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SPIN

o For checking correctness of process interactions
& Specified using buffered channels, shared variables or combination
% Focus: asynchronous control in software systems
% Promela— program-like notation for specifying design choices
» Models are bounded and have countably many distinct behaviors

o Generate a C program that performs an efficient
online verification of the system’s correctness
properties

o Types of properties:

& Deadlock, violated assertions, unreachable code

% System invariants, general LTL properties
2 Random simulations of the system’s execution
2 “Proof approximation” o




Explicit State Model Checker

> Represents the system as a finite state machine

o Visits each reachable state (state space) explicitly
(using Nested DFS)

o Performs on-the-fly computation

o Uses partial order reduction

o Efficient memory usage

% State compression
& Bit-state hashing

aVersion 4:

& Uninterpreted C code can be used as part of Promela model

High Level Organization

LTL formula

LTL Translator
Buchi Automaton

Buchi Translator

The Buchi automaton is
turned into a Promela
process and composed
with the rest of the system.

Parser

Promela Model

Abstract Syntax Tree

mata

Automata

rator

The generated verifier is
C Generg specific to the model and

property we started with.

C CoucT

C Compiler — Pan Verifier

Verification Resultl
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Promela (Process Meta Language)

2 Asynchronous composition of independent
processes

© Communication using channels and global
variables

© Non-deterministic choices and interleavings

© Based on Dijkstra’s guarded command language

% Every statement guarded by a condition and blocks until condition
becomes true

Example:
while (a == b)

skip /* wait for a == b */
VS

(a == b)

Process Types

o State of variable or message channel can only be
changed or inspected by processes (defined
using pr oct ype)

o ; and -> are statement separators with same
semantics.
& -> used informally to indicate causal relation between statements

Example:
byte state = 2;

proctype A()

{ (state == 1) -> state = 3
}

proctype B()

{ state = state -1

}
o st at e hereis a global variable




Process Instantiation
> Need to execute processes
% proct ype only defines them

2 How to do it?
& By default, process of typei ni t aways executes
Urun starts processes
L Alternatively, definethem asact i ve (seelater)

2 Processes can receive parameters
% dl basic data types and message channels.
L Data arrays and process types are not allowed.

Example:
proctype A (byte state; short foo0)
{ (state == 1) -> state = foo
i nit
{ run A(1, 3)
}

Example

2 As mentioned earlier, no distinction between a
statement and condition.

bool a, b;
proctype pl()
{
a = true;
a&b: These statements are enabled
’ only if both a and b are true.
a = fal se;
} In this case b is always false
proctype p2() and therefore there is a
{ deadlock.
b = fal se;
a & b;
b = true;
}

init { a =false; b = false; run pl(); run p2(); }
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An Example

mype = { NONCRITICAL, TRYING CRITICAL };
ntype state[2];

proctype process(int id) {
begi nni ng:
noncritical:
state[id] = NONCRI TI CAL;
if
goto noncritical;
true;
fi;
trying:
state[id] = TRYING
if
goto trying;
true;
fi;
critical:
state[id] = CRITICAL;

if
goto critical;
true;

fi;

got o begi nning;}

init { run process(0); run process(1) }

At most one nt ype can be
declared

©,
OV,
OV,

Other constructs

o Do loops
do
count = count + 1;
count = count - 1,
(count == 0) -> break
od
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Other constructs
> Do loops
=2 Communication over channels

proctype sender(chan out)

{
int x;
i f
11 x=0;
D x=1G
fi

out ! x;
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Other constructs
o Do loops
2 Communication over channels
o Assertions

proctype receiver(chan in)
{
i nt val ue;
out ? val ue;
assert(value == 0 || value == 1)

