N B

An Automata Theoretic Approach to
Branching Time Model Checking

Acknowledgements: after Arie Gurfinkel's notes

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.1/5¢

Automata and Logic

N B

e There is an intimate connection between automata and
logic
e Logic
a atemporal logic formula ¢ is identified with all
models that satisfy it
e Automata
o alanguage of an automaton is the set of all words
accepted by it
e The language of an automaton for a logical formula ¢ is
the set of all models that satisfy ¢
e strings for linear logic
o trees for branching logic

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.2/5¢

Automata-Theoretic Approach
| |

e Automata-theoretic approach gives a uniform solution to
both satisfiability and model-checking

e For a given logical formula ¢ and a model K

e ¢ is satisfiable iff there exists a model that satisfies ¢
e Op is satisfiable

e O(p A —p) is not

e model-checking is deciding if ¢ is satisfied by a given
model

e Automata-theoretic solution
o build an automaton A, for the formula ¢
e ¢ is satisfiable iff A, is non-empty
e combine A-, and K into an automaton A, i

L o K [oiff A, k is empty J

An Automata Theoretic Approach to Branching Time Model Checking — p.3/5¢

Automata-Theoretic Approach

f e Automata provide a clean separation between logic andT
algorithms

e Constructing an automaton for a formula

o What does that mean for a model to satisfy the
formula

e Solving non-emptiness problem for an automaton
o how to decide if a given model satisfies the formula

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.4/5¢

Outline
-

e Automata on infinite words
o refresher
e acceptance conditions
a computational tree of an automaton
o alternation — a powerful extension of nondeterminism

e Constructing an Alternating Word Automaton for LTL

e Automata on infinite trees
o deterministic automata
o nondeterministic automata
e alternating automata

e Constructing an Alternating Tree Automaton for CTL

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.5/5¢

Finite-state Automata

-

e A finite state automaton A is a tuple (3, @, 9, qo, F),
where

a X is a finite alphabet

a (@ is a finite set of states

a 0 C @ x X x(Qis atransition relation
e go € @ Is a designated initial state

e F C Q¥ is an acceptance condition

e A D-labeled infinite string s is a function N — D

e A X-word w is a X-labeled infinite string
e w = ababaaa”
e w(0) =a, w(l) =b, w(3) = a, etc.

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.6/5¢

-

-

[

Finite-state Automata

e Arun r of an automaton overaword wisa N x ()

labeled string, where

o a node of r labeled with (n, ¢) indicates that the
automaton reads letter n of w while at state q

b,c a,c
() @ ()
O=—=(0 state| s(g,a) | (4,5 | 5(g,)
q0 b q1
q0 il q0 q0
a q 9 Q

e arunonw = aba” IS

(O’q0)7(I’Q1)’(2aqo)’(37ql)7(47QI)7(5aQ1)7"'

Infinite Occurrences

e 3¥i-Y (i) —there exists infinitely many ith such that Y (7)

e Forpe ¥

a In(p) is the set of states that occur infinitely often
o In(p) ={q€ Q|3 p(i) = q}

e Biuchi condition
a FiISFCQ
e In(w)NF #0

o weak fairness — something occurs infinitely often

e Muller condition
o Fis{F,..., F,} C29
e Ji-In(w) = F;

_

An Automata Theoretic Approach to Branching Time Model Checking — p.7/5¢

-

_

An Automata Theoretic Approach to Branching Time Model Checking — p.8/5¢

Acceptance Conditions

N B

e Rabin condition (“pairs”)
e FIs {(Rl, Gl), .. (Rn, Gn)} with Rz’; G; C Q
e Ji-In(w)NR=0AIn(w)NG; #0
o Rabin (0, F) is equivalent to Blichi F’
e Street condition (“complemented pairs”)
o Fis {(Fl, El), ceey (Fn, En)} with E;, F; C Q)
e Vi-In(w)NF;# 0= In(w)NE; #(
e Sstrong fairness
o if infinitely often enabled, then infinitely often

executed
e Street (@, F) is equivalent to Buchi

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.9/5¢

Acceptance Conditions

N B

e Parity condition

e FiISF; C---CF,with F; CQ

o smallest i for which In(w) N F; # 0 is even
e Cco-Buchi condition

a FISFCQ

e accepts w if In(w)NEF =0

e Nondeterministic Bichi-, Muller-, Rabin-, and Street-
automata all recognize the same w-languages

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.10/5!

