3-Valued Abstraction
and
3-Valued Model-Checking

Abstraction

o Abstraction:
& an effective technique to combat state explosion problem
» approximate sets of concrete states by an abstract state
» approximate sets of concrete transitions by an abstract transition
2 Using 2-valued logic (over-approximation)
U False variables represent “ unknown” value

U True transitions represent possible behaviour
r(se)=T = r(sg)=T p(sg)=F =7

Abstraction, Cont’d
2 Using 2-valued logic
L Fal se variables represent “unknown” value

% True transitions represent possible behaviour
AX (rdp)(se)=T = AX(rOp(sy)=T

AX r(sq)=F =7?
EX (=r 0 =p)(sq1)=F = EX (=rd =p)(sg)=F
EX r(so,)=T =?
So,1 S2
N
3

Abstraction, Cont’d
o Soundness:
% Only with respect to True universal properties

» For existential properties — use under-approximation

% For False properties:
» play counter-example to determine whether spurious

» Use counter-example-based abstraction refinement

3-valued abstraction

o Goals:
% Reason about mixed properties
% Not have to tell which counterexamples are spurious

% Not have an increase in statespace, when compared to 2-valued
& Use counterexample for abstraction refinement

2 Outline:

& 3-valued logic, properties, models, model-checking

& 3-valued abstractions
& Abstraction refinement

Logic: 3-valued Kleene logic
T
M

Logic order

o Properties:

LCFEM, MET

WA OB =min (A, B)

WA OB =max (A, B)
“-T=F,-F=T,-M=M

F

2 Preserves:
& Commuitativity, associativity, idempotence, De Morgan laws

o2 Does not preserve
% Law of excluded middie: ACLA=T (top)

% Law of non-contradiction: AC-A=0 (bottom)

Note

o 3-valued logic forms a lattice
% Ordering £ : less than or equal M
% Meet operation [: min F

% Join operation LI : max

% Negation : horizontal symmetry
2 This is an example of a quasi-boolean algebra
o Equality and Identity are different!

Lal b
La=b

Logic

= Information order

F'\/T

& M contains least amount of information
ST, F — maximum amount of information
L If onerefinesM — it can changeto T or F or stay at M

Ovéerverw ef diVMbalet IChieeskng

properties

Trandation I

Temporal
logic

MV-Logic
Answer

HGar ract? /Correctness/

MV-Logic

M odel
Extraction

Model of
System

Multi-valued state machines: Xkripke

structures

o Extension of conventional state machines (Kripke
structures)

G variables take any value from the logic (T, F, M)
U transitions between states take any value from the logic

» False transitions are not shown (by convention)

. pressed =T
> Example: "|request=p|

10

Formally,

o Kripke structures extended for MV case
“LM=<L,SA s, I|,R>

L isaquasi-boolean algebra (£, &, IM,LI, =) ,where (£, E) isa

lattice
L Sisa(finite) set of states, each with a unique name

U Aisaset of atomic propositions
b s, isauniqueinitial state (s, 79

L1: SxA- L istheinterpretation function that assigns alogic

value to each atomic proposition

LR SxS- Listhefunction that assigns alogic value to each

transition between states

11

3-valued CTL

o multi-valued extension of CTL
& same syntax as CTL
& plus constants from the logic (T, M, F)

2semantics:

U replace existential quantification by disjunction, universal

quantification by conjunction, so

EXQ Q= CHHREQRE) o))
& other operators are defined asin CTL:

For al states s,

(AX @) () = (= EX(= @)) (9

(EG @) () = @(s) J(EXEG @) (9)

(AG @) () = (- EF(= @) (9
Examples:

AG (request -> AX pressed) X

'S
pressed =T
request = F

T

pressed =T
request = F

AG (pressed V request)

Model-Checking Cont’'d

o Can a True property evaluate to M?

2 Answer:
“Yes
%AG (pressed V - pressed) =M
& Comes from law of excluded middle
o Some terminology:
% Compositional semantics
» Evaluate each CTL operator, compose according to lattice rules
% Thorough semantics [Bruns& Godefroid 00]

» Property evaluates to M iff exists a refinement where it evaluates to T
and a refinement where it evaluates to F.

