)$ is weak iff
 - exists a partitioning of Q into Q_1, Q_2, \ldots, Q_n
 - each Q_i is either accepting
 - $Q_i \subseteq F$
 - or rejecting
 - $Q_i \cap F = \emptyset$
 - there exists a partial order such that
 - If *q* ∈ *Q_i*, *q_j* ∈ *Q_j*, and *q_j* appears in the transition of *q*, then *i* ≥ *j*
- Any run of a Weak Alternating Automaton (WAA) gets trapped in either accepting or rejecting state

An Automata Theoretic Approach to Branching Time Model Checking – $\mathsf{p}.\mathsf{t}$

Weak Alternating Automata and CTL

- ATA constructed for a CTL formula φ is weak
 - each formula in $cl(\varphi)$ forms a singleton set in the partition
 - the partial order is given by the sub-formula ordering
- Let $\varphi = EF(AGp)$, then
 - the partition is $\{EF(AGp)\} > \{AGp\} > \{p\}$
 - $\{AGp\}$ is the accepting set
 - ${EF(AGp)}$, and ${p}$ are rejecting

The Product Automaton

- The product automaton of ATA A_{φ} and a Kripke structure *K* is
 - weak if A_{φ} is weak
 - Büchi if A_{φ} is Büchi
 - an automaton over infinite words!
 - a 1-letter automaton!
 - i.e. $\Sigma = \{a\}$
- The product automaton is weak alternating Büchi word automaton

An Automata Theoretic Approach to Branching Time Model Checking - p.7

Constructing the Product

- Let $A_{\varphi} = (2^{AP}, Q, q_0, \delta_{\varphi}, F)$ be a WAA for CTL formula φ
- Let $K = (AP, S, s_0, L, R)$ be a Kripke structure
- The product automaton is
 - $A_{K,\varphi} = (\{a\}, Q \times S, \langle q_0, s_0 \rangle, \delta, S \times F)$
 - if $\delta_{\varphi}(q, L(s), k) = \theta$
 - and $R(s) = t_0, \ldots, t_k$, then
 - $\ \ \, { \ \ \, o \ \ \, } \ \delta(\langle q,s\rangle,a)=\theta',$
 - where θ' is obtained from θ by replacing each (c,q') with $\langle q',t_c\rangle$
- The weakness partition is induced by A_{φ}
- The product automaton simulates the run of A_{φ} on the computation tree of K

Example

$$\bullet \ \varphi = EFq$$

state $\delta(q, \emptyset, k)$ $\delta(q, \{q\}, k)$ qfalsetrueEFq $\bigvee_{c=0}^{k-1}(c, EFq)$ true

Kripke Structure

Product automaton

state	$\delta(q,a)$
$\langle EFq, s_0 \rangle$	$\langle EFq, s_1 \rangle$
$\langle EFq, s_1 \rangle$	true

An Automata Theoretic Approach to Branching Time Model Checking – p.§

Example

•
$$\varphi = EGAXp$$

state	$\delta(q, \emptyset, k)$	$\delta(q,\{p\},k)$
p	false	true
AXp	$\bigwedge_{c=0}^{k-1}(c,p)$	$igwedge_{c=0}^{k-1}(c,p)$
EGAXp	$\bigwedge_{c=0}^{k-1}(c,p) \land \bigvee_{c=0}^{k-1}(c,EGAXp)$	$\bigwedge_{c=0}^{k-1} (c, p) \land \bigvee_{c=0}^{k-1} (c, EGAXp)$

Product automaton

state	$\delta(q,a)$
$\langle p, s_0 \rangle$	true
$\langle p, s_1 \rangle$	true
$\langle EGAXp, s_0 \rangle$	$\langle p, s_1 \rangle \land \langle EGAXp, s_1 \rangle$
$\langle EGAXp, s_1 \rangle$	$\langle p, s_0 \rangle \land \langle p, s_1 \rangle \land (\langle EGAXp, s_0 \rangle \lor \langle EGAXp, s_1 \rangle)$

Non-Emptiness Algorithm

- The algorithm proceeds up in the weakness partial order
 - \bullet each state is labeled with either true or false
 - an automaton is non-empty iff its initial state is labeled with true

An Automata Theoretic Approach to Branching Time Model Checking - p.11

Non-Emptiness Algorithm

The algorithm

- pick a Q_i with the smallest *i* that is not yet labeled
- repeatedly, for each $q \in Q_i$
 - label q with true is $\delta(q, a) = \mathbf{true}$
 - label q with false is $\delta(q, a) =$ false
 - use the labeling on q to simplify any δ in which q occurs
- if there are any unlabeled states in Q_i
 - if Q_i is accepting, label them with true
 - if Q_i is rejecting, label them with false
- Complexity
 - linear in the size of property automaton and the Kripke structure