-

[

-

Example: Acceptance

e Language over {a,b,c}¥

a If a occurs infinitely often, then so does b
e Automaton with states ¢,, ¢, and ¢., and §

state || d(q,a) | 6(g,b) | 6(g,¢)
da Ga dp qc
ab Ga ab 4c
dc Ga dp 4c

e Acceptance conditions
o Street — single pair ({q.}, {9})

o Muller — all states FF where g, € F = q, € F

{an}, {ae} {av, e}, {90, v} {90y 0, a6}

Example: Acceptance

e Automaton with states q,, g, and g., and &

_

An Automata Theoretic Approach to Branching Time Model Checking — p.11/5!

state || 0(g, a) | 0(g,b) | 6(g,¢)
Ga Ga ab 4c
ab Ga ab 4c
4c Ga ab 4c

e Acceptance conditions

o Rabin

-

o either b occurs infinitely often, or both « and b have
finite occurrences

o two pairs (0,{a}), ({4a> v}, {ac})

o Parity

e ma {Qb}a {QCLa Qb}a {Qaa db, qc}

_

An Automata Theoretic Approach to Branching Time Model Checking — p.12/5!

-

[

Example: Acceptance

-~

For Blichi acceptance condition simulate Rabin pairs by
nondeterminism

state || 0(q,a) | 6(g,b) | 0(g,¢)
da da dp {QCaql}
@ da @ {gc, q'}
dc da dp {QCaql}
q q

Every time ¢ occurs, guess that a suffix containing only
c is reached

e Bichi acceptance condition

e F={awq} B

An Automata Theoretic Approach to Branching Time Model Checking — p.13/5!

Computational Tree of an Automaton

—

-

A set of all runs of an automaton A over a fixed word w
Is called a computational tree

Each node in the computational tree is labeled by a
history h € Q*

A history is a list of all states visited by the automaton
so far

For a deterministic automaton, the computational tree is
linear

a there is only one possible run!

_

An Automata Theoretic Approach to Branching Time Model Checking — p.14/5!

Computational Tree: Example

f e A deterministic automaton over {a, b} T

state || 6(q,a) | 6(q,b)

qo qo qi1
q1 q0 qi1

e Computational tree over (aab)¥

(90), (90, 90), (90, 90, 90), (g0, 90, 90, q1), - - -

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.15/5!

Comp. Tree: Nondeterministic Case

f e For a nondeterministic automaton, the computational T
tree contains all possible choices

e Formally, the computational tree T" of A over w is
recursively defined as
o the root is labeled by gy,
e for a node k € T labeled with the history z - y, where
ze@*andy e Q
e ifd(y,w(|z-y|)) ={t1,...tn}, then
e k has n successors, and
o ith successor is labeled with z -y - t;

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.16/5!

Example: nondeterministic automaton

N B

e Nondeterministic automaton over {a, b}

state | d(q,a) | 6(q,b)

o ||{90.91}|
q1 q1 q2
q2 q2 q2

e acceptance condition is Buchi F' = {q; }
e corresponds to ¢Oa

e Computational tree over aba®

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.17/5!

Computational Tree: Acceptance

N B

e An infinite history A € Q“ corresponds to an infinite
branch g of the computational tree iff for any prefix of A
there exists a node in 5 labeled with it

e An automaton A accepts a word w iff

a there exists an infinite branch g in the computational
tree of A over w, such that
e an infinite history corresponding to S is an
accepting run

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.18/5!

