Model-Checking Frameworks: Outline

- Theory (Part 1)
 - Notion of Abstraction
 - Aside: over- and under-approximation, simulation, bisimulation
 - Counter-example-based abstraction refinement
- Abstraction and abstraction refinement in program analysis (Part 2)
 - Kinds of abstraction:
 - Data, predicate
 - Building abstractions
 - Aside: weakest precondition
 - Counter-example-based abstraction refinement

1

Outline, cont'd

- 3-valued abstraction and abstractionrefinement (Part 3)
 - 3-valued logic
 - Theory of 3-valued abstractions: combining overand under-approximation
 - 3-valued model-checking
 - Building 3-valued abstractions
 - Counter-example-based abstraction refinement

Acknowledgements

The following materials have been used in the preparation of this lecture:

- Edmund Clarke
 - "SAT-based abstraction/refinement in modelchecking", a course lecture at CMU
- Corina Pasareanu
 - Conference presentations at TACAS'01 and ICSE'01
- John Hatcliff
 - Course materials from Specification and Verification in Reactive Systems

Many thanks for providing this material!

3

Model Checking

- Given a:
 - Finite transition system $M(S, s_0, R, L)$
 - lacksquare A temporal property φ
- The model checking problem:
 - Does M satisfy φ ?

? M ⊢ ...

 $M \vDash \varphi$

Model Checking

- Temporal properties:
 - "Always x=y" (**G**(x=y))
 - "Every Send is followed immediately by Ack" (G(Send → X Ack))

"Safety" properties

- "Reset can always be reached" (GF Reset)
- "From some point on, always switch_on" (FG switch on)

"Liveness" properties

5

Model Checking (safety)

Add reachable states until reaching a fixed-point

 \bigcirc = bad state

Abstraction Function: A Simple Example

- ◆ Partition variables into visible(□) and invisible(□) variables.
- ◆ The abstract model consists of □ variables.□ variables are made inputs.
- The abstraction function maps each state to its projection over □.

9

Abstraction Function: Example

Group concrete states with identical visible part to a single abstract state.

Computing Abstractions

- ◆ S concrete state space
- ◆ S′ abstract state space
- $\bullet \alpha: S \rightarrow S'$ abstraction function
- $\bullet \gamma: S' \to S$ concretization function
- \bullet Properties of α and γ :
 - $\alpha(\gamma(A)) = A$, for A in S'
 - $\gamma(\alpha(S)) \supseteq S$, for S in S
- lacktriangle The above properties mean that α and γ are Galois-connected

11

Aside: simulations

$$M = (s_0, S, R, L)$$

$$M' = (t_0, S', R', L')$$

Definition: p is a simulation between M and M' if

- 1. $(s_0, t_0) \in p$
- 2. \forall $(t, t_1) \in R' \exists (s, s_1) \in R \text{ s.t. } (s, t) \in p \text{ and } (s_1, t_1) \in p$

Intuitively, every transition in M' corresponds to some transition in M

Aside: bisimulation

$$M = (s_0, S, R, L)$$

 $M' = (t_0, S', R', L')$

Definition: p is a bisimulation between M and M' if

- 1. p is a simulation between M and M' and
- 2. p is a simulation between M' and M

13

Computing Existential Transition Relation

- \bullet This ensures that M' is the overapproximation if M, or M' simulates M.

Model Checking Abstract Model

- \bullet Let φ be a universally-quantified property (i.e., expressed in LTL or ACTL) and M' simulates M
- Preservation Theorem

$$M' \vDash \varphi \rightarrow M \vDash \varphi$$

Converse does not hold

$$M' \not\models \varphi \rightarrow M \not\models \varphi$$

The counterexample may be spurious

Computing Transition Relation

- ♠ R $^{\forall \exists}$ [Dams'97]: (t, t₁) ∈ R' iff \forall s ∈ γ (t) \exists s₁ ∈ γ (t') and (s, s₁) ∈ R
- ◆ This ensures that M'is the underapproximation if M, or M simulates M'.

Model Checking Abstract Model

- \bullet Let φ be a existential-quantified property (i.e., expressed in ECTL) and M simulates M'
- Preservation Theorem

$$M' \vDash \varphi \rightarrow M \vDash \varphi$$

Converse does not hold

$$\mathcal{M}' \not\models \varphi \rightarrow \mathcal{M} \not\models \varphi$$

19

Model Checking Abstract Model

 $M = (s_0, S, R, L)$ and $M' = (t_0, S', R', L')$ related by bisimulation

Then, for every CTL/LTL property φ :

$$M' \vDash \varphi \rightarrow M \vDash \varphi$$
 $M' \nvDash \varphi \rightarrow M \nvDash \varphi$

So, why not use bisimulation for abstraction?

Our specific problem

- \bullet Let φ be a universally-quantified property (i.e., expressed in LTL or ACTL) and M' simulates M
- Preservation Theorem

$$M' \vDash \varphi \rightarrow M \vDash \varphi$$

Converse does not hold

$$M' \not\models \varphi \rightarrow M \not\models \varphi$$

The counterexample may be spurious

21

Checking the Counterexample

- ◆ Counterexample : (c₁, ...,c_m)
 - Each c_i is an assignment to V.
- Simulate the counterexample on the concrete model.

Checking the Counterexample

Concrete traces corresponding to the counterexample:

$$\phi = I(s_1) \wedge \text{ (Initial State <- } s_0 \text{ in our case)}$$

$$\bigwedge_{i=1}^{m-1} R(s_i, s_{i+1}) \wedge \text{(Unrolled Transition Relation)}$$

$$\bigwedge_{i=1}^{m} \operatorname{visible}(s_i) = c_i$$
 (Restriction of \square to Counterexample)

Refinement methods... Localization (R. Kurshan, 80's) Frontier Visible Invisible

Refinement methods...

Abstraction/refinement with conflict analysis

(Chauhan, Clarke, Kukula, Sapra, Veith, Wang, FMCAD 2002)

- Simulate counterexample on concrete model with SAT
- If the instance is unsatisfiable, analyze conflict
- Make visible one of the variables in the clauses that lead to the conflict

Refinement

- Problem: Deadend and Bad States are in the same abstract state.
- Solution: Refine abstraction function.
- The sets of Deadend and Bad states should be separated into different abstract states.

Refinement as Separation

 $\mathsf{d}_1 \quad \boxed{0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1}$

b₂ 0 1 0 0 1 1 1

Refinement : Find subset \square of \square that separates between all pairs of deadend and bad states. Make them visible.

Keep □ small!

33

Refinement as Separation

The state separation problem

Input: Sets D, B

Output: Minimal $\Box \in \Box$ s.t.:

 $\forall \ d \in \mathcal{D}, \, \forall \ b \in \mathcal{B}, \, \exists u \in \ \Box. \ \ d(u) \neq b(u)$

The refinement α' is obtained by adding \square to \square .

Two separation methods

- ILP-based separation
 - Minimal separating set.
 - Computationally expensive.
- Decision Tree Learning based separation.
 - Not optimal.
 - Polynomial.

We will not talk about these in class