An Automata Theoretic Approach to Branching Time Model Checking

Acknowledgements: after Arie Gurfinkel's notes

An Automata Theoretic Approach to Branching Time Model Checking – p.1/5ξ

Automata and Logic

- There is an intimate connection between automata and logic
- Logic
 - ullet a temporal logic formula φ is identified with all models that satisfy it
- Automata
 - a language of an automaton is the set of all words accepted by it
- \bullet The language of an automaton for a logical formula φ is the set of all models that satisfy φ
 - strings for linear logic
 - trees for branching logic

Automata-Theoretic Approach

- Automata-theoretic approach gives a uniform solution to both satisfiability and model-checking
- ullet For a given logical formula φ and a model K
 - $f \omega$ φ is satisfiable iff there exists a model that satisfies φ
 - $\square p$ is satisfiable
 - $\Box (p \land \neg p)$ is not
 - $\, \bullet \,$ model-checking is deciding if φ is satisfied by a given model
- Automata-theoretic solution
 - floor build an automaton A_{φ} for the formula φ
 - ullet φ is satisfiable iff A_{φ} is non-empty
 - $lue{}$ combine $A_{\neg \varphi}$ and K into an automaton $A_{\neg \varphi,K}$
 - $K \models \varphi$ iff $A_{\neg \varphi, K}$ is empty

An Automata Theoretic Approach to Branching Time Model Checking - p.3/5

Automata-Theoretic Approach

- Automata provide a clean separation between logic and algorithms
- Constructing an automaton for a formula
 - what does that mean for a model to satisfy the formula
- Solving non-emptiness problem for an automaton
 - how to decide if a given model satisfies the formula

Outline

- Automata on infinite words
 - refresher
 - acceptance conditions
 - computational tree of an automaton
 - alternation a powerful extension of nondeterminism
- Constructing an Alternating Word Automaton for LTL
- Automata on infinite trees
 - deterministic automata
 - nondeterministic automata
 - alternating automata
- Constructing an Alternating Tree Automaton for CTL

An Automata Theoretic Approach to Branching Time Model Checking - p.5/58

Finite-state Automata

- A finite state automaton A is a tuple $(\Sigma, Q, \delta, q_0, \mathcal{F})$, where
 - ullet Σ is a *finite* alphabet
 - ullet Q is a *finite* set of states
 - $\delta \subseteq Q \times \Sigma \times Q$ is a transition relation
 - $ullet q_0 \in Q$ is a designated initial state
 - $\mathcal{F} \subseteq Q^{\omega}$ is an acceptance condition
- A D-labeled infinite string s is a function $\mathbb{N} \to D$
- A Σ -word w is a Σ -labeled infinite string
 - $w = ababaaa^{\omega}$
 - w(0) = a, w(1) = b, w(3) = a, etc.

Finite-state Automata

- A run r of an automaton over a word w is a $N \times Q$ labeled string, where
 - lacktriangle a node of r labeled with (n,q) indicates that the automaton reads letter n of w while at state q

• a run on $w = aba^{\omega}$ is

$$(0, q_0), (1, q_1), (2, q_0), (3, q_1), (4, q_1), (5, q_1), \dots$$

An Automata Theoretic Approach to Branching Time Model Checking - p.7/5

Infinite Occurrences

- \bullet $\exists^{\omega} i \cdot Y(i)$ there exists infinitely many *i*th such that Y(i)
- For $\rho \in Q^{\omega}$
 - ullet In(
 ho) is the set of states that occur infinitely often
 - $In(\rho) = \{ q \in Q \mid \exists^{\omega} i \cdot \rho(i) = q \}$
- Büchi condition
 - \mathcal{F} is $F \subseteq Q$
 - \bullet $In(w) \cap F \neq \emptyset$
 - weak fairness something occurs infinitely often
- Muller condition
 - \bullet \mathcal{F} is $\{F_1,\ldots,F_n\}\subseteq 2^Q$
 - $\exists i \cdot In(w) = F_i$