Alternation
o |

e For a non-deterministic automaton A, a transition
d(q,a) = {t1,...,t,} can be interpreted as

o when A is in state ¢ and has read letter a
e Create n copies of A
o switch :th copy to state ¢;
o run each copy on the rest of the word

o aword is accepted iff it is accepted by at least one
copy

e We can dualize the acceptance condition to be
o aword is accepted iff it is accepted by all copies

e In this case, the computational tree is linear
o but, each node is labeled with multiple histories

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.19/5!

Example of a Dual Automaton

f e Automaton over {a, b} T

state | d(q,a) | 6(q,b)

o ||{90.91}|
q1 q1 q2
q2 q2 q2

e just as before but {qo, g1} means pick both, not pick
one!

o acceptance condition is Buchi F' = {q¢1}
e Computational tree over aba is linear

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.20/5!

Another Example of a Dual Automaton

—

e Automaton over {a,b, c}

-

state || d(q,a) | (g, b) | 6(g,c)
o | {g1,9} | {0, e} | {0, e}
q1 g3 q1 q1
q2 q2 q3 q2
q3 g3 q3 g3

o acceptance condition is Buchi F' = {¢3}
a accepts o((oa) A (ob))

e Computational tree over ccabe” is linear

[

_

An Automata Theoretic Approach to Branching Time Model Checking — p.21/5!

Alternating Automata

-

e Alternating automata combine the two interpretations

-

a the transition relation becomes Q x ¥ — 92%

Q 5((], a) = {Tl, ..

., Ty} is interpreted as

e when a is read at state ¢, pick one of 7; C @

e Ccreate as many copies of A as |T;|, and send them
along the word

o aword is accepted iff it is accepted by all the

copies

e A computational tree of an alternating automaton is

e branching

a each node can be labeled with multiple histories

[

_

An Automata Theoretic Approach to Branching Time Model Checking — p.22/5!

Alternating Automata: Example

-

e Example alternating automaton over {a, b, ¢}

state d(q,a) d(q,b) | d(q,c)
@ | {{aot{at}| @ |[{n e}

qi1 qi1 q3 qi1
q2 a3 q2 q2
q3 q3 q3 q3

Blchi acceptance {¢3}
computational tree over acbaa®
a run over acbaa®

e P P P

corresponds to a U (oa A ©b)

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.23/5!

Alternating Automata: Acceptance

N B

e A word is accepted iff there exists an infinite branch
such that all of its infinite histories satisfy the
acceptance condition

e Alternatively,

o a run of an alternating word automaton is a tree
e each branch in the computational tree is a run
o the set of infinite histories associated with a
branch forms a tree

e arun is accepting iff all of its branches are accepting
o aword is accepted iff there exists an accepting run

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.24/5!

Symbolic Representation

e A transition relation Q x A — 22? can be represented
symbolically as a boolean formula over @)
e q1Vqeisequivalentto {{q:1}, {g2}}
e q1 Ag2V gsisequivalentto {{qi,q2},{g3}}

e Intuition

2 q1 Vg2 means
e split into two copies
o one switches to ¢;, the other to ¢
e accept iff at least one copy accepts

e (q1Vaq)Aas
o splitinto 3 copies
o 1st switches to ¢1, 2nd to ¢2, and 3rd to g3

L o accept if both the 3rd copy and either one of 1st O!
2nd accept

An Automata Theoretic Approach to Branching Time Model Checking — p.25/5!

Why Do We Need This?
| N

e Complementation is easy
o let ¢ be a boolean formula over X
e adual ¢, of ¢ is obtained by switching A with Vv
e adualof (aAb)Vecis(aVb)Ac
e acomplementof A = (X,Q,0,q,F) is
Ac = (2, Q, 6, g0, F¢), Where
e O isthe dual of 0, F. = Q¥ \ F
e There is an easy translation from temporal logic (LTL) to
alternating Btichi word automaton

e But, “there is no free lunch”
e an alternating automaton has finite number of states
a but, can split into infinitely many copies

L e conversion to non-alternating automaton is not J
aIWayS pOSSible’ Or Cheap! An Automata Theoretic Approach to Branching Time Model Checking — p.26/5!

