Model-Checking Frameworks: Outline

@ Theory (Part 1)
= Notion of Abstraction

= Aside: over- and under-approximation,
simulation, bisimulation

= Counter-example-based abstraction refinement
@ Abstraction and abstraction refinement in
program analysis (Part 2)
= Kinds of abstraction:
+ Data, predicate
= Building abstractions
+ Aside: weakest precondition
= Counter-example-based abstraction refinement

Outline, cont'd

3-valued abstraction and abstraction-
refinement (Part 3)
= 3-valued logic

Theory of 3-valued abstractions: combining over-
and under-approximation

3-valued model-checking
Building 3-valued abstractions
Counter-example-based abstraction refinement

Acknowledgements

The following materials have been used in the
preparation of this lecture:
@ Edmund Clarke

= "SAT-based abstraction/refinement in model-
checking”, a course lecture at CMU

Corina Pasareanu

= Conference presentations at TACAS'01 and
ICSE'01

John Hatcliff

= Course materials from Specification and
Verification in Reactive Systems

Many thanks for providing this material!

Model Checking

@ Given a:
» Finite transition system M(S s,, R L)
= A temporal property ¢
The model checking problem:
= Does M satisfy ¢?
?
ME ¢

Model Checking

@ Temporal properties:
= "Always x=y"

(G(x=y)) “ |
= “Every Send is followed immediately Safety
by Ack” properties

(G(Send - X Ack))

= "Reset can always be reached” . ,
(GF Reset) Liveness

= “From some point on, always switch_on” |PrOPerties
(FG switch_on)

Model Checking (safety)

Add reachable states until reaching a fixed-point

() = bad state]

Model Checking (safety)

Too many states to handle !

() = bad state
Abstraction
o o O 0O O
o o o O O s
o o o O O
o Jo fo o]
I T e I A

Abstraction Function a:S — S’

Abstraction Function: A Simple

Example

Partition variables into visible([)) and
invisible() variables.

The abstract model consists of [variables.

‘lvariables are made inputs.

The abstraction function maps each state to

its projection over (.

Abstraction Function: Example

X1 x2 x3 x4
]

O 0 0 O
O 0 0 1
O 0 1 O
O 0 1 1

x1 X2

0

0

Group concrete states with identical visible part to a

single abstract state.

10

Computing Abstractions

a
@ S — concrete state space
@ S’ abstract state space y

#® a: S — S'- abstraction function
@®v. S'—> S - concretization function

@ Properties of a and v:
= a(y(A)) = A, for Ain &'
» V(a(S)) 2S,forSinS

The above properties mean that a and y are
Galois-connected

11

Aside: simulations

M= (sy, S, R, L)

M’ = (t,, S, R, L)

Definition: pis a simulation between Mand M’ if

1. (so, t) Op

2. O(, t)OR Os,s;) ORs.t. (s, t) O p and
(s, t) O p

Intuitively, every transition in M’corresponds to
some transition in M

12

Aside: bisimulation

M= (SOI SI RI L)

M= (t, S, R, L)

Definition: pis a bisimulation between Mand M
if

1. pis a simulation between Mand M’and

2. pis a simulation between M’and M

/

13

Computing Existential Transition
Relation

@ R [Dams97]: (t, t)) OR"iff Os O y(t) s.t. O
s; Oyty) and (s, s;) OR

This ensures that M’ is the over-
approximation if M, or M’ simulates M.

14

Existential Abstraction (Over-
Approximation)

15

Model Checking Abstract Model

@ Let ¢ be a universally-quantified property (i.e.,
expressed in LTL or ACTL) and M’ simulates M

Preservation Theorem
ME o - MEgy

Converse does not hold
Mye o 45 Mgy

The counterexample may be spurious

16

Computing Transition Relation

@ RUO[Dams97]: (t, t;) O R"iff O s O y(t)
Os, Oy(t) and (s, s;) OR

@ This ensures that M’is the under-
approximation if M, or Msimulates M-

17

Universal Abstraction (Under-
Approximation)

18

Model Checking Abstract Model

@ Let ¢ be a existential-quantified property (i.e.,
expressed in ECTL) and M simulates M’

Preservation Theorem
M=o - MEeg

Converse does not hold
Mwx o b Mgy

19

Model Checking Abstract Model

M= (sy, S, R, L)and M= (t, S, R, L) related
by bisimulation
Then, for every CTL/LTL property ¢:

M=o - MEg
M/':/:(p —>MP‘:§0

So, why not use bisimulation for abstraction?

20

10

Our specific problem

@ Let ¢ be a universally-quantified property (i.e.,
expressed in LTL or ACTL) and M’ simulates M

Preservation Theorem
M=o - MEeg

Converse does not hold
Mwx o b Mgy

The counterexample may be spurious

21

Checking the Counterexample

@ Counterexample : (¢4, ...,Cq)
= Each ¢ is an assignment to V.

Simulate the counterexample on the
concrete model.

22

11

Checking the Counterexample

Concrete traces corresponding to the
counterexample:

¢ = I(s1) A (Initial State <- s, in our case)

(Unrolled Transition

—1
/\;'n:l R(Siasz’—l—l) A Relation)

(Restriction of [to

m . . —
g ble(S,) = C,
/\z—l Vist e(@) v Counterexample)

23

Abstraction-Refinement Loop

M, o, 0 M; ¢ Pass
- B> Model Check | ®L—> No Bug

Real
= >Bug

24

12

Refinement methods...

Localization
(R. Kurshan, 80's)

Frontier

Visible

_____ R Invisible

25

Refinement methods...

Abstraction/refinement with conflict analysis

(Chauhan, Clarke, Kukula, Sapra, Veith, Wang, FMCAD 2002)

Simulate counterexample on concrete model with SAT

If the instance is unsatisfiable, analyze conflict

Make visible one of the variables in the clauses that lead to the

conflict

26

13

Why spurious counterexample?
Eeadend
states

oO—O—M®T o0 oD

SN T O

O O
D I

[J——[1~ /]
s?af Failure
ates State

27

Refinement

Problem: Deadend and Bad States are in the
same abstract state.

Solution: Refine abstraction function.

The sets of Deadend and Bad states should
be separated into different abstract states.

28

14

Refinement

O O O O O
O O O O O
O O O O O
NN BN
Refinement : o’)
Refinement
Deadend
H H H States
VooV W Y
0—0—0 ~0—0
f-1 f
op =1(s1) A [\1 R(s;, 841) A .é\l visible(s;) = ¢;

30

15

Refinement

Deadend
States

_—
[
—_

g3

States

¢p = R(sf,s541) N
ViSib'Q(Sf) = Cf /\ViSib|e(8f_|_1) =cCfr41

31

Refinement as Separation

Refinement : Find subset [of []that separates between all pairs of
deadend and bad states. Make them visible.

Keep [J small !

32

16

Refinement as Separation

Refinement : Find subset [of []that separates between all pairs of

deadend and bad states. Make them visible.

Keep [small !

33

Refinement as Separation

The state separation problem
Input: Sets D, B
Output: Minimal 000 s.t.:
0dOD, 0b OB, O . d(u) # b(u)

The refinement a’ is obtained by adding [to [

34

17

Two separation methods

@ ILP-based separation
= Minimal separating set.
= Computationally expensive.

@ Decision Tree Learning based separation.

= Not optimal.
= Polynomial.

We will not talk about these in class

35

18