Acceptance Conditions

- Rabin condition ("pairs")
 - \bullet \mathcal{F} is $\{(R_1, G_1), \dots (R_n, G_n)\}$ with $R_i, G_i \subseteq Q$
 - $\blacksquare \exists i \cdot In(w) \cap R_i = \emptyset \wedge In(w) \cap G_i \neq \emptyset$
 - lacktriangle Rabin (\emptyset, F) is equivalent to Büchi F
- Street condition ("complemented pairs")
 - \bullet \mathcal{F} is $\{(F_1, E_1), \dots, (F_n, E_n)\}$ with $E_i, F_i \subseteq Q$
 - $\bigvee i \cdot In(w) \cap F_i \neq \emptyset \Rightarrow In(w) \cap E_i \neq \emptyset$
 - strong fairness
 - if infinitely often enabled, then infinitely often executed
 - Street (Q, F) is equivalent to Büchi F

An Automata Theoretic Approach to Branching Time Model Checking - p.9/5

Acceptance Conditions

- Parity condition
 - \bullet \mathcal{F} is $F_1 \subset \cdots \subset F_n$ with $F_i \subset Q$
 - smallest i for which $In(w) \cap F_i \neq \emptyset$ is even
- co-Büchi condition
 - \circ \mathcal{F} is $F \subseteq Q$
 - accepts w if $In(w) \cap F = \emptyset$
- Nondeterministic Büchi-, Muller-, Rabin-, and Streetautomata all recognize the same ω -languages

Example: Acceptance

- Language over $\{a, b, c\}^{\omega}$
 - lacktriangle if a occurs infinitely often, then so does b
- Automaton with states q_a , q_b , and q_c , and δ

state	$\delta(q,a)$	$\delta(q,b)$	$\delta(q,c)$
q_a	q_a	q_b	q_c
q_b	q_a	q_b	q_c
q_c	q_a	q_b	q_c

- Acceptance conditions
 - Street single pair $(\{q_a\}, \{q_b\})$
 - Muller all states F where $q_a \in F \Rightarrow q_b \in F$ $\{q_b\}, \{q_c\}, \{q_b, q_c\}, \{q_a, q_b\}, \{q_a, q_b, q_c\}$

An Automata Theoretic Approach to Branching Time Model Checking - p.11/55

Example: Acceptance

• Automaton with states q_a , q_b , and q_c , and δ

state	$\delta(q,a)$	$\delta(q,b)$	$\delta(q,c)$
q_a	q_a	q_b	q_c
q_b	q_a	q_b	q_c
q_c	q_a	q_b	q_c

- Acceptance conditions
 - Rabin
 - either b occurs infinitely often, or both a and b have finite occurrences
 - two pairs $(\emptyset, \{q_b\}), (\{q_a, q_b\}, \{q_c\})$
 - Parity

Example: Acceptance

 For Büchi acceptance condition simulate Rabin pairs by nondeterminism

state	$\delta(q,a)$	$\delta(q,b)$	$\delta(q,c)$
q_a	q_a	q_b	$\{q_c,q'\}$
q_b	q_a	q_b	$\{q_c,q'\}$
q_c	q_a	q_b	$\{q_c,q'\}$
q'			q'

- Every time c occurs, guess that a suffix containing only c is reached
- Büchi acceptance condition

•
$$F = \{q_b, q'\}$$

An Automata Theoretic Approach to Branching Time Model Checking - p.13/5

Computational Tree of an Automaton

- ullet A set of all runs of an automaton A over a fixed word w is called a computational tree
- Each node in the computational tree is labeled by a history $h \in Q^*$
- A history is a list of all states visited by the automaton so far
- For a deterministic automaton, the computational tree is linear
 - there is only one possible run!

Computational Tree: Example

ullet A deterministic automaton over $\{a,b\}$

state	$\delta(q,a)$	$\delta(q,b)$
q_0	q_0	q_1
q_1	q_0	q_1

• Computational tree over $(aab)^{\omega}$

$$(q_0), (q_0, q_0), (q_0, q_0, q_0), (q_0, q_0, q_0, q_1), \dots$$

An Automata Theoretic Approach to Branching Time Model Checking - p.15/5

Comp. Tree: Nondeterministic Case

- For a nondeterministic automaton, the computational tree contains all possible choices
- ullet Formally, the computational tree T of A over w is recursively defined as
 - the root is labeled by q_0 ,
 - for a node $k \in T$ labeled with the history $x \cdot y$, where $x \in Q^*$, and $y \in Q$
 - if $\delta(y, w(|x \cdot y|)) = \{t_1, \dots t_n\}$, then
 - k has n successors, and
 - ullet ith successor is labeled with $x \cdot y \cdot t_i$