}
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Other constructs
> Do loops
© Communication over channels
o Assertions
> Atomic Steps

i nt val ue;
proctype increnent()
{ atoni c
{ x = val ue;
X =X + 1
val ue = x;
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Message Passing
chan gnane = [16] of {short}

gnane! expr —writing (appending) to channel
gnane?expr —reading (from head) of the channel
gnane??expr —“peaking” (without removing content)
gnane! ! expr —checking if there is room to write
can declare channel for exclusive read or write:
chan in, out; Xr in; Xxs out;
gnane! expl, exp2, exp3 — writing several vars
gnane! expr 1(expr2, expr3) —type and params
gnane?vari (var2, var3)
ghane?consl, var2, cons2 -can send constants
%, L ess parameters sent than received — others are undefined
& More parameters sent — remaining values are lost
& Constants sent must match with constants received

*14




Message Passing Example

proctype A(chan ql)
{ chan q2;
q17q2;
g2! 123
}
proctype B(chan gf orb)
{ int x;
gf or b?x;
print(“x=%\n", Xx)
}
init {
chan gnanme = [1] of {chan };
chan gforb = [1] of {int };
run A(gnane);
run B(qforb);
gnane! gf orb

} Prints: 123
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Randez-vous Communications

o Buffer of size 0 — can pass but not store
messages

& Message interactions by definition synchronous

Example:
#defi ne nsgtype 33
chan name = [0] of { byte, byte };
proctype A()
{ nane! megt ype(123);
nane! msgt ype(121); /* non-executable */
}

proctype B()
{ byte state;

nane?nsgt ype(st at e)
}
init
{ atomc { run A(); run B() }
1

16




Randez-Vous Communications (Cont’d)

o If channel nane has zero buffer capacity:

& Handshake on message ns gt ype and transfer of value 123 to
variable st at e.

% The second statement will not be executable since no matching
receive operationin B
o If channel name has size 1.

% Process A can complete its first send but blocks on the second
since channel isfilled.

& B can retrieve this message and compl ete.
% Then A completes, leaving the last message in the channel

=2 If channel name has size 2 or more;
U A can finish its execution before B even starts
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Example — protocol
2 Channels Ai n and Bi n

% to be filled with token messages of type next and arbitrary values
(ASCII chars)...

% by unspecified background processes. the users of the transfer
service

2 These users can also read received data from the
channels Aout and Bout

o The channels are initialized in a single atomic
statement...

% And started with the dummy er r message.

18




Example Cont’d

ntype = {ack, nak, err, next, accept};

proctype transfer

{ byte o, I;
i n?next (o) ;
do

(chan in, out, chin, chout)

chi n?nak(l) ->

out!accept (1);
chout ! ack( 0)

chi n?ack(l) ->

out!accept (1);
i n?next (0);
chout ! ack( 0)

chin?err(l) ->
chout ! nak( o)
od
} 19
Example (Cont’d)
init
{ chan AtoB = [1] if { ntype, byte };
chan BtoA = [1] of { ntype, byte };
chan Ain =[2] of { mype, byte };
chan Bin =[2] of { mype, byte };
chan Aout = [2] of { ntype, byte };
chan Bout = [2] of { ntype, byte };
atomc {
run transfer (Ain, Aout, AtoB, BtoA)
run transfer (Bin, Bout, BtoA, AtoB)
}
AtoB!err(0)
} 20
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Mutual Exclusion
2 Peterson’s solution to the mutual exclusion

problem

flag, == 0 || turn == 1&

flag, '=0 && turn !=1

O—CO)

flag,=1

C

N

turn=0

N

b

flag,=0

O

O

Critical
Section
21
Mutual Exclusion in SPIN
bool turn;
bool flag[2];
proctype mutex0() {
agai n: Q‘—Q
flag[0] = 1; flag,=1
turn = 0; C)
(flag[1] == 0 || turn == 0); =0 flag.=0
= o=

/* critical section */

flag[0] = 0;

got o agai n;

flag, == 0| turn == 1

flag, =0 && turn 1= 1

N

(I

O

s
Q Critical

Section

022
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Mutual Exclusion in SPIN

bool turn, flag[2];

active [2] proctype user()
{

assert(_pid == 0 || __pid == 1);
agai n:

flag[ _pid] = 1;

turn = _pid;

(flag[1 - _pid] == 0 || turn ==

/* critical

flag[_pid] = 0;
goto agai n;

