
An Automata Theoretic Approach to
Branching Time Model Checking

Arie Gurfinkel

arie@cs.toronto.edu

University of Toronto

An Automata Theoretic Approach to Branching Time Model Checking – p.1

CTL Satisfiability

Bounded branching property of CTL
a CTL formula � is satisfiable iff it is satisfiable on a
tree with branching degree bounded by � � �

Satisfiability via alternating automata
Given a CTL formula �

build an ATA � � that works over � � � -ary trees

� is satisfiable iff � � is non-empty

Non-emptiness problem for ATA is EXPTIME-complete
satisfiability problem for CTL is in EXPTIME

An Automata Theoretic Approach to Branching Time Model Checking – p.2



CTL Model-Checking

� is a Kripke structure with branching degrees in �

� is a CTL formula

Build an ATA � � � � such that

� � � � � � � contains all �-trees that satisfy �

� � � � iff the computation tree � 	 induced by � is in

� � � � � � �

Automata-based model-checking algorithm
build a product automaton of � and � � � � whose
language is � � � � � � � 
 � 	

check if it is empty or not

An Automata Theoretic Approach to Branching Time Model Checking – p.3

Complexity

In general, checking non-emptiness of an ATA is
expensive

But, we are dealing with a special case
only interested in automata that arise from CTL
formulas
the language of the product automaton either empty,
or contains a single tree

Using the above we obtain a linear automata-based
CTL algorithm

An Automata Theoretic Approach to Branching Time Model Checking – p.4



Weak Alternating Automata

A Büchi ATA � � � � � � � � � � � � � � is weak iff
exists a partitioning of � into � � � � � � 	 	 	 � � 


each � � is either accepting

� � � �

or rejecting

� � 
 � � 


there exists a partial order such that
if � � � � , � � � � � , and � � appears in the transition
of �, then � � �

Any run of a Weak Alternating Automaton (WAA) gets
trapped in either accepting or rejecting state

An Automata Theoretic Approach to Branching Time Model Checking – p.5

Weak Alternating Automata and CTL

ATA constructed for a CTL formula � is weak
each formula in � � � � � forms a singleton set in the
partition
the partial order is given by the sub-formula ordering

Let � � � � � � � � � , then
the partition is � � � � � � � � � � � � � � � � � � �

� � � � � is the accepting set

� � � � � � � � �, and � � � are rejecting

An Automata Theoretic Approach to Branching Time Model Checking – p.6



The Product Automaton

The product automaton of ATA � � and a Kripke
structure � is

weak if � � is weak
Büchi if � � is Büchi
an automaton over infinite words!
a 1-letter automaton!

i.e. � � � � �

The product automaton is weak alternating Büchi word
automaton

An Automata Theoretic Approach to Branching Time Model Checking – p.7

Constructing the Product

Let � � � � � � �
� � � � � � � � � � � be a WAA for CTL formula �

Let � � � � � � � � � � � � � � � be a Kripke structure

The product automaton is

� 	 � � � � � � � � � 	 � � 
 � � � � � � � � � � 	 � �

if � � � � � � � � � � � � � 


and � � � � � � � � 	 	 	 � � � , then

� � 
 � � � � � � � � 
 �,
where 
 � is obtained from 
 by replacing each � � � �

�
�

with 
 �
�

� � � �

The weakness partition is induced by � �

The product automaton simulates the run of � � on the
computation tree of �

An Automata Theoretic Approach to Branching Time Model Checking – p.8



Example

� � � � �
� � � � � � � � � � � 	 
 � � � � � � � � 	 


� 
 � � � � � � � �

� � � �
� � ���
� � � � � � � � 
 � � � �

Kripke Structure

 !
"

 
"

� � � �

Product automaton

� � � � � � � � � # 


$ � � � � % � & $ � � � � % � &

$ � � � � % � & � � � �

An Automata Theoretic Approach to Branching Time Model Checking – p.9

Example

� � � � � ' �

� � � � � � � � � � � 	 
 � � � � � ( � � 	 


( 
 � � � � � � � �

) * ( +
� � ��
� � � � � ( 
 +

� � ��
� � � � � ( 


� , ) * ( +
� � ��
� � � � � ( 
 - �

� � ��
� � � � � � , ) * ( 
 +

� � ��
� � � � � ( 
 - �

� � ��
� � � � � � , ) * ( 


Product automaton

� � � � � � � � � # 


$ ( � % � & � � � �

$ ( � % � & � � � �

$ � , ) * ( � % � & $ ( � % � & - $ � , ) * ( � % � &

$ � , ) * ( � % � & $ ( � % � & - $ ( � % � & - � $ � , ) * ( � % � & . $ � , ) * ( � % � & 