Example: nondeterministic automaton

 \bullet Nondeterministic automaton over $\{a, b\}$

state	$\delta(q,a)$	$\delta(q,b)$
$\overline{q_0}$	$\{q_0,q_1\}$	q_0
q_1	q_1	q_2
q_2	q_2	q_2

- ullet acceptance condition is Büchi $F = \{q_1\}$
- f a corresponds to $\diamond \Box a$
- f L Computational tree over aba^ω

An Automata Theoretic Approach to Branching Time Model Checking - p.17/5

Computational Tree: Acceptance

- An infinite history $h \in Q^{\omega}$ corresponds to an infinite branch β of the computational tree iff for any prefix of h there exists a node in β labeled with it
- $lue{}$ An automaton A accepts a word w iff
 - there exists an infinite branch β in the computational tree of A over w, such that
 - ullet an infinite history corresponding to eta is an accepting run

Alternation

- For a non-deterministic automaton A, a transition $\delta(q,a)=\{t_1,\ldots,t_n\}$ can be interpreted as
 - $lue{}$ when A is in state q and has read letter a
 - ullet create n copies of A
 - \bullet switch *i*th copy to state t_i
 - run each copy on the rest of the word
 - a word is accepted iff it is accepted by at least one copy
- We can dualize the acceptance condition to be
 - a word is accepted iff it is accepted by all copies
- In this case, the computational tree is linear
 - but, each node is labeled with multiple histories

An Automata Theoretic Approach to Branching Time Model Checking - p.19/5

Example of a Dual Automaton

• Automaton over $\{a, b\}$

state	$\delta(q,a)$	$\delta(q,b)$
q_0	$\{q_0,q_1\}$	q_0
q_1	q_1	q_2
q_2	q_2	q_2

- just as before but $\{q_0,q_1\}$ means pick both, not pick one!
- acceptance condition is Büchi $F = \{q_1\}$
- Computational tree over aba^{ω} is linear

Another Example of a Dual Automaton

• Automaton over $\{a, b, c\}$

state	$\delta(q,a)$	$\delta(q,b)$	$\delta(q,c)$
q_0	$\{q_1,q_2\}$	$\{q_1,q_2\}$	$\{q_1,q_2\}$
q_1	q_3	q_1	q_1
q_2	q_2	q_3	q_2
q_3	q_3	q_3	q_3

- acceptance condition is Büchi $F = \{q_3\}$
- accepts $\circ ((\diamond a) \wedge (\diamond b))$
- Computational tree over $ccabc^{\omega}$ is linear

An Automata Theoretic Approach to Branching Time Model Checking - p.21/5

Alternating Automata

- Alternating automata combine the two interpretations
 - the transition relation becomes $Q \times \Sigma \to 2^{2^Q}$
 - $\delta(q,a) = \{T_1, \dots, T_n\}$ is interpreted as
 - when a is read at state q, pick one of $T_i \subseteq Q$
 - ullet create as many copies of A as $|T_i|$, and send them along the word
 - a word is accepted iff it is accepted by all the copies
- A computational tree of an alternating automaton is
 - branching
 - each node can be labeled with multiple histories

Alternating Automata: Example

• Example alternating automaton over $\{a, b, c\}$

state	$\delta(q,a)$	$\delta(q,b)$	$\delta(q,c)$
q_0	$\{\{q_0\},\{q_1\}\}$	q_2	$\{q_1,q_2\}$
q_1	q_1	q_3	q_1
q_2	q_3	q_2	q_2
q_3	q_3	q_3	q_3

- Büchi acceptance $\{q_3\}$
- lacktriangle computational tree over $acbaa^\omega$
- a run over $acbaa^{\omega}$
- \bullet corresponds to $a \mathcal{U} (\diamond a \land \diamond b)$

An Automata Theoretic Approach to Branching Time Model Checking - p.23/5

Alternating Automata: Acceptance

- A word is accepted iff there exists an infinite branch such that all of its infinite histories satisfy the acceptance condition
- Alternatively,
 - a run of an alternating word automaton is a tree
 - each branch in the computational tree is a run
 - the set of infinite histories associated with a branch forms a tree
 - a run is accepting iff all of its branches are accepting
 - a word is accepted iff there exists an accepting run

Symbolic Representation

- A transition relation $Q \times A \to 2^{2^Q}$ can be represented symbolically as a boolean formula over Q
 - \bullet $q_1 \lor q_2$ is equivalent to $\{\{q_1\}, \{q_2\}\}$
 - $q_1 \wedge q_2 \vee q_3$ is equivalent to $\{\{q_1, q_2\}, \{q_3\}\}$
- Intuition
 - $q_1 \lor q_2$ means
 - split into two copies
 - one switches to q_1 , the other to q_2
 - accept iff at least one copy accepts
 - \bullet $(q_1 \lor q_2) \land q_3$
 - split into 3 copies
 - 1st switches to q_1 , 2nd to q_2 , and 3rd to q_3
 - accept if both the 3rd copy and either one of 1st or 2nd accept

An Automata Theoretic Approach to Branching Time Model Checking - p.25/58

Why Do We Need This?

