Abstraction of Source Code

(from Bandera lectures and talks)

=2
Abstraction: the key to scaling up
B
represents a fymba//’c State
set of states
Original V|, 7] Abstract
system S e system
o p s

Safety: The set of behaviors of the abstract system over-approximates
the set of behaviors of the original system

Data Abstraction

EEE
e Data Abstraction
— Abstraction proceeds component-wise,
where variables are components
x:int
y:int
| EENSSAZ s
Data Type Abstraction
B
Collapses data domains via abstract interpretation:
Code Data domains
1ntx=0 int
Pif (x == 0) i
LT x L
E E (n<0) : NEG
l l (n==0): ZERO
(n>0) : POS

iSigns x = ZERO;
iif (SignsOOO(XOZERO)) i
! X = SignsO00o0(xOoPOS); i

Hypothesis

Abstraction of data domains is necessary

Automated support for
— Defining abstract domains (and operators)
— Selecting abstractions for program components
— Generating abstract program models
— Interpreting abstract counter-examples

will make it possible to
— Scale property verification to realistic systems
— Ensure the safety of the verification process

Definition of Abstractionsin BASL

i
. : . 00000to0 + 000
00st000tion Signs 00stoO0ts int 00gin
00gin (NEG 0 NEG) 0> ONEGD(TH
OOOENS = 0 NEGO ZEROO POS 0; (NEG 0 ZERO) 0> ONEGO
(ZEROD NEG) 0> ONEGD
oostooot(n) (ZEROD ZERO) 0> 0OZEROD ;
oogin (zZEROO POS) 0> OPOSO

0 D> ONEGD; Automatic (POS 0 ZERO) 0> OPOSO

n < H
n == 0 0> DZEROD; G i :
ong 00 0OSO (POSONEG)U(NEGOPOS) 00

On0

Example: Start safe, then refine: +(NEGINEG) =INEGzEre REST

Proof obligations submitted to PVS...
ooooog nlong: nogo(nl) ono nogo(ng) 00070 not ooso(nl+nid) '\/

ooonog nlong: nogo(nl) ong nogo(ng) T00070s not 0o0ooo(nl+nd)

ooonog nlong: nogo(nl) ond nogo(ng) 700070s not ndgo(nl+nid) x

Compiling BASL Déefinitions

(]

DOst000tiOn Signs 00stOOOts int QOOQiL000SS SigDS D o o e e e o o = -
oogin | 00000 stotio finOD int NEG = 0; 00 0OsO 1
DOOENS = O NEGO ZEROOD POS 0; I ooooio stotio fin00 int ZERO = 1; 00 ooso o
_boogio_stotio finoo int_POs = 0; DO 00sO g
oostooot(n) e e e e e e e e T T T,
oogin I 0oooio stOtio int 00s(int n) O I

n < 0 0> ONEGO; if (n < 0) 0OtOONn NEG;

n == 0 0> 0ZEROO; I if (n == 0) D0toOn ZERO; 1
n > 0 0> DPOSO; 1 if (n > 0) 0OtOONn POS; 1
On0O LEI _________________ 1

00000tOD + 000 00000 stOtio int DOOCint 00glO int 0OQO) iy
oogin (30n1pHe& if (00gl==NEG 00 00gO==NEG) [00t0On NEG;!
(NEG 0 NEG) 0> ONEGOD I if (0Dgl==NEG 0D O0QU==ZERO) 0OtOON NEG;I
(NEG 0 ZERO) 0> ONEGO
(ZEROO NEG) 0> ONEGOD
(ZEROD ZERO) 0> OZEROD
(ZEROD POS) O> OPOSO
(POS 0 ZERO) 0> OPOSO

I if (0Dgl==ZERO OO0 00g0==NEG) O0tOONn NEG;
| if (0Dgl==ZERO 00 00g0==ZERQ) 00t0On ZERq;
I if (00gl==zERO 00 00gO==POS) O0tOOn POS;
if (00gl==POS 00 00g0==ZERO) 00t0On POS;l
I if (0Dgl==POS 00 OOQO==POS) O0OtOON POS;|

(POS 0 POS) [0O> OPOSO ;/Uﬂtﬂﬂn 00n000DO000O0sO(D); 1
(0O0)0> ONEGOD ZEROO POSO 1 00 00s0 (POSONEG)D (NEGOPOS) 00 |
00 00s0 (POSONEG)O (NEGOPOS) IIIIIII 0 .
1 T e S S S S —

