Overview

- Automata-Theoretic Model-Checking
 - Automata on finite and infinite words
 - Representing models and formulas
 - Model checking using automata
 - Partial order reduction and closure under stuttering

Implementing automata-theoretic model checking
- Checking emptiness
- Nested DFS
- Bitstate hashing

SPIN/Promela
- expressing models in Promela
- using SPIN
Automata on Finite Words, Cont’d

Let v be a word of Σ^* of length $|v|$. A run of \mathcal{A} over v is a mapping $\rho : \{0, 1, \ldots, |v|\} \rightarrow Q$ s.t.

- First state is the initial state: $\rho(0) \in Q^0$
- $\forall 0 \leq i \leq |v| \cdot (\rho(i), v(i), \rho(i+1)) \in \Delta$

A run ρ of \mathcal{A} on v – a path in automaton to a state $\rho(|v|)$ where the edges are labeled with letters in v (so v is input to \mathcal{A}).

A run is accepting if $\rho(|v|) \in F$. An automaton \mathcal{A} accepts a word v iff exists an accepting run of \mathcal{A} on v.

Run $aacb$ is accepting.

Automata on Finite Words

Finite automaton \mathcal{A} over finite words is a tuple $(\Sigma, Q, \Delta, Q^0, F)$ where

- Σ is a finite alphabet
- Q is a finite set of states
- $\Delta \subseteq Q \times \Sigma \times Q$ is a transition relation
- $Q^0 \subseteq Q$ is a set of initial states
- $F \subseteq Q$ is a set of final states

$\Sigma = \{a, b, c\}$, $Q = \{q_0, q_1\}$, $Q^0 = \{q_0\}$, $F = \{q_1\}$.
Automata on Infinite Words

- Reactive programs execute forever – so we want infinite sequences of states.
- Answer: finite automata over infinite words.
- Simplest case: Buchi automata
 - Same structure as automata on finite words
 - ... but different notion of acceptance
- Recognize words from Σ^ω
 - $\Sigma = \{a, b\}$ $v = ababaabab...$
 - $\Sigma = \{a, b, c\}$ $\mathcal{L}_1 \subseteq \Sigma^\omega$ is $v \in \mathcal{L}_1$ iff after any occurrence of letter a there is some occurrence of letter b in v.
 - Possible strings:
 - $ababaab...$
 - $aaabaaab...$
 - $ababbabb...$
 - $accbacb...$

Automata on Finite Words, Cont’d

The language $\mathcal{L}(A) \subseteq \Sigma^*$ is all words accepted by A.

The language $\mathcal{L}(A) \subseteq \Sigma^*$ is all words accepted by A.

$\epsilon + a(a + c)*b(b + c)*$. This is a regular expression.

- Languages represented by regular expressions (and recognizable by finite automata on finite strings) are regular languages.
- An automaton is deterministic if $\forall a \cdot (q, a, q') \in \Delta \land (q, a, q'') \in \Delta \Rightarrow q' = q''$.
- Otherwise, it is non-deterministic.
- Every non-deterministic automaton on finite words can be translated into an equivalent deterministic automaton (which accepts the same language).
Operations on Buchi Automata

- Buchi-recognizable languages are closed under complementation.
- i.e., from a Buchi automaton \mathcal{A} recognizing \mathcal{L} one can construct an automaton recognizing $\Sigma^\omega - \mathcal{L}$.
- The number of states in this automaton is $O(2^{Q\log Q})$, where Q – states in \mathcal{A} (Safra’s construction)

Easy to do this for deterministic Buchi automata:

Unfortunately, not all non-deterministic Buchi automata can be made deterministic!

