Overview

- Automata-Theoretic Model-Checking
 - Automata on finite and infinite words
 - Representing models and formulas
 - Model checking using automata
 - Partial order reduction and closure under stuttering
- Implementing automata-theoretic model checking
 - Checking emptiness
 - Nested DFS
 - Bitstate hashing
- SPIN/Promela
 - expressing models in Promela
 - using SPIN

Automata-Theoretic LTL Model-Checking

Marsha Chechik

University of Toronto

Automata-TheoreticLTL Model-Checking - p.2/24

Automata on Finite Words, Cont'd

Let v be a word of Σ^* of length |v|. A *run* of \mathcal{A} over v is a mapping $\rho : \{0, 1, ..., |v|\} \to Q$ s.t.

- First state is the initial state: $\rho(0) \in Q^0$
- $\forall 0 \leq i \leq |v| \cdot (\rho(i), v(i), \rho(i+1)) \in \Delta$

A run ρ of \mathcal{A} on v – a path in automaton to a state $\rho(|v|)$ where the edges are labeled with letters in v (so v is *input* to \mathcal{A}).

A run is *accepting* if $\rho(|v|) \in F$. An automaton \mathcal{A} accepts a word v iff exists an accepting run of \mathcal{A} on v.

Run *aacb* is accepting.

Automata-TheoreticLTL Model-Checking - p.4/2

Automata on Finite Words

Finite automaton ${\mathcal A}$ over finite words is a tuple (Σ,Q,Δ,Q^0,F) where

- Σ is a finite alphabet
- \bullet Q is a finite set of states
- $\Delta \subseteq Q \times \Sigma \times Q$ is a transition relation
- $Q^0 \subseteq Q$ is a set of initial states
- $F \subseteq Q$ is a set of final states

Automata-TheoreticLTL Model-Checking - p.3/24

Automata on Infinite Words

- Reactive programs execute forever so we want infinite sequences of states.
- Answer: finite automata over infinite words.
- Simplest case: Buchi automata
 - Same structure as automata on finite words
 - ... but different notion of acceptance
 - Recognize words from Σ^{ω}
 - $\Sigma = \{a, b\}$ v = abaabaaab...
 - $\Sigma = \{a, b, c\}$ $\mathcal{L}_1 \subseteq \Sigma^{\omega}$ is $v \in \mathcal{L}_1$ iff after any occurrence of letter *a* there is some occurrence of letter *b* in *v*.

Possible strings:

ababab... aaabaaab... abbabbabb... accbaccb...

Automata-TheoreticLTL Model-Checking - p.6/24

Automata on Finite Words, Cont'd

The language $\mathcal{L}(\mathcal{A}) \subseteq \Sigma^*$ is all words accepted by \mathcal{A} .

$$b, c$$
 a, c
 a

 $\epsilon + a(a+c)^*b(b+c)^*$. This is a regular expression.

- Languages represented by regular expressions (and recognizable by finite automata on finite strings) are regular languages.
- An automaton is *deterministic* if $\forall a \cdot (q, a, q') \in \Delta \land (q, a, q'') \in \Delta \Rightarrow q' = q''.$
- Otherwise, it is *non-deterministic*.
- Every non-deterministic automaton on finite words can be translated into an equivalent deterministic automaton (which accepts the same language).

Operations on Buchi Automata

- Buchi-recognizable languages are closed under complementation.
 - i.e., from a Buchi automaton \mathcal{A} recognizing \mathcal{L} one can construct an automaton recognizing $\Sigma^{\omega} \mathcal{L}$.
 - The number of states in this automaton is $O(2^{QlogQ})$, where Q states in \mathcal{A} (Safra's construction)
- Easy to do this for deterministic Buchi automata:

 Unfortunately, not all non-deterministic Buchi automata can be made deterministic!

