
Overview

Automata-Theoretic Model-Checking
Automata on finite and infinite words
Representing models and formulas
Model checking using automata
Partial order reduction and closure under stuttering

Implementing automata-theoretic model checking
Checking emptiness
Nested DFS
Bitstate hashing

SPIN/Promela
expressing models in Promela
using SPIN

Automata-TheoreticLTL Model-Checking – p.2/24

Automata-Theoretic
LTL Model-Checking

Marsha Chechik

University of Toronto

Automata-TheoreticLTL Model-Checking – p.1/24



Automata on Finite Words, Cont’d

Let � be a word of � � of length � � � . A run of � over � is a
mapping � � � � 	 
 	 � � � 	 � � � � 
 � s.t.

First state is the initial state: � � � � � �
�

� � � � � � � � � � � � � � 	 � � � � 	 � � � � 
 � � � �

A run � of � on � – a path in automaton to a state � � � � � �

where the edges are labeled with letters in � (so � is input
to �).
A run is accepting if � � � � � � � �. An automaton � accepts a
word � iff exists an accepting run of � on �.

�

�

� � � � � �

Run � � �  is accepting.

Automata-TheoreticLTL Model-Checking – p.4/24

Automata on Finite Words

Finite automaton � over finite words is a tuple

� � 	 � 	 � 	 �
�

	 � � where

� is a finite alphabet

� is a finite set of states

� ! � " � " � is a transition relation

�
#

! � is a set of initial states

� ! � is a set of final states

$

%

% & ' $ & '

� ( � � 	  	 � �, � ( � ) � 	 ) * �, �
� ( � ) � �, � ( � ) * �.

Automata-TheoreticLTL Model-Checking – p.3/24



Automata on Infinite Words

Reactive programs execute forever – so we want infinite
sequences of states.

Answer: finite automata over infinite words.

Simplest case: Buchi automata
Same structure as automata on finite words

... but different notion of acceptance
Recognize words from � �

� ( � � 	  � � ( �  � �  � � �  � � �
� ( � � 	  	 � � � * ! � � is � � � * iff after any

occurrence of letter � there is some occurrence of
letter  in �.
Possible strings:

�  �  �  � � � � � �  � � �  � � �
�   �   �   � � � � � �  � � �  � � �

Automata-TheoreticLTL Model-Checking – p.6/24

Automata on Finite Words, Cont’d

The language � � � � ! � � is all words accepted by �.

�

�

� � � � � �

� � � � � � � �
�  �  � � �

� . This is a regular expression.

Languages represented by regular expressions (and
recognizable by finite automata on finite strings) are
regular languages.

An automaton is deterministic if

� � � � ) 	 � 	 )
�

� � � � � ) 	 � 	 )
� �

� � � � )
� ( )

� �.

Otherwise, it is non-deterministic.

Every non-deterministic automaton on finite words can
be translated into an equivalent deterministic
automaton (which accepts the same language).Automata-TheoreticLTL Model-Checking – p.5/24



Operations on Buchi Automata

Buchi-recognizable languages are closed under
complementation.

i.e., from a Buchi automaton � recognizing � one
can construct an automaton recognizing � � � �.

The number of states in this automaton is � � � � � � � � � � ,
where � – states in � (Safra’s construction)

Easy to do this for deterministic Buchi automata:

$

%

% & ' $ & '

$

$ & % & ' $ & '

Unfortunately, not all non-deterministic Buchi automata
can be made deterministic!

%

$ & % %

%

$

$ %

� 	 � 

Automata-TheoreticLTL Model-Checking – p.8/24

Automata on Infinite Words (Cont’d)

�
�

� 
 � � 
 �

Accepting language: � � � � � � � � � � � � � � � � � ( �-regular
expression)

� – the set of accepting states

A run of a Buchi automaton � over an infinite word�
� � � . Domain of run – the set of all natural numbers.

inf � � � – set of states that appear infinitely often in the
run �. A run � is accepting (Buchi accepting) iff
inf � � � � � �  !.
Language expressible by �-regular expressions (and
thus recognizable by some Buchi automaton) is

�-regular or Buchi-recognizable.
Automata-TheoreticLTL Model-Checking – p.7/24



Operations on Buchi Automata, Cont’d

Buchi automata are closed under intersection [Chouka74]:

given two Buchi automata � * ( � � 	 � * 	 � * 	 �
�

* 	 � * � (all
states are accepting) and � � ( � � 	 � � 	 � � 	 �

�
� 	 � � � ,

construct � * � � � ( � � 	 � * " � � 	 � �
	 �

�
* " �

�
� 	 � * " � � � ,

where

� � � � 	 ) � � 	 � 	 � � � 	 ) � � � � � � iff � � � 	 � 	 � � � � � * and

� ) � 	 � 	 ) � � � � � .

