N B

An Automata Theoretic Approach to
Branching Time Model Checking

Arie Gurfinkel

ari e@s. toronto. edu

University of Toronto

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.:

CTL Satisfiability

N B

e Bounded branching property of CTL
e a CTL formula ¢ is satisfiable iff it is satisfiable on a
tree with branching degree bounded by |¢|
e Satisfiability via alternating automata

a Given a CTL formula ¢
e build an ATA A, that works over |p|-ary trees
e ¢ is satisfiable iff A, is non-empty

e Non-emptiness problem for ATA is EXPTIME-complete
o satisfiability problem for CTL is in EXPTIME

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.:

CTL Model-Checking

e K is a Kripke structure with branching degrees in D
e ¢isaCTL formula

e Build an ATA Ap , such that
e L(Ap,) contains all D-trees that satisfy ¢

e K [¢ iff the computation tree Tk induced by K is in
L(Ap,,)
e Automata-based model-checking algorithm
e build a product automaton of K and Ap , whose
language is L(Ap ,) N Tk
o check if it is empty or not

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.:

Complexity

N B

e In general, checking non-emptiness of an ATA is
expensive
e But, we are dealing with a special case

o only interested in automata that arise from CTL
formulas

o the language of the product automaton either empty,
or contains a single tree

e Using the above we obtain a linear automata-based
CTL algorithm

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.«

Weak Alternating Automata
-

e A Blchi ATA A = (%,0Q, qo, 6, F) is weak iff
e exists a partitioning of @ into Q1,Qo, ..., Qx
a each Q; is either accepting
e Q;CF
a Or rejecting
e QiNEF =10
a there exists a partial order such that
e if g € Q4, gj € Q;, and ¢; appears in the transition
of ¢, theni > j
e Any run of a Weak Alternating Automaton (WAA) gets
trapped in either accepting or rejecting state

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.!

Weak Alternating Automata and CTL
| N

e ATA constructed for a CTL formula ¢ is weak

e each formula in cl(yp) forms a singleton set in the
partition

o the partial order is given by the sub-formula ordering
e Let p = EF(AGp), then

o the partitionis {EF(AGp)} > {AGp} > {p}

o {AGp} is the accepting set

e {EF(AGp)}, and {p} are rejecting

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.t

-

The Product Automaton

-

e The product automaton of ATA A, and a Kripke

structure K is
o weak if A, is weak
o Buchi if A, is Blchi
e an automaton over infinite words!
o a l-letter automaton!
e le. Y= {a}

The product automaton is weak alternating Buichi word
automaton

_

An Automata Theoretic Approach to Branching Time Model Checking — p.”

Constructing the Product

e Let A, = (247.Q, qo,6,, F') be a WAA for CTL formula ¢
e Let K = (AP, S, so, L, R) be a Kripke structure
e The product automaton is

Ag, = ({a},Q x S,{qo,50),9,S x F)
e ifo,(q, L(s),k) =46
e and R(s) = tg,...,t, then
e 6({q,s),a) =¢,
o Where ¢’ is obtained from 6 by replacing each (c, ¢’)
with (¢, t.)

e The weakness partition is induced by A,
e The product automaton simulates the run of A, on the

computation tree of K J

An Automata Theoretic Approach to Branching Time Model Checking — p.t

Example

state H 5(q,0,k) ‘ 6(q,{q}, k)

e p=Lkkq q false true
EFq| Vi)(c,EFq)| true
e Kripke Structure
S0 51
e Product automaton
state H d(q,a)
(EFq,s0)

‘ <Ean 31)

true

An Automata Theoretic Approach to Branching Time Model Checking — p.¢

L (EFq,s1)

Example
ﬁ e p=FKEGAXp T
state H 6(q,0,k) ‘ d(q, {p}, k)
D false true
AXp Nezo ;1) Nezo(c:1)

EGAXp | N3 (e,p) AVF_§ (e, EGAXD) | Nl (e, p) AVF_} (e, EGAXD)

e Product automaton

state H d(q,a)

(p, o) true

(p, s1) true
(EGAXp, s0) (p,s1) N(EGAXp, 51)

(EGAXp,s1) || (p,so) A (p,s1) N (EGAXDp, so) V (EGAXDp, s1))

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.1(

Non-Emptiness Algorithm

N B

e The algorithm proceeds up in the weakness partial
order

o each state is labeled with either true or false

a an automaton is non-empty iff its initial state is
labeled with true

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.1:

Non-Emptiness Algorithm

N B

e The algorithm
a pick a @); with the smallest i that is not yet labeled

a repeatedly, for each ¢ € Q;
o label ¢ with true is (¢, a) = true
o label g with false is d(q,a) = false
e use the labeling on ¢ to simplify any ¢ in which ¢
occurs

o if there are any unlabeled states in Q;
e if Q; is accepting, label them with true
o If Q; is rejecting, label them with false

e Complexity

a linear in the size of property automaton and the
Kripke structure

_

An Automata Theoretic Approach to Branching Time Model Checking — p.1:

[

Example

state H 5(q,0,k) ‘ 6(q,{q}, k)

e p=Lkkq q false true
EFq| Vi)(c,EFq)| true
e Kripke Structure
S0 51
e Product automaton
state H d(q,a)
(EFq,s0)

‘ <Ean 31)

true

An Automata Theoretic Approach to Branching Time Model Checking — p.1¢

L (EFq,s1)

Example
ﬁ e p=FKEGAXp T
state H 6(q,0,k) ‘ d(q, {p}, k)
D false true
AXp Nezo ;1) Nezo(c:1)

EGAXp | N3 (e,p) AVF_§ (e, EGAXD) | Nl (e, p) AVF_} (e, EGAXD)

e Product automaton

state H d(q,a)

(p, o) true

(p, s1) true
(EGAXp, s0) (p,s1) N(EGAXp, 51)

(EGAXp,s1) || (p,so) A (p,s1) N (EGAXDp, so) V (EGAXDp, s1))

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.1¢

Space Efficient Algorithm
-

e For LTL we have an on-the-fly algorithm that only builds
as much of the structure as necessary

e Is this possible for CTL?

e For along time it was considered that the bottom-up
nature of the CTL algorithm requires to construct the full
structure first!

e With HAA we show that a space efficient algorithm for
CTL is possible

e Actually, the same algorithm applies to CTL*
e But, not to the alternation free p-calculus!

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.1!

Hesitation Partition

N B

e Ak, = K x Ap , — product automaton of K and ¢

o each state is an element of S x cl(y)
o weakness partition based on the second component
o at most |cl(yp)| elements of the partition

e Each partition set (); can be classified as

a transient — all transitions lead to states in lower Q;’s
o corresponds to all elements of cl(yp) except for U
and R formulas

e existential — a transition only contains disjunctively
related elements of the same Q);
e corresponds to £FU and ER formulas

e universal — a transition only contains conjunctively
L related elements of the same Q); J
e corresponds to AU and AR formulas

An Automata Theoretic Approach to Branching Time Model Checking — p.1t

Hesitant Automata

f e A=(3,D,Q,0,q, (G, B)) is a hesitant automaton iff T
a () can be partitioned into sets Q);
o each Q); is either transient, existential, or universal

o there exists a partial order on the partition such that

transitions in Q; lead either to the same Q);, or to a
lower one

e G, B C (@ is aacceptance condition
e the partial order is called hesitation order
a the longest chain in it is the hesitation depth

e Each infinite path along a run of a HAA is trapped in
either existential or universal Q;

e an infinite path = is accepting if

L e Q; is existential and Inf(r) NG # () J
e Q;is universal and Inf(r)NB =10

An Automata Theoretic Approach to Branching Time Model Checking — p.1°

From CTL to HAA

f e The WAA constructed from a CTL formula already T
satisfies the hesitation partition

o we only need to change the acceptance condition

e The acceptance condition of WAA contains all ER and
AR sub-formulas

a a path on arun is allowed to get trapped only in a set
corresponding to FR or AR formulas

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.1¢

From CTL to HAA

N B

e In HAA we get

e a path can get trapped in an existential set iff it
corresponds to £ R formula

e a path can get trapped in a universal set iff it does
not correspond to AU formula

e The acceptance condition for HAA is (G, B)
e G contains all £R sub-formulas
e B contains all AU sub-formulas

e The transition relation of HAA is more constrained than
of WAA, but its acceptance condition is more expressive

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.1¢

Example

N B

state H 5(q,0,k) ‘ 6(q,{q}, k)

e p=Lklq q false true
EFq | V¥ 3(c, EFq)| true
e acceptance condition (0, 0)
e p=FGAXp
state H (g, 0, k) ‘ d(q,{r}, k)
P false true
AXp Ae—o (c,p) Ae—o(c,p)
EGAXp | NiZy(e,p) AV (e, EGAXp) | N5 (c,p) A ViZy(c, EGAXp)

