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Automata on Finite Words, Cont’d

Let � be a word of � � of length � � � . A run of � over � is a
mapping � � � � 	 
 	 � � � 	 � � � � 
 � s.t.

First state is the initial state: � � � � � �
�

� � � � � � � � � � � � � � 	 � � � � 	 � � � � 
 � � � �

A run � of � on � – a path in automaton to a state � � � � � �

where the edges are labeled with letters in � (so � is input
to �).
A run is accepting if � � � � � � � �. An automaton � accepts a
word � iff exists an accepting run of � on �.

�

�

� � � � � �

Run � � �  is accepting.
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Automata on Finite Words

Finite automaton � over finite words is a tuple

� � 	 � 	 � 	 �
�

	 � � where

� is a finite alphabet

� is a finite set of states

� ! � " � " � is a transition relation

�
#

! � is a set of initial states

� ! � is a set of final states

$

%

% & ' $ & '

� ( � � 	  	 � �, � ( � ) � 	 ) * �, �
� ( � ) � �, � ( � ) * �.
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Automata on Infinite Words

Reactive programs execute forever – so we want infinite
sequences of states.

Answer: finite automata over infinite words.

Simplest case: Buchi automata
Same structure as automata on finite words

... but different notion of acceptance
Recognize words from � �

� ( � � 	  � � ( �  � �  � � �  � � �
� ( � � 	  	 � � � * ! � � is � � � * iff after any

occurrence of letter � there is some occurrence of
letter  in �.
Possible strings:

�  �  �  � � � � � �  � � �  � � �
�   �   �   � � � � � �  � � �  � � �
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Automata on Finite Words, Cont’d

The language � � � � ! � � is all words accepted by �.

�

�

� � � � � �

� � � � � � � �
�  �  � � �

� . This is a regular expression.

Languages represented by regular expressions (and
recognizable by finite automata on finite strings) are
regular languages.

An automaton is deterministic if

� � � � ) 	 � 	 )
�

� � � � � ) 	 � 	 )
� �

� � � � )
� ( )

� �.

Otherwise, it is non-deterministic.

Every non-deterministic automaton on finite words can
be translated into an equivalent deterministic
automaton (which accepts the same language).Automata-TheoreticLTL Model-Checking – p.5/24



Operations on Buchi Automata

Buchi-recognizable languages are closed under
complementation.

i.e., from a Buchi automaton � recognizing � one
can construct an automaton recognizing � � � �.

The number of states in this automaton is � � � � � � � � � � ,
where � – states in � (Safra’s construction)

Easy to do this for deterministic Buchi automata:

$

%

% & ' $ & '

$

$ & % & ' $ & '

Unfortunately, not all non-deterministic Buchi automata
can be made deterministic!

%

$ & % %

%

$

$ %

� 	 � 
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Automata on Infinite Words (Cont’d)

�
�

� 
 � � 
 �

Accepting language: � � � � � � � � � � � � � � � � � ( �-regular
expression)

� – the set of accepting states

A run of a Buchi automaton � over an infinite word�
� � � . Domain of run – the set of all natural numbers.

inf � � � – set of states that appear infinitely often in the
run �. A run � is accepting (Buchi accepting) iff
inf � � � � � �  !.
Language expressible by �-regular expressions (and
thus recognizable by some Buchi automaton) is

�-regular or Buchi-recognizable.
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Operations on Buchi Automata, Cont’d

Buchi automata are closed under intersection [Chouka74]:

given two Buchi automata � * ( � � 	 � * 	 � * 	 �
�

* 	 � * � (all
states are accepting) and � � ( � � 	 � � 	 � � 	 �

�
� 	 � � � ,

construct � * � � � ( � � 	 � * " � � 	 � �
	 �

�
* " �

�
� 	 � * " � � � ,

where

� � � � 	 ) � � 	 � 	 � � � 	 ) � � � � � � iff � � � 	 � 	 � � � � � * and

� ) � 	 � 	 ) � � � � � .
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Complementation Algorithm for Deterministic Automaton

Create two copies of an automaton:

� * : Take non-accepting states of � and make them
accepting.

� � : Every transition to non-accepting state gets
duplicated to same state in � * .
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Operations, Cont’d

The emptiness problem for Buchi automata is decidable

� � � � � ( �

logspace-complete for NLOGSPACE, i.e., solvable in
linear time [Vardi, Wolper]) – see later in the lecture.

Nonuniversality problem for Buchi automata is
decidable

� � � � � ( � �

logspace-complete for PSPACE [Sisla, Vardi,
Wolper]
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Intersection of arbitrary Buchi automata

Main point: determining accepting states: need to go
through accepting states of � * and � � infinite number of
times

3 copies of the automaton:
1st copy: start and accept here
2nd copy: move when accepting state from � * has
been seen
3rd copy: move when accepting state from � � has
been seen
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LTL and Buchi Automata

Specification – also in the form of an automaton!

Buchi automata can encode all LTL properties.

Examples:

b

a �

� � �

Other examples:

� � �

� � � � � � �
� � � � � � � �
� � � � � � � � �
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Modeling Systems Using Automata
A system is a set of all its executions. So, every state is
accepting!