_pid:
Identifier of the process

assert:

Checks that there are only
at most two instances with
identifiers 0 and 1

1- _pid);

section */

*23

Mutual Exclusion in SPIN

bool turn, flag[2];
byte ncrit;

active [2] proctype user()
{

assert(_pid =0 || _pid == 1);
agai n:

flag[_pid] = 1;

turn = _pid;

(flag[1l - _pid] == 0 || turn ==

ncrit++;

. s -
assert(ncrit 1); /* critical sec assert:

ncrit--;

flag[ _pid] = 0;
got o agai n;

ncrit:
Counts the number of
processes in the critical section

- _pid);

Checks that there is always
at most one process in the
critical section

24
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Verification

o Generate, compile and run the verifier
% to check for deadlocks and other major problems:

$ spin —a nutex
$ cc -0 pan pan.c
$ pan
full statespace search for:
assertion violations and invalid endstates
vector 20 bytes, depth reached 19, errors: 0
79 states, stored
0 states, linked
38 states, matched total: 117
hash conflicts: 4 (resolved)
(size s"18 states, stack franes: 3/0)
unreached code _init (proc 0);

reached all 3 states
unreached code P (proc 1):

reached all 12 states

25

Mutual Exclusion
o Verifier: Assertion can be violated
% Can use-t -pto find out the trace
» Or use XSpin

2 Another way of catching the error
& Have another monitor process ran in parallel
% Allows al possible relative timings of the processes
& Elegant way to check validity of system invariant

*26
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Mutual Exclusion in SPIN

bool turn, flag[2];
byte ncrit;

active [2] proctype user()
{
assert(_pid == 0 || _pid == 1);
agai n:
flag[_pid] =1
turn = _pid
(flag[l - _pid] == 0 || turn ==1 - _pid);

ncrit++;
/* critical section */
ncrit--;

flag[_pid] =0
goto agai n;

}
active proctype nonitor()
{ assert (ncrit == 0 || ncrit ==1) }
27
Finally,

o Can specify an LTL formula and run the model-
checker

Example:
#define p count <=1
WLTL clam:[] p
> Note: all variables in LTL claims have to be global!

SLTL claim gets translated into NEVER claim and
stored either in .Itl file or at the end of model file

& Only one LTL property can be verified at atime

o Parameters can be set using XSpin
& Depth of search, available memory, etc.

*28
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Mutual Exclusion in SPIN

bool turn, flag[2];
bool critical[2];

LTL Properties:

active [2] proctype user() ] (critial[0] || critical[1])
{
assert(_pid == 0 || _pid == 1); [] <> (critical[0])
agai n: [] <> (critical[1])
flag[ _pid] = 1;

[ (critical[0] ->
(critial[0] U
(fcritical[0] &&
(('critical[0] &&
Icritical[1]) U critical[1]))))

turn = _pid;
(flag[1l - _pid] == 0 ||
turn == 1 - _pid);

critical[_pid] = 1;

/* critical section */ [l (critical[1] ->
critical[_pid] = 0; (critial[1] U
(fcritical[1] &&
flag[_pid] = O; (('critical[1] &&
got o agai n; Icritical[0]) U critical[0]))))
) Note: critical[ ] is a global var!
Z
Alternatively,
#define p ncrit <=1
#define g ncrit =0 LTL Properties:
bool turn, flag[2];
byte ncrit; 0 (p)
(<> (ta)
active [2] proctype user()
{
assert(_pid =0 || _pid == 1);
agai n:
flag[_pid] = 1;
turn = _pid;
(flagf[1 - _pid] == 0[]
turn == 1 - _pid);
ncrit++;
/* critical section */
ncrit--;
flag[ _pid] = 0;
got o agai n; «30
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Command Line Tools

o Spin
% Generates the Promela code for the LTL formula
$spin —f “[]<>p”
» The proposition in the formula must correspond to #defines
% Generates the C source code
$spin —a source.pro
» The property must be included in the source