Automata on Infinite Words (Cont’d)

Accepting language: $((b+c)^\omega a(a+c)^*b)^\omega$ (ω-regular expression)

- F – the set of accepting states
- A run of a Buchi automaton \mathcal{A} over an infinite word $v \in \Sigma^\omega$. Domain of run – the set of all natural numbers.
- $\text{inf}(\rho)$ – set of states that appear infinitely often in the run ρ. A run ρ is accepting (Buchi accepting) iff $\text{inf}(\rho) \cap F \neq \emptyset$.
- Language expressible by ω-regular expressions (and thus recognizable by some Buchi automaton) is ω-regular or Buchi-recognizable.
Operations on Buchi Automata, Cont’d

Buchi automata are closed under intersection [Chouka74]:

- given two Buchi automata $B_1 = (\Sigma, Q_1, \Delta_1, Q^0_1, Q_1)$ (all states are accepting) and $B_2 = (\Sigma, Q_2, \Delta_2, Q^0_2, F_2)$,
 construct $B_1 \cap B_2 = (\Sigma, Q_1 \times Q_2, \Delta', Q^0_1 \times Q^0_2, Q_1 \times F_2)$, where
 $((r_i, q_j), a, (r_m, q_n)) \in \Delta'$ iff $(r_i, a, r_m) \in \Delta_1$ and $(q_j, a, q_n) \in \Delta_2$.

Complementation Algorithm for Deterministic Automata

Create two copies of an automaton:

- A_1: Take non-accepting states of A and make them accepting.
- A_2: Every transition to non-accepting state gets duplicated to same state in A_1.
Operations, Cont’d

- The emptiness problem for Buchi automata is decidable
 - $\mathcal{L}(\mathcal{A}) \neq \emptyset$
 - logspace-complete for NLOGSPACE, i.e., solvable in linear time [Vardi, Wolper] – see later in the lecture.

- Nonuniversality problem for Buchi automata is decidable
 - $\mathcal{L}(\mathcal{A}) \neq \Sigma^\omega$
 - logspace-complete for PSPACE [Sisla, Vardi, Wolper]

Intersection of arbitrary Buchi automata

- Main point: determining accepting states: need to go through accepting states of B_1 and B_2 infinite number of times

- 3 copies of the automaton:
 - 1st copy: start and accept here
 - 2nd copy: move when accepting state from B_1 has been seen
 - 3rd copy: move when accepting state from B_2 has been seen
LTL and Buchi Automata

- Specification – also in the form of an automaton!
- Buchi automata can encode all LTL properties.
- Examples:

```
    a
   ↙
   b
```

\(a \cup b \)

- Other examples:
 - \(\Box p \)
 - \(\Box (p \lor q) \)
 - \(\neg \Box (p \lor q) \)
 - \(\neg (\Box (p \cup q)) \)

Modeling Systems Using Automata

- A system is a set of all its executions. So, every state is accepting!
- Transform Kripke structure \((S, R, S_0, L)\)
 - where \(L : S \rightarrow S^{AP} \)
- ...into automaton \(\mathcal{A} = (\Sigma, S \cup \{ \ell \}, \Delta, \{ \ell \}, S \cup \{ \ell \}) \)
 - where \(\Sigma = 2^{AP} \)
 - \((s, \alpha, s) \in \Delta \text{ for } s, s' \in S \text{ iff } (s, s') \in R \text{ and } \alpha = L(s') \)
 - \((\ell, \alpha, s') \in \Delta \text{ iff } s \in S_0 \text{ and } \alpha = L(s) \)

Kripke structure | Automaton
Sketch of the Algorithm

- Compute the set of subformulas that must hold in each reachable state and in each of its successor states.
- Convert formula into normal form (negation for atomic propositions)
- Create initial state, marked with the formula to be matched and a dummy incoming edge
- Recursively
 - take a subformula that remains to be satisfied
 - look at the leading temporal operator: may split the current state into two, each annotated with appropriate subformula
- Make connections to accepting state

LTL to Buchi Automata

Theorem [Wolper, Vardi, Sisla 83]: Given an LTL formula ϕ, one can build a Buchi automaton $S = (\Sigma, Q, \Delta, Q_0, F)$ where

- $\Sigma = 2^{\text{Prop}}$
 - the number of automatic propositions, variables, etc. in ϕ
- $|Q| \leq 2^{O(|\phi|)}$
 - $|\phi|$ - length of the formula

... s.t. $\mathcal{L}(S)$ is exactly the set of computations satisfying the formula ϕ.