- Complementation is easy
 - floor let φ be a boolean formula over X
 - lacktriangle a dual $arphi_c$ of arphi is obtained by switching \wedge with \vee
 - a dual of $(a \wedge b) \vee c$ is $(a \vee b) \wedge c$
 - a complement of $A = (\Sigma, Q, \delta, q_0, \mathcal{F})$ is $A_c = (\Sigma, Q, \delta_c, q_0, \mathcal{F}_c)$, where
 - δ_c is the dual of δ , $\mathcal{F}_c = Q^{\omega} \setminus \mathcal{F}$
- There is an easy translation from temporal logic (LTL) to alternating Büchi word automaton
- But, "there is no free lunch"
 - an alternating automaton has finite number of states
 - but, can split into infinitely many copies
 - conversion to non-alternating automaton is not always possible, or cheap!

From LTL to Automata

- ullet For an LTL formula φ
 - ullet closure of φ , $cl(\varphi)$, is the set of all subformulas of φ
- An alternating automaton A_{φ} that accepts all 2^{AP} labeled words that satisfy φ is built as follows

$$A_{\varphi} = (2^{AP}, cl(\varphi), \delta, \varphi, F)$$

ullet $\delta(q,\sigma)$ is defined as follows

• $F = \{ \Box \psi \mid \Box \psi \in cl(\varphi) \}$ is a Büchi acceptance condition

An Automata Theoretic Approach to Branching Time Model Checking - p.27/55

Examples

 \bullet $a \mathcal{U} b$

state	$\delta(q, \{a, b\})$	$\delta(q, \{a\})$	$\delta(q,\{b\})$	$\delta(q,\emptyset)$
\overline{a}	true	true	false	false
b	true	false	true	${f false}$
$a \mathcal{U} b$	true	$a \mathcal{U} b$	true	${f false}$

no accepting states

Examples

 \bullet $a \mathcal{U} \diamond b$

state	$\delta(q, \{a, b\})$	$\delta(q,\{a\})$	$\delta(q, \{b\})$	$\delta(q,\emptyset)$
\overline{a}	true	true	false	false
b	true	${f false}$	true	${f false}$
$\diamond b$	true	$\diamond b$	true	$\diamond b$
$a \mathcal{U} \diamond b$	true	$(\diamond b) \lor (a \mathcal{U} \diamond b)$	true	$\diamond b$

no accepting states

An Automata Theoretic Approach to Branching Time Model Checking – p.29/5 $\mbox{\it f}$

Examples

 $\Box a$

state	{ <i>a</i> }	Ø
\overline{a}	true	false
$\Box a$	$\Box a$	false

- $lue{}$ acceptance condition $\{\Box a\}$

state	$\delta(q, \{a, b\})$	$\delta(q, \{a\})$	$\delta(q,\{b\})$	$\delta(q,\emptyset)$
\overline{a}	true	true	false	false
b	true	${f false}$	${f true}$	${f false}$
$\Box a$	$\Box a$	$\Box a$	${f false}$	${f false}$
$\Box b$	$\Box b$	${f false}$	$\Box b$	${f false}$
$(\Box a) \wedge (\Box b)$	$(\Box a) \wedge (\Box b)$	${f false}$	${f false}$	false

Automata over Infinite Trees

An Automata Theoretic Approach to Branching Time Model Checking – p.31/58

Outline

- Automata on infinite trees
 - deterministic automata
 - nondeterministic automata
 - alternating automata
- Constructing an Alternating Tree Automaton for CTL