Example

$$\bullet \ \varphi = EFq$$

state
$$\delta(q, \emptyset, k)$$
 $\delta(q, \{q\}, k)$ q falsetrue EFq $\bigvee_{c=0}^{k-1}(c, EFq)$ true

Kripke Structure

Product automaton

state	$\delta(q,a)$
$\langle EFq, s_0 \rangle$	$\langle EFq, s_1 \rangle$
$\langle EFq, s_1 \rangle$	true

An Automata Theoretic Approach to Branching Time Model Checking – p.1%

Example

•
$$\varphi = EGAXp$$

state	$\delta(q, \emptyset, k)$	$\delta(q,\{p\},k)$
p	false	true
AXp	$\bigwedge_{c=0}^{k-1}(c,p)$	$\bigwedge_{c=0}^{k-1}(c,p)$
EGAXp	$\bigwedge_{c=0}^{k-1}(c,p) \land \bigvee_{c=0}^{k-1}(c,EGAXp)$	$\bigwedge_{c=0}^{k-1}(c,p) \land \bigvee_{c=0}^{k-1}(c,EGAXp)$

Product automaton

state	$\delta(q,a)$
$\langle p, s_0 \rangle$	true
$\langle p, s_1 \rangle$	true
$\langle EGAXp, s_0 \rangle$	$\langle p, s_1 \rangle \land \langle EGAXp, s_1 \rangle$
$\langle EGAXp, s_1 \rangle$	$\langle p, s_0 \rangle \land \langle p, s_1 \rangle \land (\langle EGAXp, s_0 \rangle \lor \langle EGAXp, s_1 \rangle)$

Space Efficient Algorithm

- For LTL we have an on-the-fly algorithm that only builds as much of the structure as necessary
- Is this possible for CTL?
- For a long time it was considered that the bottom-up nature of the CTL algorithm requires to construct the full structure first!
- With HAA we show that a space efficient algorithm for CTL is possible
- Actually, the same algorithm applies to CTL*
- But, not to the alternation free μ -calculus!

An Automata Theoretic Approach to Branching Time Model Checking - p.15

Hesitation Partition

- $A_{K,\varphi} = K \times A_{\mathcal{D},\varphi}$ product automaton of K and φ
 - each state is an element of $S \times cl(\varphi)$
 - weakness partition based on the second component
 - at most $|cl(\varphi)|$ elements of the partition
- Each partition set Q_i can be classified as
 - transient all transitions lead to states in lower Q_i 's
 - corresponds to all elements of $cl(\varphi)$ except for U and R formulas
 - existential a transition only contains disjunctively related elements of the same Q_i
 - corresponds to EU and ER formulas
 - universal a transition only contains conjunctively related elements of the same Q_i
 - corresponds to AU and AR formulas

Hesitant Automata

- $A = (\Sigma, \mathcal{D}, Q, \delta, q_0, \langle G, B \rangle)$ is a hesitant automaton iff
 - Q can be partitioned into sets Q_i
 each Q_i is either transient, existential, or universal
 - there exists a partial order on the partition such that transitions in Q_i lead either to the same Q_i, or to a lower one
 - $G, B \subseteq Q$ is a acceptance condition
 - the partial order is called hesitation order
 - the longest chain in it is the hesitation depth
- Each infinite path along a run of a HAA is trapped in either existential or universal Q_i
 - an infinite path π is accepting if
 - Q_i is existential and $Inf(\pi) \cap G \neq \emptyset$
 - Q_i is universal and $Inf(\pi) \cap B = \emptyset$

An Automata Theoretic Approach to Branching Time Model Checking - p.17

From CTL to HAA

- The WAA constructed from a CTL formula already satisfies the hesitation partition
 - we only need to change the acceptance condition
- The acceptance condition of WAA contains all *ER* and *AR* sub-formulas
 - a path on a run is allowed to get trapped only in a set corresponding to *ER* or *AR* formulas

From CTL to HAA

- In HAA we get
 - a path can get trapped in an existential set iff it corresponds to *ER* formula
 - a path can get trapped in a universal set iff it does not correspond to AU formula
- The acceptance condition for HAA is $\langle G, B \rangle$
 - G contains all ER sub-formulas
 - B contains all AU sub-formulas
- The transition relation of HAA is more constrained than of WAA, but its acceptance condition is more expressive

An Automata Theoretic Approach to Branching Time Model Checking - p.15

Example

•
$$\varphi = EFq$$

 $false | false |$

• acceptance condition (\emptyset, \emptyset)

