An Automata Theoretic Approach to Branching Time Model Checking

Arie Gurfinkel
arie@cs.toronto.edu
University of Toronto

CTL Satisfiability

- Bounded branching property of CTL
 - A CTL formula φ is satisfiable iff it is satisfiable on a tree with branching degree bounded by $|\varphi|$
- Satisfiability via alternating automata
 - Given a CTL formula φ
 - build an ATA A_φ that works over $|\varphi|$-ary trees
 - φ is satisfiable iff A_φ is non-empty
- Non-emptiness problem for ATA is EXPTIME-complete
 - Satisfiability problem for CTL is in EXPTIME
CTL Model-Checking

- K is a Kripke structure with branching degrees in \mathcal{D}
- φ is a CTL formula
- Build an ATA $A_{\mathcal{D},\varphi}$ such that
 - $\mathcal{L}(A_{\mathcal{D},\varphi})$ contains all \mathcal{D}-trees that satisfy φ
- $K \models \varphi$ iff the computation tree T_K induced by K is in $\mathcal{L}(A_{\mathcal{D},\varphi})$
- Automata-based model-checking algorithm
 - build a product automaton of K and $A_{\mathcal{D},\varphi}$ whose language is $\mathcal{L}(A_{\mathcal{D},\varphi}) \cap T_K$
 - check if it is empty or not

Complexity

- In general, checking non-emptiness of an ATA is expensive
- But, we are dealing with a special case
 - only interested in automata that arise from CTL formulas
 - the language of the product automaton either empty, or contains a single tree
- Using the above we obtain a linear automata-based CTL algorithm
Weak Alternating Automata

A Büchi ATA $A = (\Sigma, Q, q_0, \delta, F)$ is weak iff

- exists a partitioning of Q into Q_1, Q_2, \ldots, Q_n
- each Q_i is either accepting
 - $Q_i \subseteq F$
- or rejecting
 - $Q_i \cap F = \emptyset$
- there exists a partial order such that
 - if $q \in Q_i$, $q_j \in Q_j$, and q_j appears in the transition of q, then $i \geq j$

Any run of a Weak Alternating Automaton (WAA) gets trapped in either accepting or rejecting state

Weak Alternating Automata and CTL

ATA constructed for a CTL formula φ is weak

- each formula in $cl(\varphi)$ forms a singleton set in the partition
- the partial order is given by the sub-formula ordering

Let $\varphi = EF(AGp)$, then

- the partition is $\{EF(AGp)\} > \{AGp\} > \{p\}$
- $\{AGp\}$ is the accepting set
- $\{EF(AGp)\}$, and $\{p\}$ are rejecting
The Product Automaton

- The product automaton of ATA A_φ and a Kripke structure K is
 - weak if A_φ is weak
 - Büchi if A_φ is Büchi
 - an automaton over infinite words!
 - a 1-letter automaton!
 - i.e. $\Sigma = \{a\}$

- The product automaton is weak alternating Büchi word automaton

Constructing the Product

- Let $A_\varphi = (2^{AP}, Q, q_0, \delta_\varphi, F)$ be a WAA for CTL formula φ
- Let $K = (AP, S, s_0, L, R)$ be a Kripke structure
- The product automaton is $A_{K,\varphi} = (\{a\}, Q \times S, \langle q_0, s_0 \rangle, \delta, S \times F)$
 - if $\delta_\varphi(q, L(s), k) = \theta$
 - and $R(s) = t_0, \ldots, t_k$, then
 - $\delta(\langle q, s \rangle, a) = \theta'$,
 - where θ' is obtained from θ by replacing each (c, q') with $\langle q', t_c \rangle$
- The weakness partition is induced by A_φ
- The product automaton simulates the run of A_φ on the computation tree of K
Example

Formula

\(\varphi = EFq \)

<table>
<thead>
<tr>
<th>state</th>
<th>(\delta(q, \emptyset, k))</th>
<th>(\delta(q, {q}, k))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q)</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>(EFq)</td>
<td>(\bigvee_{c=0}^{k-1} (c, EFq))</td>
<td>true</td>
</tr>
</tbody>
</table>

Kripke Structure

![Kripke Structure Diagram](image)

Product Automaton

<table>
<thead>
<tr>
<th>state</th>
<th>(\delta(q, a))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\langle EFq, s_0 \rangle)</td>
<td>(\langle EFq, s_1 \rangle)</td>
</tr>
</tbody>
</table>