Algorithm given in Section 9.4

But Buchi automata are more expressive than LTL!
Complexity

- Checking whether a formula ϕ is satisfied by a finite-state model K can be done in time $O(||K|| \times 2^{O(||\phi||)})$ or in space $O((\log ||K|| + ||\phi||)^2)$.

- i.e., checking is polynomial in the size of the model and exponential in the size of the specification.

Automata-theoretic Model Checking

- The system A satisfies the specification S when
 - $L(A) \subseteq L(S)$
 - ... each behavior of the system is among the allowed behaviours

- Alternatively,
 - let $\overline{L(S)}$ be the language $\Sigma^\omega - L(S)$. Then, we are looking for
 - $L(A) \cap \overline{L(S)} = \emptyset$
 - no behavior of A is disallowed by S.
 - If the intersection is not empty, any behavior in it corresponds to a counterexample.
 - Counterexample is always of the form uv^ω, where u and v are finite words.
Partial-order Reduction

Example:

<table>
<thead>
<tr>
<th>Dependent operations</th>
<th>Independent operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g = g \cdot 2$, $g = g + 2$ (same data object)</td>
<td>$x = 1$, $y = 1$</td>
</tr>
<tr>
<td>$x = 1$, $g = g + 2$ (part of T1)</td>
<td>$x = 1$, $g = g \cdot 2$</td>
</tr>
<tr>
<td>$y = 1$, $g = g \cdot 2$ (part of T2)</td>
<td>$y = 1$, $g = g + 2$</td>
</tr>
</tbody>
</table>

1 and 2 – differ only in relative order of $y = 1$ and $g = g + 2$ which are independent

4 and 5 – only relative order of $x = 1$, $g = g + 2$ which are independent

Only 2 distinct runs:

1. $x = 1$, $g = g + 2$, $y = 1$, $g = g \cdot 2$
2. $x = 1$, $y = 1$, $g = g + 2$, $g = g \cdot 2$
3. $x = 1$, $y = 1$, $g = g \cdot 2$, $g = g + 2$

Interleaving:

Run sequences:

1. $x = 1$, $g = g + 2$, $y = 1$, $g = g \cdot 2$
2. $x = 1$, $y = 1$, $g = g + 2$, $g = g \cdot 2$
3. $x = 1$, $y = 1$, $g = g \cdot 2$, $g = g + 2$
4. $y = 1$, $g = g \cdot 2$, $x = 1$, $g = g \cdot 2$
5. $y = 1$, $x = 1$, $g = g \cdot 2$, $g = g + 2$
6. $y = 1$, $x = 1$, $g = g + 2$, $g = g \cdot 2$
Closure Under Stuttering

- Stuttering refers to a sequence of identically labeled states along a path in a Kripke structure.
- Intuitively, an LTL formula is closed under stuttering if the interpretation of the formula remains the same under state sequences that differ only by repeated states [Abadi,Lamport’01].
- Assume F is closed under stuttering. Then,
 - $\square F$ is closed under stuttering
 - $\diamond F$ is not closed under stuttering

Partial-order Reduction

- Two equivalence classes: [1, 2, 6], [3, 4, 5]
- For verification, it is sufficient to consider just one run from each equivalence class...
 - as long as the formulas are closed under stuttering!
Closure under stuttering and LTL_-^X

LTL_-^X – a subset of LTL without the \circ operator.

- Theorem: All LTL_-^X formulas are closed under stuttering [Lamport’94]
- Theorem: All cus LTL properties can be expressed in LTL_-^X
 - By exponentially increasing the size of the formula!
- Determining whether an arbitrary LTL formula is closed under stuttering is PSPACE-complete [Peled, Wilke, Wolper’96]
- Exists an algorithm based on *edges* (changes in values of variables) that allows to use full LTL and yet guarantee closure under stuttering [Paun,Chechik’01]
- Observation: stuttering does not add or delete edges or change their relative order
- Theorem [Paun99]: If A and B are cus then so is $\Diamond(\neg A \land \circ A \land \circ B)$