Trees

- ullet A tree is a tuple (V_t, V_l, E, r) , where
 - ullet V_t and V_l is the set of tree and leaf nodes, respectively
 - $(V_t \cup V_l, E)$ is a directed acyclic graph
 - $E \subseteq V_t \times (V_t \cup V_l)$ is the set of edges
 - \bullet $r \in V_t$ is the root node, $\forall x \in V_t \cdot (x,r) \notin E$
- A tree is the set of paths from the root to the leaves
 - assume nodes at each level are enumerated
 - lacktriangle each path is an element of \mathbb{N}^*
 - \bullet ϵ is the root node
 - $\bullet \hspace{0.1cm} 0 \cdot 1 \cdot 0$ means: go to child 0, then 1, then 0

An Automata Theoretic Approach to Branching Time Model Checking - p.33/5

Trees

- ullet A tree au is a subset of \mathbb{N}^* such that
 - \bullet τ is prefix closed
 - $\epsilon \in \tau$
 - $\forall x \in \mathbb{N}^* \cdot \forall y \in \mathbb{N} \cdot (x \cdot y) \in \tau \Rightarrow x \in \tau$
 - $extbf{\rightar} au$ is child closed
 - $\forall x \in \mathbb{N}^* \cdot \forall y \in \mathbb{N} \cdot (x \cdot y) \in \tau \Rightarrow \forall z \le y \cdot (x \cdot z) \in \tau$
 - ullet each node $x \in \tau$ is described by the unique path from the root to x
- $lackbox{ A degree } d(x) ext{ of a node } x ext{ is the number of successors }$
 - $\forall y < d(x) \cdot (x \cdot y) \in \tau \land (x \cdot d(x)) \notin \tau$

Trees

- \bullet A tree τ is n-ary iff
 - ullet every non-leaf node has degree d(x)
 - $\forall x \in \tau \cdot d(x) = n \lor d(x) = 0$
- ullet A tree is leafless if degree of every node > 0
- ullet A D labeled tree is a tuple (τ, L) , where
 - \bullet τ is a tree
 - $L: \mathbb{N}^* \to D$ is a labeling function
- A string is 1-ary tree
- An infinite string is a leafless 1-ary tree
- $f \Delta$ A finite word is a Σ -labeled 1-ary tree
- ullet An infinite word is a Σ -labeled 1-ary leafless tree

An Automata Theoretic Approach to Branching Time Model Checking - p.35/55

Tree Automata

- A tree automaton is a tuple $A = (\Sigma, Q, q_0, \delta, \mathcal{F})$, where
 - $f \Sigma$ is a finite alphabet
 - Q is a finite set of states
 - $q_0 \in Q$ is the initial state
 - $oldsymbol{\bullet}$ δ is the transition relation
 - different depending on the type of the automaton
 - $\mathcal{F} \subseteq Q^{\omega}$ is the acceptance condition
 - can be Büchi, Rabin, Street, Parity, etc.
- For a deterministic n-ary tree automaton

$$\delta: Q \times \Sigma \to Q^n$$
, where $\delta(q, a) = (w_0, \dots, w_{n-1})$ means

- ullet if A is in state q, and reads node labeled with a, then
 - A splits into n copies
 - ullet copy i is switched to state w_i , and
 - is sent to the ith successor of the tree node

Example

- deterministic automaton accepting all binary $\{a,b\}$ -labeled trees that have a b along every branch
- corresponds to AFb

$$\begin{array}{c|c|c|c} \text{state} & \delta(q, a) & \delta(q, b) \\ \hline q_0 & (q_0, q_0) & (q_1, q_1) \\ q_1 & (q_1, q_1) & (q_1, q_1) \\ \end{array}$$

lacktriangle acceptance is Büchi $\{q_1\}$

An Automata Theoretic Approach to Branching Time Model Checking - p.37/5

Run and Acceptance

- A run of a deterministic tree automaton on a Σ -labeled n-ary tree (T,V) is a $\mathbb{N}^* \times Q$ -labeled tree (T,V_r) , where
 - $V_r(x) = (x,q)$ indicates that the automaton read letter V(x) while in state q
 - $V_r(\epsilon) = (\epsilon, q_0)$
 - if $V_r(x) = (x,q)$ and $\delta(q,V(x)) = (w_0,\ldots,w_{n-1})$, then
 - $extstyle \forall y < n \cdot (x \cdot y) \in T, \text{ and }$
 - $V_r(x \cdot y) = (x \cdot y, w_y)$
- A run is accepting iff all of its branches satisfy the acceptance condition