Automata-TheoreticLTL Model-Checking – p.10/24

Complementation Algorithm for Deterministic Automaton

Create two copies of an automaton:

� * : Take non-accepting states of � and make them
accepting.

� � : Every transition to non-accepting state gets
duplicated to same state in � * .

Automata-TheoreticLTL Model-Checking – p.9/24



Operations, Cont’d

The emptiness problem for Buchi automata is decidable

� � � � � ( �

logspace-complete for NLOGSPACE, i.e., solvable in
linear time [Vardi, Wolper]) – see later in the lecture.

Nonuniversality problem for Buchi automata is
decidable

� � � � � ( � �

logspace-complete for PSPACE [Sisla, Vardi,
Wolper]

Automata-TheoreticLTL Model-Checking – p.12/24

Intersection of arbitrary Buchi automata

Main point: determining accepting states: need to go
through accepting states of � * and � � infinite number of
times

3 copies of the automaton:
1st copy: start and accept here
2nd copy: move when accepting state from � * has
been seen
3rd copy: move when accepting state from � � has
been seen

Automata-TheoreticLTL Model-Checking – p.11/24



LTL and Buchi Automata

Specification – also in the form of an automaton!

Buchi automata can encode all LTL properties.

Examples:

b

a �

� � �

Other examples:

� � �

� � � � � � �
� � � � � � � �
� � � � � � � � �

Automata-TheoreticLTL Model-Checking – p.14/24

Modeling Systems Using Automata
A system is a set of all its executions. So, every state is
accepting!

Transform Kripke structure � 	 	 
 	 	 � 	 � �

where � � 	 
 �

 �

...into automaton � ( � � 	 	 � � � � 	 � 	 � � � 	 	 � � � � � ,

where � ( � 
 �

� � 	 � 	 � � � � for � 	 �
� � 	 iff � � 	 �

�
� � 
 and � ( � � �

�
�

� � 	 � 	 �
�

� � � iff � � 	 � and � ( � � � �

� � � �

� �

� � � � � � � �

� � �

�

� � � �

� �

� � �
� � � � �

� � �

� � � � �

� � �
� � � � �

Kripke structure Automaton Automata-TheoreticLTL Model-Checking – p.13/24



Sketch of the Algorithm

Compute the set of subformulas that must hold in each
reachable state and in each of its successor states.

Convert formula into normal form (negation for
atomic propositions)
Create initial state, marked with the formula to be
matched and a dummy incoming edge
Recursively

take a subformula that remains to be satisfied
look at the leading temporal operator: may split
the current state into two, each annotated with
appropriate subformula

Make connections to accepting state

Automata-TheoreticLTL Model-Checking – p.16/24

LTL to Buchi Automata

Theorem [Wolper, Vardi, Sisla 83]: Given an LTL
formula �, one can build a Buchi automaton

� ( � � 	 � 	 � 	 � � 	 � � where

� ( � � � � �

the number of automatic propositions, variables,
etc. in �

� � � � � � � � 	 � �
� � � - length of the formula

... s.t. � � � � is exactly the set of computations satisfying
the formula �.

Algorithm given in Section 9.4

But Buchi automata are more expressive than LTL!

Automata-TheoreticLTL Model-Checking – p.15/24



Complexity

Checking whether a formula � is satisfied by a
finite-state model � can be done in time

� � � � � � � " � � � � 	 � � � or in space � � � � � � � � � � � � � � � �
�

� .

i.e., checking is polynomial in the size of the model and
exponential in the size of the specification.

Automata-TheoreticLTL Model-Checking – p.18/24

Automata-theoretic Model Checking

The system � satisfies the specification � when

� � � � ! � � � �

... each behavior of the system is among the allowed
behaviours

Alternatively,

let � � � � be the language � � � � � � � . Then, we are
looking for

� � � � � � � � � ( �

no behavior of � is disallowed by �.
If the intersection is not empty, any behavior in it
corresponds to a counterexample.
Counterexample is always of the form � � � , where �

and � are finite words.