2 Pan
& Performsthe verification
» Has many compile time options to enable different features
» Optimized for performance

31

Xspin

© GUI for Spin

SPIN CONTROL 3.5.0 -- 1 October 2002

File...| Edit... | Run...| Help | SPIN DESIGN VERIFICATION Line#:|1 Find:|

16



Simulator
2 Spin can also be used as a simulator
% Simulated the Promela program

oltis used as a simulator when a counterexample is
generated

% Steps through the trace
% Thetraceitsalf is not “readable’

o Can be used for random and manually guided
simulation as well

*33

A few examples

SAlternating Bit Protocol
slLeader Election
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Alternating Bit Protocol
2Two processes want to communicate

2 They want acknowledgement of received
messages

2 Sending window of one message
o Each message is identified by one bit
o Alternating values of the identifier

*35

Alternating Bit Protocol

Sender Receiver

msg0
J >
ackO
<
msgl
g >
ackl
<
msg0
g >
ack0
<
msgl
J >

*36




Alternating Bit Protocol

Sender Receiver
msg0
< ackl
0
msg >
ackO
<
37
Alternating Bit Protocol
Sender Receiver
msg0
0
msg >
ackO
<
1
msg >
ackl
<
*38
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Sender Process

active proctype Sender()

{

do i f
e ;. receiver?msgl
i f :: skip
recei ver ?msgo; fi;
skip do
fi: ;. sender ?ackl -> break
do sender ?ack0
sender ?ack0 -> break ti meout ->
sender ?ackl if
ti meout -> recei ver! nsgl;
i f skip
recei ver! nsgo; fi;
skip od;
fi; od;
od: }
*39
Recelver Process
active proctype Receiver () nmype = { nsg0, msgl, ackO, ackl }

{

do
do
recei ver ?nsg0 ->
sender ! ackO; break;
recei ver ?msgl ->
server!ackl
od
do
recei ver ?msgl ->
sender ! ackl; break;
recei ver ?msg0 ->
server!ack0
od
od

chan sender = [1] of { ntype };
chan receiver = [1] of { nmype };

40
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Leader Election

o Elect leader in unidirectional ring.
% All processes participate in election
% Cannot join after the execution started

o Global property:

% It should not be possible for more than one process to declare to be

the leader of thering
LTL:[] (nr_l eaders <= 1)
Use assertion (line 57)
assert (nr_|leaders == 1)
this is much more efficient!

% Eventually aleader is elected

»<> ][] (nr_leaders == 1)

41

Verification of Leader Election
#define N 5 /[* nr of processes */
#define | 3 /* node given the smallest nunber */

#define L 10 /* size of buffer (>= 2*N) */

ntype = {one, two, winner}; /* synb. nessage nanes */
chan q[N] = [L] of {mtype, byte} /* asynch channel */

byte nr_leaders = 0; /* count the nunber of processes
that think they are | eader of the ring */

10 proctype node (chan in, out; byte nynunber)

11 { bit Active = 1, know_wi nner = O;

12 byte nr, maxi mum = nynunber, nei ghbourR;

13

14 xr in; [/* claimexclusive recv access to in */

15 xs out; /* claims exclusive send access to out */

16

17 printf (“MSC. %\ n”, nynunber);

18 out!one(mynunber) /* send nsg of type one */

19 one: do

20 ;. in?one(nr) ->/* receive nsg of type one */

© 0O ~NO UL WN PR

42
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Verification of Leader Election

21 i f

22 Active ->

23 i f

24 nr !'= maxi num - >

25 out!two(nr);

26 nei ghbourR = nr;

27 else ->

28 /* max is the greatest nunber */

29 assert (nr ==

30 know w nner = 1;

31 out!'w nner(nr);

32 fi

33 el se ->

34 out ! one(nr)

35 fi

36

37 in?two(nr) ->

38 if

39 Active ->

40 if 43
Verification of Leader Election

41 :: nei ghbourR > nr && nei ghbourR > maxi num

42 maxi mum = nei ghbour R;

43 out ! one( nei ghbour R)