•
$$\varphi = EGAXp$$

state	$\delta(q, \emptyset, k)$	$\delta(q,\{p\},k)$
p	false	true
AXp	$\bigwedge_{c=0}^{k-1}(c,p)$	$\bigwedge_{c=0}^{k-1}(c,p)$
EGAXp	$\bigwedge_{c=0}^{k-1}(c,p) \land \bigvee_{c=0}^{k-1}(c,EGAXp)$	$\bigwedge_{c=0}^{k-1} (c, p) \land \bigvee_{c=0}^{k-1} (c, EGAXp)$
• acceptance condition $(\{EGAXp\}, \emptyset)$		

Non-Emptiness Algorithm for HAA

- Intuition
 - for a state from an existential set look for a witness
 - ${f \circ}$ if one is found, label the state with ${f true}$
 - otherwise, label it with false
 - for a state from a universal set look for a counterexample
 - if one is found, label the state with false
 - ullet otherwise, label it with ${f true}$
 - an automaton is non-empty iff the initial state is labeled with true
- Space complexity is $O(m \log^2 n)$
 - \bullet *m* is the depth of the automaton
 - n is its size

An Automata Theoretic Approach to Branching Time Model Checking - p.21

Immediate Reachability

- Let q and q' be states of the same Q_i
- q' is immediately reachable from q iff
 - when $\delta(q,\sigma,k)$ is simplified using values of the states from the lower Q_i
 - q' appears in δ
 - \blacksquare i.e. the value of δ depends on q'
- q' is *reachable* from q if there exists a path of immediate reachable states from q to q'
- A state q is provably true if its transition simplifies to true
- A state q is provable false if its transition simplifies to false

Non-Emptiness Algorithm

- Start at the initial state
- If q is a transient state recurse to all successors and simplify the transition relation
- If q is from an existential Q_i
 - if there exists reachable state q' in the same Q_i that is provably true
 - label q with true
 - if not, search for a reachable state $q' \in G$ in the same Q_i that is reachable from itself
 - if found, label q with true
 - otherwise, label q with false

An Automata Theoretic Approach to Branching Time Model Checking – p.23

Non-Emptiness Algorithm

- If q is from a universal Q_i
 - if there exists reachable state q' in the same Q_i that is provably false
 - label q with false
 - if not, search for a reachable state $q' \in B$ in the same Q_i that is reachable from itself
 - if found, label q with false
 - otherwise, label q with true

Example

$$\bullet \ \varphi = EFq$$

state $\delta(q, \emptyset, k)$ $\delta(q, \{q\}, k)$ qfalsetrueEFq $\bigvee_{c=0}^{k-1}(c, EFq)$ true

Kripke Structure

Product automaton

state	$\delta(q,a)$
$\langle EFq, s_0 \rangle$	$\langle EFq, s_1 \rangle$
$\langle EFq, s_1 \rangle$	true

An Automata Theoretic Approach to Branching Time Model Checking – $p.2\xi$

Example

•
$$\varphi = EGAXp$$

state	$\delta(q, \emptyset, k)$	$\delta(q,\{p\},k)$
p	false	true
AXp	$\bigwedge_{c=0}^{k-1}(c,p)$	$igwedge_{c=0}^{k-1}(c,p)$
EGAXp	$\bigwedge_{c=0}^{k-1}(c,p) \land \bigvee_{c=0}^{k-1}(c,EGAXp)$	$\bigwedge_{c=0}^{k-1}(c,p) \land \bigvee_{c=0}^{k-1}(c,EGAXp)$

Product automaton

state	$\delta(q,a)$
$\langle p, s_0 \rangle$	true
$\langle p, s_1 \rangle$	true
$\langle EGAXp, s_0 \rangle$	$\langle p, s_1 \rangle \land \langle EGAXp, s_1 \rangle$
$\langle EGAXp, s_1 \rangle$	$\langle p, s_0 \rangle \land \langle p, s_1 \rangle \land (\langle EGAXp, s_0 \rangle \lor \langle EGAXp, s_1 \rangle)$

Summary

- Automata over infinite objects
 - many possible acceptance conditions
 - more expressive acceptance conditions lead to simpler automata for the same language
- Alternating automata
 - extend non-determinism by allowing both disjunctive and conjunctive choice
 - greatly simplify constructing property automata

An Automata Theoretic Approach to Branching Time Model Checking – p.27

Summary – Model-Checking

- automata provide a uniform solution to the model-checking problem
- branching versus linear time is captured by
 - automata over strings, and
 - automata over trees
- same solution to both satisfiability and model-checking
- a formula φ is satisfiable iff
 - an automaton corresponding to φ is non-empty
- a model K satisfies a formula φ iff
 - \bullet the product automaton of K and φ is non-empty

Summary – Model-Checking

- clean separation between logic and algorithms
 - what does the formula mean?
 - how to construct an automaton for it
 - what is the complexity of model-checking
 - solving the non-emptiness problem

An Automata Theoretic Approach to Branching Time Model Checking - p.29