Transform Kripke structure � 	 	 
 	 	 � 	 � �

where � � 	 
 �

 �

...into automaton � ( � � 	 	 � � � � 	 � 	 � � � 	 	 � � � � � ,

where � ( � 
 �

� � 	 � 	 � � � � for � 	 �
� � 	 iff � � 	 �

�
� � 
 and � ( � � �

�
�

� � 	 � 	 �
�

� � � iff � � 	 � and � ( � � � �

� � � �

� �

� � � � � � � �

� � �

�

� � � �

� �

� � �
� � � � �

� � �

� � � � �

� � �
� � � � �
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Sketch of the Algorithm

Compute the set of subformulas that must hold in each
reachable state and in each of its successor states.

Convert formula into normal form (negation for
atomic propositions)
Create initial state, marked with the formula to be
matched and a dummy incoming edge
Recursively

take a subformula that remains to be satisfied
look at the leading temporal operator: may split
the current state into two, each annotated with
appropriate subformula

Make connections to accepting state
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LTL to Buchi Automata

Theorem [Wolper, Vardi, Sisla 83]: Given an LTL
formula �, one can build a Buchi automaton

� ( � � 	 � 	 � 	 � � 	 � � where

� ( � � � � �

the number of automatic propositions, variables,
etc. in �

� � � � � � � � 	 � �
� � � - length of the formula

... s.t. � � � � is exactly the set of computations satisfying
the formula �.

Algorithm given in Section 9.4

But Buchi automata are more expressive than LTL!
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Complexity

Checking whether a formula � is satisfied by a
finite-state model � can be done in time

� � � � � � � " � � � � 	 � � � or in space � � � � � � � � � � � � � � � �
�

� .

i.e., checking is polynomial in the size of the model and
exponential in the size of the specification.
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Automata-theoretic Model Checking

The system � satisfies the specification � when

� � � � ! � � � �

... each behavior of the system is among the allowed
behaviours

Alternatively,

let � � � � be the language � � � � � � � . Then, we are
looking for

� � � � � � � � � ( �

no behavior of � is disallowed by �.
If the intersection is not empty, any behavior in it
corresponds to a counterexample.
Counterexample is always of the form � � � , where �

and � are finite words.
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Partial-order Reduction

Example:
g = g*2y = 1T2: s0 s2s1

g = g+2x = 1T1: s2s1s0

Dependent operations Independent operations
g=g*2, g=g+2 (same data object) x=1, y=1
x=1, g=g+2 (part of T1) x=1, g=g*2
y=1, g=g*2 (part of T2) y=1, g=g+2

1 and 2 – differ only in relative order of y=1 and g=g+2
which are independent

4 and 5 – only relative order of x=1, g=g+2 which are
independent

Only 2 distinct runs:
2. x = 1, y = 1, g = g+2, g = g*2
3. x = 1, y = 1, g = g*2, g = g+2
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Partial-order Reduction
Example:

g = g*2y = 1T2: s0 s2s1
g = g+2x = 1T1: s2s1s0

Interleaving:

x, y, g
x=1

x=1

x=1

1, 0, 0
g=g+2 g=g*2

y=1

0, 1, 0

1, 0, 2 1, 1, 0 0, 1, 0

1, 1, 01, 1, 2

1, 1, 4 1, 1, 2

g=g+2g=g*2

g=g*2

y=1

y=1
g=g+2

0, 0, 0

Run sequences:
1. x=1, g=g+2, y=1, g=g*2 4. y=1, g=g*2, x=1, g=g*2
2. x=1, y=1, g=g+2, g=g*2 5. y=1, x=1, g=g*2, g=g+2
3. x=1, y=1, g=g*2, g=g+2 6. y=1, x=1, g=g+2, g=g*2
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Closure Under Stuttering

Stuttering refers to a sequence of identically labeled
states along a path in a Kripke structure.

Intuitively, an LTL formula is closed under stuttering if
the interpretation of the formula remains the same
under state sequences that differ only by repeated
states [Abadi,Lamport’01].

Assume � is closed under stuttering. Then,�
� is closed under stuttering

� � is not closed under stuttering
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Partial-order Reduction

Two equivalence classes: [1, 2, 6], [3, 4, 5]

x, y, g
x=1

x=1

x=1

1, 0, 0
g=g+2 g=g*2

y=1

0, 1, 0

1, 0, 2 1, 1, 0 0, 1, 0

1, 1, 01, 1, 2

1, 1, 4 1, 1, 2

g=g+2g=g*2

g=g*2

y=1

y=1
g=g+2

0, 0, 0

For verification, it is sufficient to consider just one run
from each equivalence class...

as long as the formulas are closed under stuttering!
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Closure under stuttering and LTL � �

LTL � � – a subset of LTL without the � operator.

Theorem: All LTL � � formulas are closed under
stuttering [Lamport’94]

Theorem: All cus LTL properties can be expressed in
LTL � �

By exponentially increasing the size of the formula!

Determining whether an arbitrary LTL formula is closed
under stuttering is PSPACE-complete [Peled, Wilke,
Wolper’96]

Exists an algorithm based on edges (changes in values
of variables) that allows to use full LTL and yet
guarantee closure under stuttering [Paun,Chechik’01]

Observation: stuttering does not add or delete edges
or change their relative order
Theorem [Paun99]: If � and � are cus then so is

� � � � � � � � � � �
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