From LTL to Automata

-

e For an LTL formula ¢

a closure of ¢, cl(y), is the set of all subformulas of ¢

e An alternating automaton A, that accepts all 2AP
labeled words that satisfy ¢ is built as follows

e A(P = <2AP7 Cl(QD), 67 907 F)
e d(q,0) is defined as follows

d(a,0) = a€o
Y

b
©]

S

2
I

d(—a, o)
6(0p,0)
6(cp,0) = d(p,0)Vop (U, o)

a&o

-

6(¢,0) ADgp

3y, o)V

6(p,0) Nl

L e F={0Oy | Oy € cl(p)} is a Buchi acceptance

condition

Examples

fc.LaZ/lb

state | (g, {a,b}) | 0(g,{a}) | 0(g,{b}) | 3(q,0)
a true true false false
b true false true false

aldb true aldb true false

a o accepting states

_

An Automata Theoretic Approach to Branching Time Model Checking — p.27/5!

-

_

An Automata Theoretic Approach to Branching Time Model Checking — p.28/5!

-

-

[

Examples

e aldob
state || 0(q, {a,b}) | d(g,{a}) | (g, {b}) | (q,0)
true true false false
b true false true false
ob true ob true ob
ald ob true (ob) V (aU ob) | true ob

e no accepting states

e Ua

_

An Automata Theoretic Approach to Branching Time Model Checking — p.29/5!

Examples

state

{a} | 0

-

a
Ua

true | false

Oa | false

e acceptance condition {Oa}

e (Oa) A (Ob)

state d(g,{a,b}) | 0(g,{a}) | 6(q,{b}) | 6(q,0)

a true true false false

b true false true false

Oa Oa Oa false false
0b Ob false

(Oa) A (Ob)

(Oa) A (Ob) | false

An Automata T

0b false J

false false

heoretic Approach to Branching Time Model Checking — p.30/5¢

Automata over Infinite Trees

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.31/5!

Outline

N B

e Automata on infinite trees
o deterministic automata
o nondeterministic automata
o alternating automata

e Constructing an Alternating Tree Automaton for CTL

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.32/5!

Trees
f e Atreeis atuple (V;,V;, E,r), where T
a V; and Vj is the set of tree and leaf nodes,
respectively
e (VzUV, E) is adirected acyclic graph
e ECV,x (V,UV)) is the set of edges
o r € Viistherootnode, Ve € V; - (z,r) ¢ £
e A tree is the set of paths from the root to the leaves
a assume nodes at each level are enumerated

a each path is an element of N*
e ¢ Is the root node
e 0-1-0 means: goto child 0, then 1, then 0

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.33/5!

Trees
f e Atree 7is a subset of N* such that T

e 7 is prefix closed

Qe €€T
e VIEN"-VyeN-(z-y) ET=>xET

e 7 is child closed
e VieN"-VyeN-(z-y)er=>Ve<y-(z-2)erT
e each node z € 7 is described by the unique path
from the root to «
e A degree d(x) of a node z is the number of successors
of z
e Vy<d(z) - (x-y) €eTA(z-dx)) &1

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.34/5!

Trees

e Atree 7 is n-ary iff

o every non-leaf node has degree d(z)
e Vzer-dz)=nVdz)=0

e Atree is leafless if degree of every node > 0

e A D labeled tree is a tuple (7, L), where
e TIiSatree
e L:N* — D is alabeling function

A string is 1-ary tree

A finite word is a X-labeled 1-ary tree
An infinite word is a X-labeled 1-ary leafless tree

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.35/5!

Q
e An infinite string is a leafless 1-ary tree
Q
Q

Tree Automata

-

e A tree automaton is a tuple A = (X, @, qo, 9, F), where
a X is a finite alphabet
a (@ is a finite set of states
e o € @ Is the initial state
Q

J is the transition relation
o different depending on the type of the automaton

e F C Q¥ is the acceptance condition
o can be Bichi, Rabin, Street, Parity, etc.

e For a deterministic n-ary tree automaton
J:Q x X — Q" where d(q,a) = (wy, ..., w,—1) Means
a if Ais in state ¢, and reads node labeled with a, then
o A splits into n copies
L e copy i is switched to state w;, and J
o is sent to the ith successor of the tree node

An Automata Theoretic Approach to Branching Time Model Checking — p.36/5!