Computational Tree of a Tree Automaton

- A computational tree of A on a tree (T,V) is a tree of all runs of A on (T,V)
 - computational tree of a deterministic tree automaton is linear
- Each node of the computational tree is labeled by a set of histories
- A history is a string $(\mathbb{N} \times Q)^*$ describing a run of an automaton over a single branch of the input tree
- A branch β of a computational tree is accepting iff all infinite histories associated with it are accepting
- A tree is accepted iff exists an accepting branch of the computational tree

An Automata Theoretic Approach to Branching Time Model Checking - p.39/55

Non-Deterministic Tree Automata

- For a non-deterministic tree automaton $\delta: Q \times \Sigma \to 2^{Q^n}$, where $\delta(q, a) = \{W_0, \dots, W_k\}$ means
 - ullet if A is in state q, and reads a node labeled with a
 - ullet pick $W_i \in \delta(q,a)$ and proceed as a deterministic automaton
- A run of a non-deterministic automaton is defined as for the deterministic case
- A computational tree of a non-deterministic tree automaton is branching
 - a tree is accepted iff there exists an accepting branch of the computational tree
 - or equivalently, iff there exists an accepting run

Example

- non-deterministic binary tree automaton that accepts an $\{a,b\}$ -labeled tree if at least one branch contains an a
- corresponds to EFa

state	$\delta(q,a)$	$\delta(q,b)$	
q_0	(q_1,q_1)	$\{(q_0,q_1),(q_1,q_0)\}$	
q_1	(q_1,q_1)	(q_1,q_1)	

ullet acceptance is Büchi $\{q_1\}$

An Automata Theoretic Approach to Branching Time Model Checking - p.41/55

Symbolic Transition Relation

- ullet For deterministic and non-deterministic tree automata transition relation can be described by a boolean formula over $\mathbb{N}\times Q$
- For deterministic binary tree automaton
 - \bullet $\delta(q,a)=(w_0,w_1)$ becomes
 - $\delta(q, a) = (0, w_0) \wedge (1, w_1)$
- For a non-deterministic binary tree automaton a choice is encoded by a disjunction
 - $\delta(q, a) = \{(w_0, w_1), (w_2, w_3)\}$ becomes
 - $\bullet \ \delta(q,a) = ((0,w_0) \land (1,w_1)) \lor ((0,w_2) \land (1,w_3))$
 - note that both conjunction and disjunction are used

Alternating Tree Automata

- For a set X, let $\mathcal{B}(X)$ denote the set of all positive boolean formulas over X
- A set $Y \subseteq X$ satisfies a formula $\theta \in \mathcal{B}(X)$ if treating atoms in Y as true, and in $X \setminus Y$ as false, makes θ true
 - $X = \{a, b, c\}$
 - $\{a,b\}$ satisfies $a \wedge b \vee c$, and
 - does not satisfy $a \wedge b \wedge c$
- An alternating n-ary tree automaton is a tree automaton with transition relation $\delta(q,a) \in \mathcal{B}(\{0,\ldots,n-1\} \times Q)$
 - $(0,q_1) \lor (0,q_2) \land (1,q_1)$

An Automata Theoretic Approach to Branching Time Model Checking - p.43/55

Example

- Alternating automaton that accepts all binary $\{a,b\}$ -labeled trees where b occurs as a child of every node at the second level
- Corresponds to AXEXb

	$\delta(q,a)$, ,
q_0		$(0,q_1)\wedge(1,q_1)$
q_1	$(0,q_2)\vee(1,q_2)$	$(0,q_2)\vee(1,q_2)$
q_2	$(0,q_4) \wedge (1,q_4)$	$(0,q_3)\wedge(1,q_3)$
q_3	$(0,q_3) \wedge (1,q_3)$	$(0,q_3)\wedge(1,q_3)$
q_4	$ (0,q_4) \wedge (1,q_4) $	$(0,q_4)\wedge(1,q_4)$

 $lue{}$ acceptance is Büchi $\{q_3\}$

Alternating Automata

- A run of an alternating n-ary tree automaton A over a Σ -labeled tree (T, V) is a $\mathbb{N}^* \times Q$ labeled tree (T_r, V_r)
 - $V_r(\epsilon) = (\epsilon, q_0)$
 - if $V_r(x)=(y,q)$ and $\delta(q,a)=\theta$, then there exists a possibly empty set $Y=\{(c_0,w_0),\ldots,(c_k,w_k)\}$ such that
 - \bullet Y satisfies θ , and
 - for all $0 \le i \le k$, $x \cdot i \in T_r$, and $V_r(x \cdot i) = (y \cdot c_i, w_i)$
- A tree (T, V) is accepted by A iff there exists an accepting run of A over (T, V)