44 else ->

45 Active = 0

46 fi

47 el se ->

48 out 'two (nr)

49 fi

50 i n?wi nner(nr) ->

51 if

52 o onr !'= nynunber -> printf (“LOST\n");

53 el se ->

54 printf (“Leader \n");

55 nr_| eader s++;

56 assert(nr_|l eaders == 1);

57 fi

58 if

59 ;. know_w nner

60 else ->

61 out!w nner(nr) 44
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Verification of Leader Election
62 fi;
63 br eak
64 od
65 }
66
67 init {
68 byt e proc;
69 atomic { /* activate N copies of proc tenplate */
70 proc = 1;
71 do
72 . proc <= N ->
73 run node (q[proc-1], g[proc%,
74 ( N+ - proc) % N+1) ;
75 proc++
76 ;. proc > N -> break
77 od
78 }
79 }

45

Summary

o Distinction between behavior and requirements on
behavior

% Which are checked for their internal and mutual consistency

= After verification, can refine decisions towards a
full system implementation

% Promelais not afull programming language

o Can simulate the design before verification starts

46
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Comments

o DFS does not necessarily find the shortest
counterexample

% There might be a very short counterexample but the verification
might go out of memory

O If we don't finish, we might still have some sort of aresult
(coverage metrics)

47

On-The-Fly

o System is the asynchronous composition of
processes

o The global transition relation is never build

o For each state the successor states are
enumerated using the transition relation of each
process

48
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Visited Set

o Hash table
L Efficient for testing even if the number of elementsinitisvery big
(> 108)
o2 Reduce memory usage
% Compress each state
o Reduce the number of states
% Partial Order Reduction

When a transition is executed only a
limited part of the state is modified

49

SPIN and Bit-state Hashing

2 Command line:
%cc -DBI TSTATE —0 run pan.c

o Can specify amount of available (non-virtual)
memory directly...

L using—w Noption, e.g., - w 7 means 128 Mb of memory
$ run

assertion violated ...
pan aborted

hash factor: 67650.064516
(size 27"22 states, stack franes: 0/5)

2 Hash factor:
% max number of states/ actual number
L Maximum number is 222 or about 32 million

% Hash factor > 100 — coverage around 100%
& Hash factor = 1 — coverade approaches 0% *50

25



State Representation
2 Global variables
o Processes and local variables
2 Queues

VT

Global Variables Processes Queues

51

Compression

o Each transition changes only a small part of the
Sstate

2 Assign a code to each element dynamically

o Encoded states + basic elements use considerably
less spaces than the uncompressed states

*52
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Compression

om0 | 2]
3 3 3
2 2 Z
L - / -
1 1 1
1
N | PO 74
0|l i=0j=0 ol w0 10l
*53
Compression
i=0 i=0 PO PO Q0 PO P1
J x=0 | x=1 | § | x=1 | y=0 lo]o1]1]1]2]
q?x
3 3 3]
2 2 yF‘;/ 2
— — =
PO Q0
! i E=RIER
o =oj0 | |of 29 |/|o {Ql(;
54
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Hash Compaction

2 Uses a hashing function to store each state using
only 2 bits

o There is a non-zero probability that two states are
mapped into the same bits

o If the number of states is much smaller than the
number of bits available there is a pretty good
chance of not having conflicts

o The result is not (always) 100% correct!

*55

Minimized Automata Reduction
o Turns the state into a sequence of integers

2 Constructs an automaton which accepts the states
In the visited set

2 Works like a BDD but on non-binary variables
(MDD)

U The variables are the components of the state
% The automaton is minimal
% The automaton is updated efficiently

*56
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Partial Order Reduction

2 Optimal partial order reduction is as difficult as
model checking!

o Compute an approximation based on syntactical

information
b Access to local variables

I
t%I>|ﬂdGDEI’lderlt Receive on exclusive receive-access queues
Q>Invisib|e Send on exclusive send-access queues

% Check (at run-time) for acti ostponed at infinitum

Not mentioned in the property

So called stack proviso

57
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