Example

-

e deterministic automaton accepting all binary

-

{a, b}-labeled trees that have a b along every branch

e corresponds to AFb

state | d(q,a) | 0(q,b)
9 | (90, 9) | (q1,q1)
o || (g,q1) | (q1,q1)

e acceptance is Buchi {¢}

_

An Automata Theoretic Approach to Branching Time Model Checking — p.37/5!

Run and Acceptance

-

e A run of a deterministic tree automaton on a »-labeled

-

n-ary tree (T,V) is a N* x ()-labeled tree (T, V}), where
e V.(z) = (z,q) indicates that the automaton read letter

V(x) while in state ¢

e Vi(e) = (¢, 90)

e If Vi(z) = (z,q) and §(q,V (z)) = (wo, . .., wn—1), then
e Vy<n-(zx-y)eT,and
o Ve(z-y) = (z-y,wy)
e A run is accepting iff all of its branches satisfy the

acceptance condition

_

An Automata Theoretic Approach to Branching Time Model Checking — p.38/5!

Computational Tree of a Tree Automaton
- .

e A computational tree of A on atree (7,V) is a tree of al
runs of Aon (T,V)
e computational tree of a deterministic tree automaton
Is linear

e Each node of the computational tree is labeled by a set
of histories

e A history is a string (N x @)* describing a run of an
automaton over a single branch of the input tree

e A branch g of a computational tree is accepting iff all
infinite histories associated with it are accepting

e A tree is accepted iff exists an accepting branch of the
computational tree

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.39/5!

Non-Deterministic Tree Automata

-

e For a non-deterministic tree automaton ¢ : Q x ¥ — 29",
where 6(q,a) = {Wy, ..., Wi} means

a if Aisin state ¢, and reads a node labeled with a
e pick W; € 4(q,a) and proceed as a deterministic
automaton

e A run of a non-deterministic automaton is defined as for
the deterministic case

e A computational tree of a non-deterministic tree
automaton is branching

e atree is accepted iff there exists an accepting
branch of the computational tree

o or equivalently, iff there exists an accepting run

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.40/5!

Example

-

e non-deterministic binary tree automaton that accepts an
{a, b}-labeled tree if at least one branch contains an a

-

e corresponds to EFa

state || d(q,a) d(q,b)
g0 || (q1,q1) | {(20,q1),(q1,9)}
a1 | (q1,q1) (q1,q1)

e acceptance is Buchi {¢}

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.41/5!

Symbolic Transition Relation

N B

e For deterministic and non-deterministic tree automata
transition relation can be described by a boolean
formula over N x)

e For deterministic binary tree automaton
e d(q,a) = (wp, w1) becomes
e 5(q7 CL) - (0,’(1)0) A (17 wl)

e For a non-deterministic binary tree automaton a choice
Is encoded by a disjunction
@ (g, a) = {(wo, w1), (w2, w3)} becomes
e d(g,a) = ((0,wo) A (1,w1)) V ((0,w2) A (1,w3))

o note that both conjunction and disjunction are used

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.42/5!

-

Alternating Tree Automata

boolean formulas over X

e X ={a,b,c}

e {a,b} satisfiesa AbV ¢, and
e does notsatisfya AbAc

e (0’ QI) \% (0’ q2) A (17 ql)

Example

node at the second level

e Correspondsto AXEXb

e For aset X, let B(X) denote the set of all positive

e AsetY C X satisfies a formula 6 € B(X) if treating
atoms in Y as true, and in X \ Y as false, makes 6 true

-

e An alternating n-ary tree automaton is a tree automaton
with transition relation 6(q,a) € B({0,...,n — 1} x Q)

_

An Automata Theoretic Approach to Branching Time Model Checking — p.43/5!

e Alternating automaton that accepts all binary
{a, b}-labeled trees where b occurs as a child of every

state d(q,a) d(q,b)
g || (0,g1) A(1,q1) | (0,q1) A (1
g1 || (0,42) V (1,q2) | (0,92) V (1,2
g2 || (0,q4) A (1,94) | (0,g3) A (1
g3 | (0,43) A (1,q3) | (0,43) A (1,q3
gs || (0,q4) A (1,q4) | (0,94) A (1

L e acceptance is Bichi {¢3}

-

_

An Automata Theoretic Approach to Branching Time Model Checking — p.44/5!