An Automata Theoretic Approach to Branching Time Model Checking – p.10



Non-Emptiness Algorithm

The algorithm proceeds up in the weakness partial
order

each state is labeled with either � � � � or � � � � �

an automaton is non-empty iff its initial state is
labeled with � � � �

An Automata Theoretic Approach to Branching Time Model Checking – p.11

Non-Emptiness Algorithm

The algorithm
pick a � � with the smallest � that is not yet labeled
repeatedly, for each � � � �

label � with � � � � is � � � � � � � � � � �

label � with � � � � � is � � � � � � � � � � � �

use the labeling on � to simplify any � in which �

occurs
if there are any unlabeled states in � �

if � � is accepting, label them with � � � �

if � � is rejecting, label them with � � � � �

Complexity
linear in the size of property automaton and the
Kripke structure

An Automata Theoretic Approach to Branching Time Model Checking – p.12



Example

� � � � �
� � � � � � � � � � � 	 
 � � � � � � � � 	 


� 
 � � � � � � � �

� � � �
� � ���
� � � � � � � � 
 � � � �

Kripke Structure

 !
"

 
"

� � � �

Product automaton

� � � � � � � � � # 


$ � � � � % � & $ � � � � % � &

$ � � � � % � & � � � �

An Automata Theoretic Approach to Branching Time Model Checking – p.13

Example

� � � � � ' �

� � � � � � � � � � � 	 
 � � � � � ( � � 	 


( 
 � � � � � � � �

) * ( +
� � ��
� � � � � ( 
 +

� � ��
� � � � � ( 


� , ) * ( +
� � ��
� � � � � ( 
 - �

� � ��
� � � � � � , ) * ( 
 +

� � ��
� � � � � ( 
 - �

� � ��
� � � � � � , ) * ( 


Product automaton

� � � � � � � � � # 


$ ( � % � & � � � �

$ ( � % � & � � � �

$ � , ) * ( � % � & $ ( � % � & - $ � , ) * ( � % � &

$ � , ) * ( � % � & $ ( � % � & - $ ( � % � & - � $ � , ) * ( � % � & . $ � , ) * ( � % � & 


An Automata Theoretic Approach to Branching Time Model Checking – p.14



Space Efficient Algorithm

For LTL we have an on-the-fly algorithm that only builds
as much of the structure as necessary

Is this possible for CTL?

For a long time it was considered that the bottom-up
nature of the CTL algorithm requires to construct the full
structure first!

With HAA we show that a space efficient algorithm for
CTL is possible

Actually, the same algorithm applies to CTL �

But, not to the alternation free �-calculus!

An Automata Theoretic Approach to Branching Time Model Checking – p.15

Hesitation Partition

� 	 � � � � 	 � � � � — product automaton of � and �

each state is an element of � 	 � � � � �

weakness partition based on the second component
at most � � � � � � � elements of the partition

Each partition set � � can be classified as
transient – all transitions lead to states in lower � � ’s

corresponds to all elements of � � � � � except for �

and � formulas
existential – a transition only contains disjunctively
related elements of the same � �

corresponds to � � and � � formulas
universal – a transition only contains conjunctively
related elements of the same � �

corresponds to � � and � � formulas
An Automata Theoretic Approach to Branching Time Model Checking – p.16



Hesitant Automata

� � � � � � � � � � � � � � 
 � � � � � is a hesitant automaton iff

� can be partitioned into sets � �

each � � is either transient, existential, or universal
there exists a partial order on the partition such that
transitions in � � lead either to the same � � , or to a
lower one

� � � � � is a acceptance condition
the partial order is called hesitation order
the longest chain in it is the hesitation depth

Each infinite path along a run of a HAA is trapped in
either existential or universal � �

an infinite path � is accepting if

� � is existential and � � � � � � 
 � � � 


� � is universal and � � � � � � 
 � � 


An Automata Theoretic Approach to Branching Time Model Checking – p.17

From CTL to HAA

The WAA constructed from a CTL formula already
satisfies the hesitation partition

we only need to change the acceptance condition

The acceptance condition of WAA contains all � � and

� � sub-formulas
a path on a run is allowed to get trapped only in a set
corresponding to � � or � � formulas

An Automata Theoretic Approach to Branching Time Model Checking – p.18



From CTL to HAA

In HAA we get
a path can get trapped in an existential set iff it
corresponds to � � formula
a path can get trapped in a universal set iff it does
not correspond to � � formula

The acceptance condition for HAA is 
 � � � �
� contains all � � sub-formulas

� contains all � � sub-formulas

The transition relation of HAA is more constrained than
of WAA, but its acceptance condition is more expressive