C
e acceptance condition ({ EGAXp}, ()

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.2(

Non-Emptiness Algorithm for HAA

N B

e Intuition

o for a state from an existential set look for a witnhess
e if one is found, label the state with true
o otherwise, label it with false

o for a state from a universal set look for a
counterexample
o If one is found, label the state with false
o otherwise, label it with true

a an automaton is non-empty iff the initial state is
labeled with true
e Space complexity is O(mlog* n)
a m IS the depth of the automaton

L e n IS Its size J

An Automata Theoretic Approach to Branching Time Model Checking — p.2:

Immediate Reachability

-

e Let ¢ and ¢ be states of the same Q;

e ¢ is immediately reachable from g iff

o when d(q, o, k) is simplified using values of the states
from the lower Q);

e ¢ appearsiné
o i.e. the value of § depends on ¢

e ¢ is reachable from ¢ if there exists a path of immediate
reachable states from ¢ to ¢’

e A state ¢ is provably true if its transition simplifies to
true

e A state ¢ is provable false if its transition simplifies to
false

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.2:

Non-Emptiness Algorithm
| N

e Start at the initial state
e If g is a transient state recurse to all successors and

simplify the transition relation

e If ¢ is from an existential Q);

o if there exists reachable state ¢’ in the same Q); that
IS provably true
o label ¢ with true

o if not, search for a reachable state ¢’ € G in the same
Q; that is reachable from itself
o if found, label ¢ with true
o otherwise, label ¢ with false

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.2!

Non-Emptiness Algorithm
| N

e If ¢ is from a universal Q;

o if there exists reachable state ¢’ in the same Q; that
Is provably false
o label ¢ with false

o if not, search for a reachable state ¢’ € B in the same
Q; that is reachable from itself
o if found, label ¢ with false
o otherwise, label ¢ with true

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.2«

Example

state H 5(q,0,k) ‘ 6(q,{q}, k)

e p=Lkkq q false true
EFq| Vi)(c,EFq)| true
e Kripke Structure
S0 51
e Product automaton
state H d(q,a)
(EFq,s0)

‘ <Ean 31)

true

An Automata Theoretic Approach to Branching Time Model Checking — p.2¢

L (EFq,s1)

Example
ﬁ e p=FKEGAXp T
state H 6(q,0,k) ‘ d(q, {p}, k)
D false true
AXp Nezo ;1) Nezo(c:1)

EGAXp | N3 (e,p) AVF_§ (e, EGAXD) | Nl (e, p) AVF_} (e, EGAXD)

e Product automaton

state H d(q,a)

(p, o) true

(p, s1) true
(EGAXp, s0) (p,s1) N(EGAXp, 51)

(EGAXp,s1) || (p,so) A (p,s1) N (EGAXDp, so) V (EGAXDp, s1))

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.2t

summary

-

e Automata over infinite objects
e many possible acceptance conditions
e Mmore expressive acceptance conditions lead to
simpler automata for the same language
e Alternating automata

o extend non-determinism by allowing both disjunctive
and conjunctive choice

a greatly simplify constructing property automata

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.2°

Summary — Model-Checking
-

e automata provide a uniform solution to the
model-checking problem

e branching versus linear time is captured by
e automata over strings, and
e automata over trees

e same solution to both satisfiability and model-checking

e aformula ¢ is satisfiable iff
e an automaton corresponding to ¢ is non-empty

e a model K satisfies a formula iff
o the product automaton of K and ¢ is non-empty

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.2¢

Summary — Model-Checking
-

f e clean separation between logic and algorithms

e what does the formula mean?
e how to construct an automaton for it

o what is the complexity of model-checking
o solving the non-emptiness problem

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.2¢

	CTL Satisfiability
	CTL Model-Checking
	Complexity
	Weak Alternating Automata
	Weak Alternating Automata and CTL
	The Product Automaton
	Constructing the Product
	Example
	Example
	Non-Emptiness Algorithm
	Non-Emptiness Algorithm
	Example
	Example
	Space Efficient Algorithm
	Hesitation Partition
	Hesitant Automata
	From CTL to HAA
	From CTL to HAA
	Example
	Non-Emptiness Algorithm for HAA
	Immediate Reachability
	Non-Emptiness Algorithm
	Non-Emptiness Algorithm
	Example
	Example
	Summary
	Summary -- Model-Checking
	Summary -- Model-Checking