Alternating Automata

N B

a A run of an alternating n-ary tree automaton A over a
Y.-labeled tree (T,V) is a N* x @ labeled tree (7, V})

e Vi(e) = (¢, q0)

e if V() = (y,q) and d(q, a) = 6, then there exists a
possibly empty set Y = {(co, wo),- - ., (ck, wx)} such
that
e Y satisfies ¢, and
e forall0<i<k,z-ieT,,and V,.(x-i) = (y- ¢, w;)

e Atree (T,V) is accepted by A iff there exists an

accepting run of A over (T,V)

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.45/5!

ATA Computational Tree
=

e As before, we can build a computational tree of A over a
Y.-labeled tree (T, V)

e Nodes in the computational tree are labeled with
histories

o but, nodes at the same level can have different
number of histories

o this happens since an alternating automaton is
allowed to send multiple copies to the same
direction, and even skip some directions

e Atree is accepted by the automaton iff there exists an
accepting infinite branch in the computational tree

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.46/5!

Example

-

e Automaton over binary {a}-labeled tree

state d(q,a)
g || (0,90) A (1,g2) V(0,q1)
a1 (Oa ql) N (O? qQ) N (17 q2)
q2 (0,q2)

e computational tree is branching

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.47/5!

Extending to Arbitrary Trees
-

e We only considered trees with a fixed branching degree

e LetDCN

e a D-tree is a tree such that a branching degree of
every node is in D
e Vz-d(z) €D
e A D-tree automaton has transition relation
0:QxXxD— B(NxQ)
a ¢ Is defined separately for each branching degree
e d(q,a, k) can only contain terms from {0,k — 1} x @

-

e A size of a D-tree automaton Ap is
o [|Ap|| =|D| +[Q| + [F| +[|d]]
@ 1811 = Sy 16(, a, k)| where 5(q, a, k) # false

_

An Automata Theoretic Approach to Branching Time Model Checking — p.48/5!

[

Model: Kripke Structure
-

e As usual, our models are Kripke structures
K = (AP, S,s0,R, L)
a AP is the set of atomic propositions
o S is a finite set of states
e sp € S an initial state
o R C S x S the transition relation
o L:S — 247 is the labeling function

e A Kripke structure induces a S-labeled tree (T, Vi)
o Vi :N* — S labels each node with a state
Q VK(G) = S50
o Tx C N* is a tree such that
e fory e T with R(Vk(y)) = (wo, . . . wy,) We have

L VO<i<m-(y-i) € Tg and Vg (y - i) = w; J

An Automata Theoretic Approach to Branching Time Model Checking — p.49/5!

Computation Tree

N B

e A Kripke structure can be seen as a computation tree
over its atomic propositions

e For a Kripke structure K
e (Tk,Vk) is its tree unrolling
e (Tk,L o Vg) is its computation tree

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.50/5!

-

-

Temporal Logic: CTL

e Computation Tree Logic is interpreted over a

computation tree of a Kripke structure

e Definition
[|pl](s) = p€ L(s,p)
[|=¢l[(s) = =llell(s)
e All(s) = Tlell(s) All]](s)
e Vll(s) = llell(s) VI|¥]l(s)
IEX@l|(s) = 3teR(s)-|lel]l(t)
|IAXpll(s) = VteR(s)-|lel]l(t)
E[UYl[(s) = |luZ -y Vo ANEXZ||(s)
[AleU]]|(s) nZ -V o NAXZ]|(s)
|E[pRY]l[(s) = |[vZ - A(pV EXZ)||(s)
[AlpRYl||(s) = |[vZ - A(pVAXZ)||(s) _

An Automata Theoretic Approach to Branching Time Model Checking — p.51/5!