Interpreting Results

e For an abstracted program, a counter-example
may be infeasible because:
— Over-approximation introduced by abstraction

e Example:
=-2; if(x+2==0)then ...
x = NEG; if(Signs.eq(Signs.add(x,POS),ZERQO)) then ...
{NEG,ZERO,POS}

Choose-free state space search

e Theorem [Saidi:SAS’00]

Every path in the abstracted program where all
assignments are deterministic is a path in the
concrete program.

e Bias the model checker

— to look only at paths that do not include
instructions that introduce non-determinism

e JPF model checker modified

— to detect non-deterministic choice (i.e. calls to
Bandera.choose()); backtrack from those
points

Choice-bounded Search

,_fl""‘"\
O \ ~“|\-~£)L,/State space searched
N

Counter-example guided simulation

e Use abstract counter-example to
guide simulation of concrete
program

e Why it works:

— Correspondence between concrete and
abstracted program

— Unique initial concrete state

Example of Abstracted Code

]
oooo POoogoon: ogstoooton Poogoon:
;' “nogss oooo T 1 00oss DO0O

00000 stotio 00i0 00inCo) O i
Il noo oooooooQostootQ); |
| 0
joon - int i=0; 1
II:IEIIII ooioo(i<o) o |

0 1

lnoo Oss00t(0GO000D00OND); "
looo T4+; i=Signs0000(i0SignsOPOS) ;
1 T ! ood
| 0O00ss 0t00000 OxtOnOs 000OOO O O000ss 0t00000 OxtOnds 0O0OOO O
1 0oooio ooio oonQ) O I poooio ooio oonQ) O

0
oo GOO0000000nO=t000; 1
1 0o 1 oo

0000sO00fO00 0OOOntOOOOXOOOOO: 1 0000 00 O O

inison

7=0000

Example of Abstracted Code

oostoooton PoOogooo:

[}
ooong Poogoog:

0ooss 0000 00oss 0000
i i
7=0 7=0000
=P =080
=D =m0
T=d T=ts
000ss 0t00000 OxtOnOs 000000 O 000ss 0t00000 OxtOnOs 000000 O
0oooio ooio oonQ) O poooio ooio oonQ) O
0 il
000 GOO0000000nO=t000; 000 GDD000000nO=t000;
oo 0o
VY VvYyY VYV VY
00st000t 00OntOOOOXOOOOO: 1 00O OO ODODODODODODODODODDOODOG ooao
OisO0too
| S R e
]
Program & Property
Refine selections
) Mismatch
Abstract Program
7
& Property 7 Q\e v
e\&(}\’ ;&ﬂ‘\ Property false!
Property true! W 2@ (counter-example)
Pl 00\) A
v /
'
| S R e

Property Abstraction

Property Abstraction
(under-approximation)

If the abstract property holds on the abstract system, then
the original property holds on the original system

Property Abstraction

Properties are temporal logic formulas, written in
negational normal form.

Abstract propositions under-approximate the truth of
concrete propositions.

Examples:
— Invariance property: O(x>-1)
— Abstracted to: O((x =zero) [(x=pos))

— Invariance property: 0(x>-2)
— Abstracted to: O((x = zero) O (x=pos))

Predicate Abstraction

[}
e Predicate Abstraction
— Use a boolean variable to hold the value of
an associated predicate that expresses a
relationship between variables
Y i
(IR
|
mMmEO
| eSS 8Z02aaas
An Example
I T

ionit

x :=0; 0:=0; 0 :=1; :

goto oooo; i ® xandy are unbounded
oo i ® Data abstraction does not
P ossoot (0 = 1) i work in this case ---

X 1= (x + 1) i abstracting component-

0= (0 + 1); wise (per variable) cannot

if (x = 0) t0On Z1 00sD 20; maintain the relationship
! between x and y
121: 0 :=1; . .
{ gutn oooo; : ® We will use predicate
: i abstraction in this example
EZO: 0 :=0;
{ goto oooo;

Predicate Abstraction Process

e Add boolean variables to your program to
represent current state of particular predicates
— E.g., add a boolean variable Ox=00 to represent
whether the condition x=0 holds or not
e These boolean variables are updated whenever
program statements update variables
mentioned in predicates

— E.g., add updates to Ox=00 whenever x or 0 or
assigned

An Example

I e T
i Onit ! e We will use the predicates listed
x :=0; 0:=0; 0:=1; H below, and remove variables x
goto 0o0o; ! and 0 since they are unbounded.
i i * Don't worry too much yet about
i pooo: ;

how we arrive at this particular

gssoot (0 = 1); set of predicates; we will talk a

X 1= (x + 1); little bit about that later

0:=(+ 1); .