Automata-TheoreticLTL Model-Checking – p.17/24



Partial-order Reduction

Example:
g = g*2y = 1T2: s0 s2s1

g = g+2x = 1T1: s2s1s0

Dependent operations Independent operations
g=g*2, g=g+2 (same data object) x=1, y=1
x=1, g=g+2 (part of T1) x=1, g=g*2
y=1, g=g*2 (part of T2) y=1, g=g+2

1 and 2 – differ only in relative order of y=1 and g=g+2
which are independent

4 and 5 – only relative order of x=1, g=g+2 which are
independent

Only 2 distinct runs:
2. x = 1, y = 1, g = g+2, g = g*2
3. x = 1, y = 1, g = g*2, g = g+2

Automata-TheoreticLTL Model-Checking – p.20/24

Partial-order Reduction
Example:

g = g*2y = 1T2: s0 s2s1
g = g+2x = 1T1: s2s1s0

Interleaving:

x, y, g
x=1

x=1

x=1

1, 0, 0
g=g+2 g=g*2

y=1

0, 1, 0

1, 0, 2 1, 1, 0 0, 1, 0

1, 1, 01, 1, 2

1, 1, 4 1, 1, 2

g=g+2g=g*2

g=g*2

y=1

y=1
g=g+2

0, 0, 0

Run sequences:
1. x=1, g=g+2, y=1, g=g*2 4. y=1, g=g*2, x=1, g=g*2
2. x=1, y=1, g=g+2, g=g*2 5. y=1, x=1, g=g*2, g=g+2
3. x=1, y=1, g=g*2, g=g+2 6. y=1, x=1, g=g+2, g=g*2

Automata-TheoreticLTL Model-Checking – p.19/24



Closure Under Stuttering

Stuttering refers to a sequence of identically labeled
states along a path in a Kripke structure.

Intuitively, an LTL formula is closed under stuttering if
the interpretation of the formula remains the same
under state sequences that differ only by repeated
states [Abadi,Lamport’01].

Assume � is closed under stuttering. Then,�
� is closed under stuttering

� � is not closed under stuttering

Automata-TheoreticLTL Model-Checking – p.22/24

Partial-order Reduction

Two equivalence classes: [1, 2, 6], [3, 4, 5]

x, y, g
x=1

x=1

x=1

1, 0, 0
g=g+2 g=g*2

y=1

0, 1, 0

1, 0, 2 1, 1, 0 0, 1, 0

1, 1, 01, 1, 2

1, 1, 4 1, 1, 2

g=g+2g=g*2

g=g*2

y=1

y=1
g=g+2

0, 0, 0

For verification, it is sufficient to consider just one run
from each equivalence class...

as long as the formulas are closed under stuttering!
Automata-TheoreticLTL Model-Checking – p.21/24



f

ood for slide eater

Automata-TheoreticLTL Model-Checking – p.24/24

Closure under stuttering and LTL � �

LTL � � – a subset of LTL without the � operator.

Theorem: All LTL � � formulas are closed under
stuttering [Lamport’94]

Theorem: All cus LTL properties can be expressed in
LTL � �

By exponentially increasing the size of the formula!

Determining whether an arbitrary LTL formula is closed
under stuttering is PSPACE-complete [Peled, Wilke,
Wolper’96]

Exists an algorithm based on edges (changes in values
of variables) that allows to use full LTL and yet
guarantee closure under stuttering [Paun,Chechik’01]

Observation: stuttering does not add or delete edges
or change their relative order
Theorem [Paun99]: If � and � are cus then so is

� � � � � � � � � � �

Automata-TheoreticLTL Model-Checking – p.23/24


	Overview
	Automata on Finite Words, Cont'd
	Automata on Finite Words
	Automata on Infinite Words
	Automata on Finite Words, Cont'd
	Operations on Buchi Automata
	Automata on Infinite Words (Cont'd)
	Operations on Buchi Automata, Cont'd
	Complementation Algorithm for Deterministic Automaton
	Operations, Cont'd
	Intersection of arbitrary Buchi automata
	LTL and Buchi Automata
	Modeling Systems Using Automata
	Sketch of the Algorithm
	LTL to Buchi Automata
	Complexity
	Automata-theoretic Model Checking
	Partial-order Reduction
	Partial-order Reduction
	Closure Under Stuttering
	Partial-order Reduction
	f
	Closure under stuttering and LTL$_{-X}$