An Automata Theoretic Approach to Branching Time Model Checking – p.19

Example

� � � � �
� � � � � � � � � � � 	 
 � � � � � � � � 	 


� 
 � � � � � � � �

� � � �
� � ���
� � � � � � � � 
 � � � �

acceptance condition � 
 � 
 �

� � � � � ' �

� � � � � � � � � � � 	 
 � � � � � ( � � 	 


( 
 � � � � � � � �

) * ( +
� � ��
� � � � � ( 
 +

� � ��
� � � � � ( 


� , ) * ( +
� � ��
� � � � � ( 
 - �

� � ��
� � � � � � , ) * ( 
 +

� � ��
� � � � � ( 
 - �

� � ��
� � � � � � , ) * ( 


acceptance condition � � � � � ' � � � 
 �

An Automata Theoretic Approach to Branching Time Model Checking – p.20



Non-Emptiness Algorithm for HAA

Intuition
for a state from an existential set look for a witness

if one is found, label the state with � � � �

otherwise, label it with � � � � �

for a state from a universal set look for a
counterexample

if one is found, label the state with � � � � �

otherwise, label it with � � � �

an automaton is non-empty iff the initial state is
labeled with � � � �

Space complexity is � � � � � �
� � �

� is the depth of the automaton

� is its size

An Automata Theoretic Approach to Branching Time Model Checking – p.21

Immediate Reachability

Let � and �
� be states of the same � �

�
� is immediately reachable from � iff

when � � � � � � � � is simplified using values of the states
from the lower � �

�
� appears in �

i.e. the value of � depends on �
�

�
� is reachable from � if there exists a path of immediate

reachable states from � to �
�

A state � is provably � � � � if its transition simplifies to

� � � �

A state � is provable � � � � � if its transition simplifies to

� � � � �

An Automata Theoretic Approach to Branching Time Model Checking – p.22



Non-Emptiness Algorithm

Start at the initial state

If � is a transient state recurse to all successors and
simplify the transition relation

If � is from an existential � �

if there exists reachable state �
� in the same � � that

is provably � � � �

label � with � � � �

if not, search for a reachable state �
� � � in the same

� � that is reachable from itself
if found, label � with � � � �

otherwise, label � with � � � � �

An Automata Theoretic Approach to Branching Time Model Checking – p.23

Non-Emptiness Algorithm

If � is from a universal � �

if there exists reachable state �
� in the same � � that

is provably � � � � �

label � with � � � � �

if not, search for a reachable state �
� � � in the same

� � that is reachable from itself
if found, label � with � � � � �

otherwise, label � with � � � �

An Automata Theoretic Approach to Branching Time Model Checking – p.24



Example

� � � � �
� � � � � � � � � � � 	 
 � � � � � � � � 	 


� 
 � � � � � � � �

� � � �
� � ���
� � � � � � � � 
 � � � �

Kripke Structure

 !
"

 
"

� � � �

Product automaton

� � � � � � � � � # 


$ � � � � % � & $ � � � � % � &

$ � � � � % � & � � � �

An Automata Theoretic Approach to Branching Time Model Checking – p.25

Example

� � � � � ' �

� � � � � � � � � � � 	 
 � � � � � ( � � 	 


( 
 � � � � � � � �

) * ( +
� � ��
� � � � � ( 
 +

� � ��
� � � � � ( 


� , ) * ( +
� � ��
� � � � � ( 
 - �

� � ��
� � � � � � , ) * ( 
 +

� � ��
� � � � � ( 
 - �

� � ��
� � � � � � , ) * ( 


Product automaton

� � � � � � � � � # 


$ ( � % � & � � � �

$ ( � % � & � � � �

$ � , ) * ( � % � & $ ( � % � & - $ � , ) * ( � % � &

$ � , ) * ( � % � & $ ( � % � & - $ ( � % � & - � $ � , ) * ( � % � & . $ � , ) * ( � % � & 


An Automata Theoretic Approach to Branching Time Model Checking – p.26



Summary

Automata over infinite objects
many possible acceptance conditions
more expressive acceptance conditions lead to
simpler automata for the same language

Alternating automata
extend non-determinism by allowing both disjunctive
and conjunctive choice
greatly simplify constructing property automata

An Automata Theoretic Approach to Branching Time Model Checking – p.27

Summary – Model-Checking

automata provide a uniform solution to the
model-checking problem

branching versus linear time is captured by
automata over strings, and
automata over trees

same solution to both satisfiability and model-checking

a formula � is satisfiable iff
an automaton corresponding to � is non-empty

a model � satisfies a formula � iff
the product automaton of � and � is non-empty

An Automata Theoretic Approach to Branching Time Model Checking – p.28



Summary – Model-Checking

clean separation between logic and algorithms
what does the formula mean?

how to construct an automaton for it
what is the complexity of model-checking

solving the non-emptiness problem

An Automata Theoretic Approach to Branching Time Model Checking – p.29


	CTL Satisfiability
	CTL Model-Checking
	Complexity
	Weak Alternating Automata
	Weak Alternating Automata and CTL
	The Product Automaton
	Constructing the Product
	Example
	Example
	Non-Emptiness Algorithm
	Non-Emptiness Algorithm
	Example
	Example
	Space Efficient Algorithm
	Hesitation Partition
	Hesitant Automata
	From CTL to HAA
	From CTL to HAA
	Example
	Non-Emptiness Algorithm for HAA
	Immediate Reachability
	Non-Emptiness Algorithm
	Non-Emptiness Algorithm
	Example
	Example
	Summary
	Summary -- Model-Checking
	Summary -- Model-Checking