if (x = 0) toon z1 ooso Z0; Predicates Boolean Variables
: P x=0) 01: 0(x = 0)0
§zl: 0:=1; oo: (o0 = 0) oo: oo = 0)o

guto DODd; 0O: (x = (0 + 1)) 00 0Cx = (0 + 1))0
oo: (x = 0) 00: 0(x = 0)0
EZO: o :=0;
i goto 0000; H This is our new syntax for fepresenting boolean
... variables that helps make the correspondence to

| B e eesessden

10

Transforming Programs

An example of how to transform an assignment statement

Predicates Assignment .
Statement The statement to the left is

replaced the statements

E =0y

H H below
H H .
H [(y =0)] ; P . TP E
i _,5 Io 0D :
E [x=@+1) i H Oreren]
EI]]]]DI]]]EIlEI]]D M MMM M TMen [Mse : re
[(x) E H eSe BT 1 [IPOO GrevivOe o[(IPO
.................... E ! . BOEOnon-de@rOEEND
+ MO I MMMTMO 00 TTen e [ToMe Ce[Meen HCe Chd
i else ;
[0 MM TTen [ise
elSe B[;
Make a more compact representation using a
helper function H (foIIowmg SLAM notation)
[T A AT
{ IO 0 (0 i OrereD
'’ DIEJ.
E[I]]]DDEIII (D (I mnmmumm O, e , Te,
0 oMerOSe

E[I]]]DD]]DlE[I]]]]]] , [0 (I

State Simulation

Given a program abstracted by predicates E,, ..., E,, an abstract state simulates a
concrete state if E; holds on the concrete state iff the boolean variable [E] is true
and remaining concrete vars and control points agree.

Concrete Abstract
imulates
(n2,x 0 2,y 2,20 0] ____Sl_nju _______ (n2,[[x=0] [False
(N2,[x 1 3,y 3,20 0) -----""""" [y=0] O False,

[x=(y+1)] U False,
[x=y] O True,z O 0])

simulates

(n2,x 0 1,y 0,20 1)) ool (n2,[[x=0] [False,
does not [y=0] [True,
simulate ___---~"" [X=(y+1)] O True,
(n2,[x 00 3,y 3,z 1]) --=~ [x=y] [False, z (] 1])
| EENSSAZ s

11

Computing Abstracted Programs

wE _. Truth values of

-7 predicates on g;.

<n1j°1> _ (. [P, []’21, 1P

_. Truth values of

- predicates on g;.
(207 _ (N, [P, [PT o, [P

e For each statement s in the original program, we need to compute a
new statement that describes how the given predicates change in value
due to the effects of s.

e To do this for a given predicate P, we need to know if we should set [P]
to true or false in the abstract target state.

e Thus, we need to know the conditions at (n,, 0,) that guarantee that [P;]
will be true in the target state and the conditions that guarantee that [P]
will be false in the target state. These conditions will be used in the

helper function H. I Conditions that
PO Ot 6D r, El]]éz - make [P] true.

DolerdSe ~~= Conditions that

| 00 o make [P) false.

Computing Abstracted Programs

Ba
Example
(n,,09) (. [[P], [Py, ... [PID)
apx:=0; [x=y] == H(...?..., ...7...)
(n;,0,) (O [P, [P]' o [PID)
e \What conditions have to hold before a is executed to
guarantee that x=y is true (false) after a is executed?
— Note: we want the least restrictive conditions
e The technical term for what we want is the “weakest
pre-condition of a with respect to x=y”
Let’s take a little detour to learn about weakest
preconditions.
. EHSRS2 e

12

Floyd-Hoare Triples

]
L Command
{F} C{F5}
’ \
/ \
Pre-condition/ Post-condition
(boolean formula) (boolean formula)

A triple is a logical judgement that holds when the following condition is met:

For all states s that satisfies F, (l.e., s F,), if executing C on s
terminates with a state s’, then s’ F,.

Weaker/Stronger Formulas

e IfF 0 F (F implies F), we say that F is weaker than F'.

e Intuitively, F’ contains as least as much information as
F because whatever F says about the world can be
derived from F'.

e Intuitively, stronger formulas impose more restrictions
on states.

Thinking in terms of sets of states...