Automata on Infinite Words (Cont'd)

Accepting language: $((b+c)^{\omega}a(a+c)^*b)^{\omega}$ (ω -regular expression)

- F the set of *accepting* states
- A run of a Buchi automaton \mathcal{A} over an infinite word $v \in \Sigma^{\omega}$. Domain of run the set of all natural numbers.
- *inf*(ρ) set of states that appear infinitely often in the run ρ. A run ρ is *accepting* (Buchi accepting) iff *inf*(ρ) ∩ F ≠ Ø.
- Language expressible by ω -regular expressions (and thus recognizable by some Buchi automaton) is ω -regular or Buchi-recognizable.

Operations on Buchi Automata, Cont'd

Buchi automata are closed under intersection [Chouka74]:

- given two Buchi automata $\mathcal{B}_1 = (\Sigma, Q_1, \Delta_1, Q_1^0, Q_1)$ (all states are accepting) and $\mathcal{B}_2 = (\Sigma, Q_2, \Delta_2, Q_2^0, F_2)$, construct $\mathcal{B}_1 \cap \mathcal{B}_2 = (\Sigma, Q_1 \times Q_2, \Delta', Q_1^0 \times Q_2^0, Q_1 \times F_2)$, where
 - $((r_i, q_j), a, (r_m, q_n)) \in \Delta'$ iff $(r_i, a, r_m) \in \Delta_1$ and $(q_j, a, q_n) \in \Delta_2$.

Automata-TheoreticLTL Model-Checking - p.10/24

lementation Algorithm for Deterministic Au

Create two copies of an automaton:

- A₁: Take non-accepting states of A and make them accepting.
- A₂: Every transition to non-accepting state gets duplicated to same state in A₁.

Operations, Cont'd

- The emptiness problem for Buchi automata is decidable
 - $\mathcal{L}(\mathcal{A}) \neq \emptyset$
 - logspace-complete for NLOGSPACE, i.e., solvable in linear time [Vardi, Wolper]) – see later in the lecture.
- Nonuniversality problem for Buchi automata is decidable
 - $\mathcal{L}(\mathcal{A}) \neq \Sigma^{\omega}$
 - logspace-complete for PSPACE [Sisla, Vardi, Wolper]

Automata-TheoreticLTL Model-Checking - p.12/24

Intersection of arbitrary Buchi automata

- Main point: determining accepting states: need to go through accepting states of B₁ and B₂ infinite number of times
- 3 copies of the automaton:
 - 1st copy: start and accept here
 - 2nd copy: move when accepting state from B₁ has been seen
 - 3rd copy: move when accepting state from B₂ has been seen

LTL and Buchi Automata

- Specification also in the form of an automaton!
- Buchi automata can encode all LTL properties.
- Examples:

- Other examples:
 - $\Box \diamond p$
 - $\Box \diamond (p \lor q)$
 - $\bullet \ \neg \Box \diamond (p \lor q)$
 - $\neg(\Box(p \ U \ q))$

Automata-TheoreticLTL Model-Checking - p.14/24

Modeling Systems Using Automata

- A system is a set of all its executions. So, every state is accepting!
- Transform Kripke structure (S, R, S_0, L)
 - where $L: S \to s^{AP}$
- ...into automaton $\mathcal{A} = (\Sigma, S \cup \{\ell\}, \Delta, \{\ell\}, S \cup \{\ell\})$,
 - where $\Sigma = 2^{AP}$
 - $(s, \alpha, s) \in \Delta$ for $s, s' \in S$ iff $(s, s') \in R$ and $\alpha = L(s')$
 - $(\ell, \alpha, s') \in \Delta$ iff $s \in S_0$ and $\alpha = L(s)$

Ire Automaton Automata-TheoreticLTL Model-Checking – p. 13/24

Sketch of the Algorithm

- Compute the set of subformulas that must hold in each reachable state and in each of its successor states.
 - Convert formula into normal form (negation for atomic propositions)
 - Create initial state, marked with the formula to be matched and a dummy incoming edge
 - Recursively
 - take a subformula that remains to be satisfied
 - look at the leading temporal operator: may split the current state into two, each annotated with appropriate subformula
 - Make connections to accepting state

Automata-TheoreticLTL Model-Checking - p.16/24

LTL to Buchi Automata

- Theorem [Wolper, Vardi, Sisla 83]: Given an LTL formula ϕ , one can build a Buchi automaton $\mathcal{S} = (\Sigma, Q, \Delta, Q_0, F)$ where
 - $\Sigma = 2^{\text{Prop}}$
 - the number of automatic propositions, variables, etc. in ϕ
 - $|Q| \leq 2^{O(|\phi|)}$
 - $|\phi|$ length of the formula
- ... s.t. $\mathcal{L}(S)$ is exactly the set of computations satisfying the formula ϕ .
- Algorithm given in Section 9.4
- But Buchi automata are more expressive than LTL!