Example

Formula

\(\varphi = EGAXp \)

<table>
<thead>
<tr>
<th>state</th>
<th>(\delta(q, \emptyset, k))</th>
<th>(\delta(q, {p}, k))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>(AXp)</td>
<td>(\bigwedge_{c=0}^{k-1} (c, p))</td>
<td>(\bigwedge_{c=0}^{k-1} (c, p))</td>
</tr>
<tr>
<td>(EGAXp)</td>
<td>(\bigwedge_{c=0}^{k-1} (c, p) \land \bigvee_{c=0}^{k-1} (c, EGAXp))</td>
<td>(\bigwedge_{c=0}^{k-1} (c, p) \land \bigvee_{c=0}^{k-1} (c, EGAXp))</td>
</tr>
</tbody>
</table>

Product Automaton

<table>
<thead>
<tr>
<th>state</th>
<th>(\delta(q, a))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\langle p, s_0 \rangle)</td>
<td>true</td>
</tr>
<tr>
<td>(\langle p, s_1 \rangle)</td>
<td>true</td>
</tr>
<tr>
<td>(\langle EGAXp, s_0 \rangle)</td>
<td>(\langle p, s_1 \rangle \land \langle EGAXp, s_1 \rangle)</td>
</tr>
<tr>
<td>(\langle EGAXp, s_1 \rangle)</td>
<td>(\langle p, s_0 \rangle \land \langle p, s_1 \rangle \land (\langle EGAXp, s_0 \rangle \lor \langle EGAXp, s_1 \rangle))</td>
</tr>
</tbody>
</table>
Non-Emptiness Algorithm

The algorithm proceeds up in the weakness partial order

- each state is labeled with either true or false
- an automaton is non-empty iff its initial state is labeled with true

The algorithm

- pick a \(Q_i \) with the smallest \(i \) that is not yet labeled
- repeatedly, for each \(q \in Q_i \)
 - label \(q \) with true is \(\delta(q, a) = \text{true} \)
 - label \(q \) with false is \(\delta(q, a) = \text{false} \)
 - use the labeling on \(q \) to simplify any \(\delta \) in which \(q \) occurs
- if there are any unlabeled states in \(Q_i \)
 - if \(Q_i \) is accepting, label them with true
 - if \(Q_i \) is rejecting, label them with false

Complexity

- linear in the size of property automaton and the Kripke structure
Example

\[\varphi = EFq \]

<table>
<thead>
<tr>
<th>state</th>
<th>(\delta(q, \emptyset, k))</th>
<th>(\delta(q, {q}, k))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q)</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>(EFq)</td>
<td>(\bigvee_{c=0}^{k-1} (c, EFq))</td>
<td>true</td>
</tr>
</tbody>
</table>

Kripke Structure

Product automaton

<table>
<thead>
<tr>
<th>state</th>
<th>(\delta(q, a))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\langle EFq, s_0 \rangle)</td>
<td>(\langle EFq, s_1 \rangle)</td>
</tr>
<tr>
<td>(\langle EFq, s_1 \rangle)</td>
<td>true</td>
</tr>
</tbody>
</table>

Example

\[\varphi = EGAXp \]

<table>
<thead>
<tr>
<th>state</th>
<th>(\delta(q, \emptyset, k))</th>
<th>(\delta(q, {p}, k))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>(AXp)</td>
<td>(\bigwedge_{c=0}^{k-1} (c, p))</td>
<td>(\bigwedge_{c=0}^{k-1} (c, p))</td>
</tr>
<tr>
<td>(EGAXp)</td>
<td>(\bigwedge_{c=0}^{k-1} (c, p) \land \bigvee_{c=0}^{k-1} (c, EGAXp))</td>
<td>(\bigwedge_{c=0}^{k-1} (c, p) \land \bigvee_{c=0}^{k-1} (c, EGAXp))</td>
</tr>
</tbody>
</table>

Product automaton

<table>
<thead>
<tr>
<th>state</th>
<th>(\delta(q, a))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\langle p, s_0 \rangle)</td>
<td>true</td>
</tr>
<tr>
<td>(\langle p, s_1 \rangle)</td>
<td>true</td>
</tr>
<tr>
<td>(\langle EGAXp, s_0 \rangle)</td>
<td>(\langle p, s_1 \rangle \land \langle EGAXp, s_1 \rangle)</td>
</tr>
<tr>
<td>(\langle EGAXp, s_1 \rangle)</td>
<td>(\langle p, s_0 \rangle \land \langle p, s_1 \rangle \land (\langle EGAXp, s_0 \rangle \lor \langle EGAXp, s_1 \rangle))</td>
</tr>
</tbody>
</table>
Space Efficient Algorithm