> $$ to evaluate
13

Symbolic mv model-checking
o Similar idea to classical model-checking
G recursively go through the structure of XCTL property
% encode sets of states symbolicaly
% encode transition relation symbolically

o Data structures
% direct approach: MDDs

» the number of terminal nodes and branching
factor equal to number of values in logic

» Example: x(y in 3-valued logic
% can use BDD vector ...
% or mixed approaches (MBTDDs, MTBDDS)

*14

Reduction to Classical

o [Bruns&Godefroid’99]. Assumption: transition relation is
classical

% Move negation to level of atomic propositions
& Create a positive and negative version of every atomic proposition
Gletx =M.
% Positive cut:
» Set x and and - x to True
» PosAnswer = check property
% Negative cut:
» Set xand and - x to False
» NegAnswer = check property
o If NegAnswer = PosAnswer (True or False)
% Return this as answer
o Else
% Return Maybe °15

Example

00T
+
[T
nq44-

N

Mode Positive Cut

[[pA=gVvZz]l(sg) =T

16

Example

Model Negative Cut

oao
[

ey

nmm-

N

o A—g vzilsy = F
Therefore, the answer is M

17

Example

Mode Positive Cut

[[EX (0 A=g VZ)]I(sp) =T

18

Example

Model Negative Cut

R -]
[
ey
mmm-

N

[[EX(pA=gVvZ)ll(sg) =T
Therefore, the answer is T

19

Reduction to Classical (Take Two)
o[Gurfinkel&Chechik 2003]

o Assumptions:
& States can be 3-valued, transition relation can be three-valued
2 Reduction steps

& for True and Maybe, construct a cut formula equivalent to
[[ll(s)=]

» logic: from mv CTL to restricted mv-logic with two-valued answers
» model: unchanged

U transform each cut to a classical model-checking problem
» logic: from restricted mv-logic to classical CTL

» model: from XKripke structure to classical Kripke structure

20

10

Propositional Logic

[lp A=gvzlls) =M
[[T A=M VF 11(so)

[[T AM VF 1](sp)

[[M VF]I(so)

[[M 11(sp)

21

Propositional Logic —the cut

[lpA=gVvz]l(s)) 2T Il A=gVZl(sg) 2 M

[(p 2) A(=g 2 T)V(Zz =2 T)I(sy)
[VF 11(so)

[[F v F 1I(so)
F

- 00000

022

11

Combining Results

[oA=gVvzll(se) 2T
[lpA=gVvZz]l(sy) 2 M
Therefore, [[p A—g VZ]I(sg) =M

*23

Propositional Logic — final step

[[(p=2T) A(—g=2T) v(z= DIl(sy)
[[o? Ag v z*]](sp)

[[TAF VFII(so)

[[F11(se)

12

Existential Temporal Logic —the cut

[[EX (0 A=gVvZ)l(sg) 2T

Vies R(sp,) Allo AmgVvZ]I() =T

Vies R(sg,t) 2 T) Alllp A=g vZz]I(t) 2 T)

Vies (R(sg,t) 2 T) All(p 2T A(=g 2T) V(2 2DII(V)
[[EXor (0 2TA(=g 2T)V(Z 2T)]I(sy)

*25

Existential Temporal Logic — final step

[[EXSr ((p 2THA(=g 2T)V(Z 2T)]I(sy)
[[EXor (p* Ag v Z29)]1(sp)
[[EX(p* Ag™V Z7)]](sp)

*26

13

Universal Temporal Logic —the cut

[[AX(p A—~g VZ)ll(sg) 2 T
Ates R(Sg,t) =[[p A—g VZII(1) 2T

Ates “R(sp,0) V [[p A—g vVZ]I(D) T
Ates "R(s,) 2 TV [[pA-gVZ]I) =T
NAies "R(sg,) ZM) V[[pA—gVZ]I) 2T
Ates(R(sg,) 2 M) = [[pA—gvVZ]I(D =T
[[AXom (P 2T) A(=q 2T) v(Z 2T)]I(so) 27

Universal Temporal Logic — final step

[[AXSy (P 2TIA(—g 2T)V(Z ZT)]I(sy)
[[AXQM (p* NG~ VZ+)]](SO)
[[AX(p* Ag~ vV Z)]1(sp)

*28

14

Handling Mixed Modalities

o The first reduction step does not change
O [[AX EXpll(so) =T istransformed into [[AX 5y EXo1(p=2D1I(S,)
2 Problem with the second step
% need a Kripke structure with two types of transitions
» 2M for universal modality

