Model-Checking Frameworks: Outline

@ Theory (Part 1)
= Notion of Abstraction

= Aside: over- and under-approximation,
simulation, bisimulation

= Counter-example-based abstraction refinement
@ Abstraction and abstraction refinement in
program analysis (Part 2)
= Kinds of abstraction:
+ Data, predicate
= Building abstractions
+ Aside: weakest precondition
= Counter-example-based abstraction refinement

Outline, cont'd

# 3-valued abstraction and abstraction-
refinement (Part 3)
= 3-valued logic

Theory of 3-valued abstractions: combining over-
and under-approximation

3-valued model-checking
Building 3-valued abstractions
Counter-example-based abstraction refinement
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Model Checking

@ Given a:
» Finite transition system M(S s,, R L)
= A temporal property ¢
# The model checking problem:
= Does M satisfy ¢?
?
ME ¢




Model Checking

@ Temporal properties:
= "Always x=y"

(G(x=y)) “ |
= “Every Send is followed immediately Safety
by Ack” properties

(G(Send - X Ack))

= "Reset can always be reached” . ,
(GF Reset) Liveness

= “From some point on, always switch_on” |PrOPerties
(FG switch_on)

Model Checking (safety)

Add reachable states until reaching a fixed-point

() = bad state ]




Model Checking (safety)

Too many states to handle !

() = bad state
Abstraction
o o O 0O O
o o o O O s
o o o O O
o Jo fo o ]
I T e I A

Abstraction Function a:S — S’




Abstraction Function: A Simple

Example

# Partition variables into visible([)) and
invisible() variables.

# The abstract model consists of [ variables.

‘lvariables are made inputs.

# The abstraction function maps each state to

its projection over (.

Abstraction Function: Example

X1 x2 x3 x4
]

O 0 0 O
O 0 0 1
O 0 1 O
O 0 1 1

x1 X2

0

0

Group concrete states with identical visible part to a

single abstract state.
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Computing Abstractions

a
@ S — concrete state space
@ S’ abstract state space y

#® a: S — S'- abstraction function
@®v. S'—> S - concretization function

@ Properties of a and v:
= a(y(A)) = A, for Ain &'
» V(a(S)) 2S,forSinS

# The above properties mean that a and y are
Galois-connected
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Aside: simulations

M= (sy, S, R, L)

M’ = (t,, S, R, L)

Definition: pis a simulation between Mand M’ if

1. (so, t) Op

2. O(, t)OR Os,s;) ORs.t. (s, t) O p and
(s, t) O p

Intuitively, every transition in M’corresponds to
some transition in M
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Aside: bisimulation

M= (SOI SI RI L)

M= (t, S, R, L)

Definition: pis a bisimulation between Mand M
if

1. pis a simulation between Mand M’and

2. pis a simulation between M’and M

/
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Computing Existential Transition
Relation

@ R [Dams97]: (t, t)) OR"iff Os O y(t) s.t. O
s; Oyty) and (s, s;) OR

# This ensures that M’ is the over-
approximation if M, or M’ simulates M.
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Existential Abstraction (Over-
Approximation)

15

Model Checking Abstract Model

@ Let ¢ be a universally-quantified property (i.e.,
expressed in LTL or ACTL) and M’ simulates M

# Preservation Theorem
ME o - MEgy

# Converse does not hold
Mye o 45 Mgy

# The counterexample may be spurious

16




Computing Transition Relation

@ RUO[Dams97]: (t, t;) O R"iff O s O y(t)
Os, Oy(t) and (s, s;) OR

@ This ensures that M’is the under-
approximation if M, or Msimulates M-
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Universal Abstraction (Under-
Approximation)

18




Model Checking Abstract Model

@ Let ¢ be a existential-quantified property (i.e.,
expressed in ECTL) and M simulates M’

# Preservation Theorem
M=o - MEeg

# Converse does not hold
Mwx o b Mgy

19

Model Checking Abstract Model

M= (sy, S, R, L)and M= (t, S, R, L) related
by bisimulation
Then, for every CTL/LTL property ¢:

M=o - MEg
M/':/:(p —>MP‘:§0

So, why not use bisimulation for abstraction?

20
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Our specific problem

@ Let ¢ be a universally-quantified property (i.e.,
expressed in LTL or ACTL) and M’ simulates M

# Preservation Theorem
M=o - MEeg

# Converse does not hold
Mwx o b Mgy

# The counterexample may be spurious

21

Checking the Counterexample

@ Counterexample : (¢4, ...,Cq)
= Each ¢ is an assignment to V.

# Simulate the counterexample on the
concrete model.

22
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Checking the Counterexample

Concrete traces corresponding to the
counterexample:

¢ = I(s1) A (Initial State <- s, in our case)

(Unrolled Transition

—1
/\;'n:l R(Siasz’—l—l) A Relation)

(Restriction of [ to

m . . —
g ble( S, ) = C,
/\z—l Vist e( @) v Counterexample)
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Abstraction-Refinement Loop

M, o, 0 M; ¢ Pass
- B> Model Check | ®L—> No Bug

Real
= >Bug

24
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Refinement methods...

Localization
(R. Kurshan, 80's)

Frontier

Visible

_____ R Invisible
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Refinement methods...

Abstraction/refinement with conflict analysis

(Chauhan, Clarke, Kukula, Sapra, Veith, Wang, FMCAD 2002)

# Simulate counterexample on concrete model with SAT

# If the instance is unsatisfiable, analyze conflict

# Make visible one of the variables in the clauses that lead to the

conflict

26
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Why spurious counterexample?
Eeadend
states

oO—O—M®T o0 oD

SN T O

O O
D I

[ J——[ 1~ /]
s?af Failure
ates State
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Refinement

# Problem: Deadend and Bad States are in the
same abstract state.

# Solution: Refine abstraction function.

# The sets of Deadend and Bad states should
be separated into different abstract states.

28
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Refinement

O O O O O
O O O O O
O O O O O
NN BN
Refinement : o’ )
Refinement
Deadend
H H H States
VooV W Y
0—0—0 ~0—0
f-1 f
op =1(s1) A [\1 R(s;, 841) A .é\l visible(s;) = ¢;

30
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Refinement

Deadend
States

_—
[
—_

g3

States

¢p = R(sf,s541) N
ViSib'Q(Sf) = Cf /\ViSib|e(8f_|_1) =cCfr41
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Refinement as Separation

Refinement : Find subset [ of []that separates between all pairs of
deadend and bad states. Make them visible.

Keep [J small !

32
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Refinement as Separation

Refinement : Find subset [ of []that separates between all pairs of

deadend and bad states. Make them visible.

Keep [ small !
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Refinement as Separation

The state separation problem
Input: Sets D, B
Output: Minimal 000 s.t.:
0dOD, 0b OB, O . d(u) # b(u)

The refinement a’ is obtained by adding [to [

34
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Two separation methods

@ ILP-based separation
= Minimal separating set.
= Computationally expensive.

@ Decision Tree Learning based separation.

= Not optimal.
= Polynomial.

We will not talk about these in class
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