An Automata Theoretic Approach to Branching Time Model Checking - p.45/5

ATA Computational Tree

- As before, we can build a computational tree of A over a Σ -labeled tree (T,V)
- Nodes in the computational tree are labeled with histories
 - but, nodes at the same level can have different number of histories
 - this happens since an alternating automaton is allowed to send multiple copies to the same direction, and even skip some directions
- A tree is accepted by the automaton iff there exists an accepting infinite branch in the computational tree

Example

Automaton over binary {a}-labeled tree

state	$\delta(q,a)$	
q_0	$(0, q_0) \wedge (1, q_2) \vee (0, q_1) (0, q_1) \wedge (0, q_2) \wedge (1, q_2)$	
q_1	$(0,q_1) \wedge (0,q_2) \wedge (1,q_2)$	
q_2	$(0,q_2)$	

computational tree is branching

An Automata Theoretic Approach to Branching Time Model Checking - p.47/55

Extending to Arbitrary Trees

- We only considered trees with a fixed branching degree
- ullet Let $\mathcal{D} \subseteq \mathbb{N}$
 - ${\color{red} \bullet}$ a ${\mathcal D}\text{-tree}$ is a tree such that a branching degree of every node is in ${\mathcal D}$
- A D-tree automaton has transition relation

$$\delta: Q \times \Sigma \times \mathcal{D} \to \mathcal{B}(\mathbb{N} \times Q)$$

- \bullet δ is defined separately for each branching degree
- \bullet $\delta(q,a,k)$ can only contain terms from $\{0,k-1\}\times Q$
- f A size of a $\mathcal D$ -tree automaton $A_{\mathcal D}$ is

$$||A_{\mathcal{D}}|| = |\mathcal{D}| + |Q| + |F| + ||\delta||$$

•
$$||\delta|| = \sum_{q,a,k} |\delta(q,a,k)|$$
 where $\delta(q,a,k) \neq \text{false}$

Model: Kripke Structure

As usual, our models are Kripke structures

$$K = (AP, S, s_0, R, L)$$

- AP is the set of atomic propositions
- $s_0 \in S$ an initial state
- $L: S \to 2^{AP}$ is the labeling function
- ullet A Kripke structure induces a S-labeled tree (T_K, V_K)
 - $V_K: \mathbb{N}^* \to S$ labels each node with a state
 - $V_K(\epsilon) = s_0$
 - ullet $T_K\subseteq \mathbb{N}^*$ is a tree such that
 - for $y \in T_K$ with $R(V_K(y)) = (w_0, \dots w_m)$ we have $\forall 0 \le i \le m \cdot (y \cdot i) \in T_K$ and $V_K(y \cdot i) = w_i$

An Automata Theoretic Approach to Branching Time Model Checking - p.49/5

Computation Tree

- A Kripke structure can be seen as a computation tree over its atomic propositions
- For a Kripke structure K
 - ullet (T_K, V_K) is its tree unrolling
 - $(T_K, L \circ V_K)$ is its computation tree

Temporal Logic: CTL

- Computation Tree Logic is interpreted over a computation tree of a Kripke structure
- Definition

```
||p||(s) = p \in L(s, p)
||\neg \varphi||(s) = \neg ||\varphi||(s)
||\varphi \wedge \psi||(s) = ||\varphi||(s) \wedge ||\psi||(s)
||\varphi \vee \psi||(s) = ||\varphi||(s) \vee ||\psi||(s)
||EX\varphi||(s) = \exists t \in R(s) \cdot ||\varphi||(t)
||AX\varphi||(s) = \forall t \in R(s) \cdot ||\varphi||(t)
||E[\varphi U\psi]||(s) = ||\mu Z \cdot \psi \vee \varphi \wedge EXZ||(s)
||A[\varphi U\psi]||(s) = ||\mu Z \cdot \psi \vee \varphi \wedge AXZ||(s)
||E[\varphi R\psi]||(s) = ||\nu Z \cdot \psi \wedge (\varphi \vee EXZ)||(s)
||A[\varphi R\psi]||(s) = ||\nu Z \cdot \psi \wedge (\varphi \vee AXZ)||(s)
```