From CTL to ATA

e For a CTL formula ¢ we construct an alternating D-tree

-

automaton Ap , that accepts all D-trees that are

models of ¢
Q AD,QD = (2AP7 Cl(gO), P, 57 F)

o the alphabet is all subsets of AP
a States correspond to sub-formulas of ¢

e initial state is ¢

e acceptance condition is Buchi and consists of all AR

and F R sub-formulas
e J IS the transition relation

e Intuitively, Ap , accepts a tree from a state ¢ iff the tree
Is the model of the formula associated with ¢

_

An Automata Theoretic Approach to Branching Time Model Checking — p.52/5!

From CTL to ATA

d(p,o, k) = trueifpeco

d(p, o, k) = falseif p o

d(—p, 0, k) = falseifpeco

d(—p, o, k) = trueifp&o

o N, 0,k) = d(p,0,k) No(,0,k)

oV, o,k) = (p,0,k)VI(,0,k)

§(AXp,0k) = AZ(c,)

(EXp,0k) = Vig(c,w)

S(AlpUd),0.k) = (s, 0,k)V 6(p,0,k) A NZg (e, AlpUy))

S(AlpRY),0,k) = 8(v,0,k) A (5(¢,0,k) V NeZg (e, AlpRy)))

S(ElpUy),0.k) = 6(y,0,k)V 8(p,0,k) AV (c, ElpU))
| O(BleRyLok) = 3(.0.k) A (B(pok) v Vi, (e. ElpRyl)

An Automata Theoretic Approach to Branching Time Model Checking — p.53/5!

Examples
n e = AFAGp N

e in negation normal form: Aftrue U (A[false R p])]
o alphabet 217}

state (g, {p}, k) 6(q,0, k)
Y Ne—o (c; Alfalse R pl) vV A (e,) | Nemg (e,
Alfalse R p) /\f;g (c, A[false R p]) false

o acceptance condition is Blchi { A[false R p|}

L _

An Automata Theoretic Approach to Branching Time Model Checking — p.54/5!

-

e = A[(~AXp)

Examples

U b

a in negation normal form: A[(EX—-p) U ¢]
o alphabet 2{P:b}

state | 8(q, {p,b}, k) | 8(q,{p}, k) | 5(q,{b}. k) | 5(q,0, k)
Y true [VE (e, AN (e,9) | true [VE(e,mp) AAE (e, 9)
—p false false true true

e acceptance condition is empty

_

An Automata Theoretic Approach to Branching Time Model Checking — p.55/5!

	Automata and Logic
	Automata-Theoretic Approach
	Automata-Theoretic Approach
	Outline
	Finite-state Automata
	Finite-state Automata
	Infinite Occurrences
	Acceptance Conditions
	Acceptance Conditions
	Example: Acceptance
	Example: Acceptance
	Example: Acceptance
	Computational Tree of an Automaton
	Computational Tree: Example
	Comp. Tree: Nondeterministic Case
	Example: nondeterministic automaton
	Computational Tree: Acceptance
	Alternation
	Example of a Dual Automaton
	Another Example of a Dual Automaton
	Alternating Automata
	Alternating Automata: Example
	Alternating Automata: Acceptance
	Symbolic Representation
	Why Do We Need This?
	From LTL to Automata
	Examples
	Examples
	Examples
	
	Outline
	Trees
	Trees
	Trees
	Tree Automata
	Example
	Run and Acceptance
	Computational Tree of a Tree Automaton
	Non-Deterministic Tree Automata
	Example
	Symbolic Transition Relation
	Alternating Tree Automata
	Example
	Alternating Automata
	ATA Computational Tree
	Example
	Extending to Arbitrary Trees
	Model: Kripke Structure
	Computation Tree
	Temporal Logic: CTL
	From CTL to ATA
	From CTL to ATA
	Examples
	Examples