» 2T for existential modality

= Solution
U treat transitions labels as actions

% convert the resulting Labeled Transition System into a Kripke
structure

o Disadvantage
% introduces a new variable

% size of the statespace doubles
*29

Summary of the Reduction

© Multi-valued model-checking problem is reduced
to several classical problems

% one classical problem for True and one for Maybe
% size of the formula does not change
» atomic literals are changed to “plus” and “minus” versions
» other parts remain unchanged
U for universal and existentia fragments
» statespace of resulting Kripke structure is similar to the original
% for formulas with both universal and existential modalities
» statespace of the resulting Kripke structure is double of the original
U formulas with fixpoint operators are handled similarly
» (see Gurfinkel, Chechik, CONCUR'03)

30

15

Abstractio

n

@ O o O O

@ o 0 O @ s

O O O O O

o o Ja [a |

2 B F N B 9
Abstraction Function o :S — S’

31

Abstractio
2 Using 3-valued logic

% introduce new special value Maybe to stand for “unknown”

% Formally:
> [Vl (@ =TiffOsOy@) [[VII(s)=T
> [V () =Fiff 0sOy@a) [VI(s)=F

n

> [V]] (@) = Miff Os Oy(a) [VM](s) =T and Ot O y(a) [[V]I(t) =F

% Examples:
> r(so)=T = r(sp)=T

P (50,])=M

[;

F

16

Refresher:
Over- and Under-approximations

oM’ is an over-approximation of M, or M’ simulates
M if

LRI [Dams 97]: (t, t;) O R iff Os O y(t) st. s, O y(t) and (s, s))
OR

M’ is an under-approximation of M, or M simulates
M’ if

GLRIO[Dams 97]: (t, t,) O R iff OsOy(t) st. Os, O y(t') and (s, S)
OR

*33

Existential Abstraction (Over-Approximation)

17

Universal Abstraction (Under-Approximation)

*35

3-Val Transition Relation

olLet R(s,t) = Tif R(s,t) O RHH

GLRIO[Dams 97]: (t, t,) O R iff OsOy(t) st. Os, O y(t') and (s, S)
OR

olLet R(s,t) = Fif R(s,t) ¢ RH

LRI [Dams 97]: (t, t;) O R iff Os O y(t) st. s, O y(t,) and (s, s))
OR

oElse R(s,t) =M

*36

18

3-valued abstraction

37

Abstraction

o Using 3-valued logic
L introduce new special value Maybe to stand for “unknown”

38

19

Model Checking 3-Val abstract
Models

@ Let ¢ be an arbitrary property (i.e., expressed
in LTL, CTL, mu-calculus) and M’ is a 3-val
abstraction of M

2 Preservation Theorem
M E @ © MEG®

No guarantee is given about a “"Maybe” answer
False counterexample cannot be spurious

No need for simulation!

Maybe counterexample requires refinement
*39

3-Val Abstraction-Refinement Loop

40

20

NoO spurious counterexamples, but
abstraction can be too coarse

o o [0 o o
+>L/ @ ‘ Q

I I,

T M
mm mn
Bad
States

Failure
State

41

Refinement
@, 0 0 O O
@ & | @ O O
@ & | @ O O
la’ a’la’ a’ la’ a’ la’
EEENENE B N

Refinement : o’
42

21

Other use of 3-valued logic
o Algebra:

% use three-valued algebra (Kleene)

L intermediate val ue represents incompl ete information or
uncertainty

% compact representation for all possible refinements of this
model

L if aproperty is True/False on the partial mode, it is True/False
on arefined one

Ginitial theory developed by Bruns & Godefroid, CAV’'99

Summary

o Abstraction
& Effective tool for combating state explosion

& Over-approximation — sound for true universal properties,
otherwise — check if counterexample is feasible and then refine

& Under-approximation — same for existential properties

o 3-Valued Abstraction
% Specified in 3-val Kleene logic
% Allows reasoning about mixed-quantifier properties
% No need to check if counter-example is spurious
% Counterexample used for refinement
© 3-Val Model-Checking
% Reduces to two runs of classical model-checker
% Or can be done directly, say, using MDDs

22

Next topic:

o Software model-checking
& (and software model-checking with 3-valued logic)

45

23