- For LTL we have an on-the-fly algorithm that only builds as much of the structure as necessary
- Is this possible for CTL?
- For a long time it was considered that the bottom-up nature of the CTL algorithm requires to construct the full structure first!
- With HAA we show that a space efficient algorithm for CTL is possible
- Actually, the same algorithm applies to CTL*
- But, not to the alternation free μ-calculus!

Hesitation Partition

$A_{K,\varphi} = K \times A_{D,\varphi}$ — product automaton of K and φ
- each state is an element of $S \times cl(\varphi)$
- weakness partition based on the second component
- at most $|cl(\varphi)|$ elements of the partition
- Each partition set Q_i can be classified as
 - transient — all transitions lead to states in lower Q_i’s
 - corresponds to all elements of $cl(\varphi)$ except for U and R formulas
 - existential — a transition only contains disjunctively related elements of the same Q_i
 - corresponds to EU and ER formulas
 - universal — a transition only contains conjunctively related elements of the same Q_i
 - corresponds to AU and AR formulas
Hesitant Automata

A = (Σ, D, Q, δ, q₀, (G, B)) is a hesitant automaton iff
- Q can be partitioned into sets Qᵢ
- each Qᵢ is either transient, existential, or universal
- there exists a partial order on the partition such that transitions in Qᵢ lead either to the same Qᵢ, or to a lower one
- G, B ⊆ Q is a acceptance condition
- the partial order is called hesitation order
- the longest chain in it is the hesitation depth

Each infinite path along a run of a HAA is trapped in either existential or universal Qᵢ
- an infinite path π is accepting if
 - Qᵢ is existential and Inf(π) ∩ G ≠ ∅
 - Qᵢ is universal and Inf(π) ∩ B = ∅

From CTL to HAA

The WAA constructed from a CTL formula already satisfies the hesitation partition
- we only need to change the acceptance condition

The acceptance condition of WAA contains all ER and AR sub-formulas
- a path on a run is allowed to get trapped only in a set corresponding to ER or AR formulas
From CTL to HAA

- In HAA we get
 - a path can get trapped in an existential set iff it corresponds to ER formula
 - a path can get trapped in a universal set iff it does not correspond to AU formula
- The acceptance condition for HAA is $\langle G, B \rangle$
 - G contains all ER sub-formulas
 - B contains all AU sub-formulas
- The transition relation of HAA is more constrained than of WAA, but its acceptance condition is more expressive

Example

$\varphi = EFq$

<table>
<thead>
<tr>
<th>state</th>
<th>$\delta(q, \emptyset, k)$</th>
<th>$\delta(q, {q}, k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>EFq</td>
<td>$\lor_{c=0}^{k-1}(c, EFq)$</td>
<td>true</td>
</tr>
</tbody>
</table>

acceptance condition (\emptyset, \emptyset)

$\varphi = EGAXp$

<table>
<thead>
<tr>
<th>state</th>
<th>$\delta(q, \emptyset, k)$</th>
<th>$\delta(q, {p}, k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>AXp</td>
<td>$\lor_{c=0}^{k-1}(c, p)$</td>
<td>$\lor_{c=0}^{k-1}(c, p)$</td>
</tr>
<tr>
<td>$EGAXp$</td>
<td>$\lor_{c=0}^{k-1}(c, p) \land \lor_{c=0}^{k-1}(c, EGAXp)$</td>
<td>$\lor_{c=0}^{k-1}(c, p) \land \lor_{c=0}^{k-1}(c, EGAXp)$</td>
</tr>
</tbody>
</table>

acceptance condition ($\{EGAXp\}, \emptyset$)
Non-Emptiness Algorithm for HAA

- Intuition
 - for a state from an existential set look for a witness
 - if one is found, label the state with true
 - otherwise, label it with false
 - for a state from a universal set look for a counterexample
 - if one is found, label the state with false
 - otherwise, label it with true
 - an automaton is non-empty iff the initial state is labeled with true
- Space complexity is $O(m \log^2 n)$
 - m is the depth of the automaton
 - n is its size