Se={s|s0 F} Note that S.. // S since F' imposes more

Let Sc ={s|s0O F} restrictions than F

Question: what formulais the weakest of all? (In other words, what formula describes the largest
set of states? What formula imposes the least restrictions?)

13

Weakest

Preconditions

The weakest precondition of C with respect to F,
(denoted WP(C,F,)) is a formula F; such that

and for all other F’; such that {F’;} C {F,},
F, O F; (F; is weaker then F’;).

{F1} C{F3}

e This notion is useful because it answers the question: “what
formula F; captures the fewest restrictions that | can impose on a
state s so that when s’ = [[C]]s then s’ 0 F,?”

e WP is interesting for us when calculating predicate abstractions
because for a given command C and boolean variable [P], we
want to know the least restrictive conditions that have to hold
before C so that we can conclude that P; is definitely true (false)

after executing C.

Calculating Weakest
_ Preconditions

Calculating WP for assignments is easy:

WP(x:=e, F) = FIx 0 e]

before x := e is executed.

e Intuition: x is going to get a new value from e, so if F
has to hold after x := e, then F[x U €] is required to hold

Examples
WP(x:=0,x=Y) = (x=yxo 0] =
WP(x:=0,x=y+1) = (x=y+1x0o 0] =

WP(x:=x+1,x=y+1) x=y+Dx [x+1]

(x+1l=y+1)

14

Calculating Weakest
_ Preconditions

Calculating WP for other commands (state transformers):

WP(skip, F) = F
WP(assert e, F) el F (UelF)
WP(assume e, F) el F (UelF)

e Skip: since the store is not modified, then F will hold afterward iff it
holds before.

e Assert and Assume: even though we have a different operational
interpretation of assert and assume in the verifier, the definition of
WP of these rely on the fact that we assume that if an assertion or
assume condition is violated, it's the same as the command “not
completing”. Note that if e is false, then the triple {(//e //F)} assert e
{F} always holds since the command never completes for any state.

A ssessment

statement C

e
Intuition:
Source Program Abstracted Program
atomic {
- Tr-» —_—
- Assignment } _/

Assignment to each boolean variable [P]]

But what's wrong with this? where each assignment has the form

Answer: the predicates P, refer to concrete variables, and the entire purpose of
the abstraction process is to remove those from the program. The point is
that the conditions in the ‘H’ function should be stated in terms of the boolean
variables [P] instead of the predicates P;.

A ssessment

e In the case of x := 0 and the predicate x =y,

we have
(0=y)
'(0=y)

WP(x := 0, x=y)
WP(x := 0, x=y)

e In this case, the information in the predicate

variables is enough to decide whether O=y
holds or not. That is, we can simply generate
the assignment statement

0(x=0)0 := 0(oo(o = 0)oooooCo=0)0);

A ssessment

e In the case of x := 0 and the predicate x = (y+1), we have

WP(x := 0, (x=y+1)) = (0=y+1)
WP(x := 0, I(x=y+1)) = !(0=y+1)

e In this case, we don't have a predicate variable [0=y+1].
e We must consider combinations of our existing predicate
variables that imply the conditions above. That is, we
consider stronger (more restrictive, less desirable but still

useful) conditions formed using the predicate variables
that we have.

16

What Are Appropriate Predicates?

e In general, a difficult question, and subject of much research

o Research focuses on automatic discovery of predicates by
processing (infeasible) counterexamples

e If a counterexample is infeasible, add predicates that allow
infeasible branches to be avoided

counterexample)
/ \ Add the predicate x >y so that
we have enough information to

avoid the infeasible branch.
of x/>A o \
Infeasible -

branch taken // \ / \

fea5|ble branch

What Are Appropriate Predicates?

E
Some general heuristics that we will follow

e Use the predicates A mentioned in property P, if
variables mentioned in predicates are being removed
by abstraction

— At least, we want to tell if our property predicates are true or
not

e Use predicates that appear in conditionals along
“important paths”

- E.g., (x=0)
e Predicates that allow predicates above to be decided
- E.g., (x=0)0 (0=0)0 (x = (0 + 1))

17

Interpreting Results

]
Example of Infeasible Counter-example
[NEGUZEROIPOS(
ooo ooo
0lo if (00 + 0 > 0) olo if(signsngt(signs_)
tOo0n tOo0n
0oo Oss00t(t000); I ooo OssOO0t(toon);
0oso . ooso
0oo Ossoot(foosn); | Signs | gpg OssDOt(foosO);
0oo

l:lll:l:O

ooo:

18