Complexity

- Checking whether a formula ϕ is satisfied by a finite-state model K can be done in time $O(||K|| \times 2^{O(|\phi|)})$ or in space $O((log||K|| + ||\phi||)^2)$.
- i.e., checking is polynomial in the size of the model and exponential in the size of the specification.

Automata-TheoreticLTL Model-Checking - p.18/24

Automata-theoretic Model Checking

- The system \mathcal{A} satisfies the specification \mathcal{S} when
 - $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{S})$
 - ... each behavior of the system is among the allowed behaviours
- Alternatively,
 - let $\overline{\mathcal{L}(S)}$ be the language $\Sigma^{\omega} \mathcal{L}(S)$. Then, we are looking for
 - $\mathcal{L}(\mathcal{A}) \cap \overline{\mathcal{L}(\mathcal{S})} = \emptyset$
 - no behavior of \mathcal{A} is disallowed by \mathcal{S} .
 - If the intersection is not empty, any behavior in it corresponds to a counterexample.
 - Counterexample is always of the form uv^{ω} , where u and v are finite words.

Partial-order Reduction

Example: T1: $(s_0) \xrightarrow{x=1} (s_1) \xrightarrow{g=g+2} (s_2)$ T2: ($x_{0} \xrightarrow{y=1} (x_{1}) \xrightarrow{g=g^{*2}(x_{2})} (x_{2})$
Dependent operations	Independent operations
g=g*2, g=g+2 (same data object)	x=1, y=1
x=1, g=g+2 (part of T1)	x=1, g=g*2
y=1, g=g*2 (part of T2)	y=1, g=g+2
1 and 2 – differ only in relative order of y=1 and g=g+2 which are independent	
4 and 5 – only relative order of x=1, g=g+2 which are independent	
Only 2 distinct runs:	
2. x = 1, y = 1, g = g+2, g = g*2	
_ 3. x = 1, y = 1, g = g*2, g = g+2	
	Automata-TheoreticLTL Model-Checking - p.20/24

Partial-order Reduction

Closure Under Stuttering

- Stuttering refers to a sequence of identically labeled states along a path in a Kripke structure.
- Intuitively, an LTL formula is closed under stuttering if the interpretation of the formula remains the same under state sequences that differ only by repeated states [Abadi,Lamport'01].
 - Assume *F* is closed under stuttering. Then,
 - $\Box F$ is closed under stuttering
 - $\circ F$ is not closed under stuttering

Automata-TheoreticLTL Model-Checking - p.22/24

Partial-order Reduction

• Two equivalence classes: [1, 2, 6], [3, 4, 5]

- For verification, it is sufficient to consider just one run from each equivalence class...
 - as long as the formulas are closed under stuttering!

ood for slide eater

Automata-TheoreticLTL Model-Checking - p.24/24

Closure under stuttering and LTL_{-X}

 LTL_{-X} – a subset of LTL without the \circ operator.

- Theorem: All LTL_{-X} formulas are closed under stuttering [Lamport'94]
- Theorem: All cus LTL properties can be expressed in LTL_{-X}
 - By exponentially increasing the size of the formula!
- Determining whether an arbitrary LTL formula is closed under stuttering is PSPACE-complete [Peled, Wilke, Wolper'96]
- Exists an algorithm based on *edges* (changes in values of variables) that allows to use full LTL and yet guarantee closure under stuttering [Paun,Chechik'01]
 - Observation: stuttering does not add or delete edges or change their relative order
 - Theorem [Paun99]: If A and B are cus then so is $\diamond(\neg A \land \circ A \land \circ B)$