Immediate Reachability

- Let q and q' be states of the same Q_i
 - q' is immediately reachable from q iff
 - when $\delta(q, \sigma, k')$ is simplified using values of the states from the lower Q_i
 - q' appears in δ
 - i.e. the value of δ depends on q'
 - q' is reachable from q if there exists a path of immediate reachable states from q to q'
 - A state q is provably true if its transition simplifies to true
 - A state q is provable false if its transition simplifies to false
Non-Emptiness Algorithm

- Start at the initial state
- If q is a transient state recurse to all successors and simplify the transition relation
- If q is from an existential Q_i
 - if there exists reachable state q' in the same Q_i that is provably true
 - label q with true
 - if not, search for a reachable state $q' \in G$ in the same Q_i that is reachable from itself
 - if found, label q with true
 - otherwise, label q with false
- If q is from a universal Q_i
 - if there exists reachable state q' in the same Q_i that is provably false
 - label q with false
 - if not, search for a reachable state $q' \in B$ in the same Q_i that is reachable from itself
 - if found, label q with false
 - otherwise, label q with true
Example

φ = EFq

<table>
<thead>
<tr>
<th>state</th>
<th>δ(q, ∅, k)</th>
<th>δ(q, {q}, k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>EFq</td>
<td>$\bigvee_{c=0}^{k-1}(c, EFq)$</td>
<td>true</td>
</tr>
</tbody>
</table>

Kripke Structure

\[\begin{array}{ccc}
\text{p} & \rightarrow & \text{q} \\
\text{s}_0 & \leftrightarrow & \text{q} \\
\text{q} & \rightarrow & \text{s}_1 \\
\end{array} \]

Product automaton

<table>
<thead>
<tr>
<th>state</th>
<th>δ(q, a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\langle EFq, s_0 \rangle</td>
<td>\langle EFq, s_1 \rangle</td>
</tr>
<tr>
<td>\langle EFq, s_1 \rangle</td>
<td>true</td>
</tr>
</tbody>
</table>

Example

φ = EGAXp

<table>
<thead>
<tr>
<th>state</th>
<th>δ(q, ∅, k)</th>
<th>δ(q, {p}, k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>AXp</td>
<td>$\bigwedge_{c=0}^{k-1}(c, p)$</td>
<td>$\bigwedge_{c=0}^{k-1}(c, p)$</td>
</tr>
<tr>
<td>EGAXp</td>
<td>$\bigwedge_{c=0}^{k-1}(c, p) \land \bigvee_{c=0}^{k-1}(c, EGAXp)$</td>
<td>$\bigwedge_{c=0}^{k-1}(c, p) \land \bigvee_{c=0}^{k-1}(c, EGAXp)$</td>
</tr>
</tbody>
</table>

Product automaton

<table>
<thead>
<tr>
<th>state</th>
<th>δ(q, a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\langle p, s_0 \rangle</td>
<td>true</td>
</tr>
<tr>
<td>\langle p, s_1 \rangle</td>
<td>true</td>
</tr>
<tr>
<td>\langle EGAXp, s_0 \rangle</td>
<td>\langle p, s_1 \rangle \land \langle EGAXp, s_1 \rangle</td>
</tr>
<tr>
<td>\langle EGAXp, s_1 \rangle</td>
<td>\langle p, s_0 \rangle \land \langle p, s_1 \rangle \land (\langle EGAXp, s_0 \rangle \lor \langle EGAXp, s_1 \rangle)</td>
</tr>
</tbody>
</table>
Summary

- Automata over infinite objects
 - many possible acceptance conditions
 - more expressive acceptance conditions lead to simpler automata for the same language
- Alternating automata
 - extend non-determinism by allowing both disjunctive and conjunctive choice
 - greatly simplify constructing property automata

Summary – Model-Checking

- automata provide a uniform solution to the model-checking problem
- branching versus linear time is captured by
 - automata over strings, and
 - automata over trees
- same solution to both satisfiability and model-checking
- a formula φ is satisfiable iff
 - an automaton corresponding to φ is non-empty
- a model K satisfies a formula φ iff
 - the product automaton of K and φ is non-empty
Summary – Model-Checking

- clean separation between logic and algorithms
- what does the formula mean?
- how to construct an automaton for it
- what is the complexity of model-checking
- solving the non-emptiness problem