An Automata Theoretic Approach to Branching Time Model Checking - p.51/55

From CTL to ATA

- For a CTL formula φ we construct an alternating \mathcal{D} -tree automaton $A_{\mathcal{D},\varphi}$ that accepts all \mathcal{D} -trees that are models of φ
- $A_{\mathcal{D},\varphi} = (2^{AP}, cl(\varphi), \varphi, \delta, F)$
 - ullet the alphabet is all subsets of AP
 - $f \omega$ states correspond to sub-formulas of φ
 - floor initial state is φ
 - ullet acceptance condition is Büchi and consists of all AR and ER sub-formulas
 - $f \delta$ is the transition relation
- Intuitively, $A_{\mathcal{D},\varphi}$ accepts a tree from a state q iff the tree is the model of the formula associated with q

From CTL to ATA

```
\begin{array}{lll} \delta(p,\sigma,k) & = & \mathbf{true} \ \mathbf{if} \ p \in \sigma \\ \delta(p,\sigma,k) & = & \mathbf{false} \ \mathbf{if} \ p \notin \sigma \\ \delta(\neg p,\sigma,k) & = & \mathbf{false} \ \mathbf{if} \ p \in \sigma \\ \delta(\neg p,\sigma,k) & = & \mathbf{true} \ \mathbf{if} \ p \in \sigma \\ \delta(\varphi \wedge \psi,\sigma,k) & = & \delta(\varphi,\sigma,k) \wedge \delta(\psi,\sigma,k) \\ \delta(\varphi \vee \psi,\sigma,k) & = & \delta(\varphi,\sigma,k) \vee \delta(\psi,\sigma,k) \\ \delta(AX\varphi,\sigma,k) & = & \int_{c=0}^{k-1} (c,\varphi) \\ \delta(EX\varphi,\sigma,k) & = & \bigvee_{c=0}^{k-1} (c,\varphi) \\ \delta(A[\varphi U\psi],\sigma,k) & = & \delta(\psi,\sigma,k) \vee \delta(\varphi,\sigma,k) \wedge \bigwedge_{c=0}^{k-1} (c,A[\varphi U\psi]) \\ \delta(A[\varphi R\psi],\sigma,k) & = & \delta(\psi,\sigma,k) \wedge \delta(\varphi,\sigma,k) \vee \bigwedge_{c=0}^{k-1} (c,A[\varphi R\psi])) \\ \delta(E[\varphi U\psi],\sigma,k) & = & \delta(\psi,\sigma,k) \vee \delta(\varphi,\sigma,k) \vee \bigvee_{c=0}^{k-1} (c,E[\varphi U\psi]) \\ \delta(E[\varphi R\psi],\sigma,k) & = & \delta(\psi,\sigma,k) \wedge (\delta(\varphi,\sigma,k) \vee \bigvee_{c=0}^{k-1} (c,E[\varphi R\psi])) \end{array}
```

An Automata Theoretic Approach to Branching Time Model Checking - p.53/55

Examples

- $\psi = AFAGp$
 - in negation normal form: $A[\mathbf{true}\ U\ (A[\mathbf{false}\ R\ p])]$
 - alphabet $2^{\{p\}}$

state	state $\delta(q, \{p\}, k)$	
$\overline{\psi}$	$\bigwedge_{c=0}^{k-1}(c, A[\mathbf{false}\ R\ p]) \vee \bigwedge_{c=0}^{k-1}(c, \psi)$	$\bigwedge_{c=0}^{k-1}(c,\psi)$
$A[\mathbf{false}\ R\ p]$	$\bigwedge_{c=0}^{k-1}(c, A[\mathbf{false}\ R\ p])$	false

• acceptance condition is Büchi $\{A[false R p]\}$

Examples

- $\ \, \textbf{ } \text{ in negation normal form: } A[(EX \neg p) \ U \ q] \\$
- f a alphabet $2^{\{p,b\}}$

state	$\delta(q,\{p,b\},k)$	$\delta(q,\{p\},k)$	$\delta(q,\{b\},k)$	$\delta(q,\emptyset,k)$
ψ	true	$\bigvee_{c=0}^{k-1}(c,\neg p) \wedge \bigwedge_{c=0}^{k-1}(c,\psi)$	true	$\bigvee_{c=0}^{k-1} (c, \neg p) \wedge \bigwedge_{c=0}^{k-1} (c, \psi)$
$\neg p$	false	false	true	true

acceptance condition is empty

An Automata Theoretic Approach to Branching Time Model Checking - p.55/56