
1

3-Valued Abstraction
and

3-Valued Model-Checking

•2

Abstraction
�Abstraction:

� an effective technique to combat state explosion problem

� approximate sets of concrete states by an abstract state

� approximate sets of concrete transitions by an abstract transition

�Using 2-valued logic (over-approximation)
� False variables represent “unknown” value

� True transitions represent possible behaviour
���������
	��
��� ������	��
� ����������	��������

�
���

�
�
�

� �
�!�

"$# "&%

"$'

�
�
¬

"(#*)+% "('

2

•3

Abstraction, Cont’d
�Using 2-valued logic

� False variables represent “unknown” value

� True transitions represent possible behaviour
��� �

∨
	�����������	�� � � ��� �

∨
	�������	�� �

��� ������� ��	���� ���
��� �

¬ ∧ ¬
	�������� ��	���� � ��� �

¬ ∧ ¬
	������ 	����

��� ��� ��� � 	�� � ���

�
���

�
�
�

� �
�!�

" # " %

"$'

�
�
¬

"(#*)+% "('

•4

Abstraction, Cont’d
�Soundness:

� Only with respect to True universal properties

� For existential properties – use under-approximation

� For False properties:

� play counter-example to determine whether spurious

� Use counter-example-based abstraction refinement

3

•5

3-valued abstraction
�Goals:

� Reason about mixed properties

� Not have to tell which counterexamples are spurious

� Not have an increase in statespace, when compared to 2-valued

� Use counterexample for abstraction refinement

�Outline:
� 3-valued logic, properties, models, model-checking

� 3-valued abstractions

� Abstraction refinement

•6

Logic: 3-valued Kleene logic
Logic order

�Properties:
� F M, M T

� A ∧ B = min (A, B)

� A ∨ B = max (A, B)

� ¬T = F, ¬F = T, ¬M = M

�Preserves:
� Commutativity, associativity, idempotence, De Morgan laws

�Does not preserve

� Law of excluded middle: A∨¬A= T (top)

� Law of non-contradiction: A∧¬A=⊥ (bottom)

T

F

M

4

•7

Note
�3-valued logic forms a lattice

� Ordering : less than or equal

� Meet operation : min

� Join operation : max

� Negation : horizontal symmetry

�This is an example of a quasi-boolean algebra

�Equality and Identity are different!
� a � b

� a = b

T

F

M

•8

Logic
� Information order

� M contains least amount of information

� T, F – maximum amount of information

� If one refines M – it can change to T or F or stay at M

TF

M

5

•9

Overview of MV-Model CheckingOverview of Model Checking

Yes/No

Answer

SW/HW

artifact

Correctness
properties

Temporal
logic

Model of

System

M odel
Extraction

Translation

M odel
Checker

Correct?

MV-Logic

MV-Logic

Answer

M V-M odel
Checker

How correct?

•10

Multi-valued state machines: Xkripke
structures

�Extension of conventional state machines (Kripke
structures)
� variables take any value from the logic (T, F, M)

� transitions between states take any value from the logic

� False transitions are not shown (by convention)

�Example: pressed = T
request = F

pressed = T
request = F

pressed = M
request = T

T

T M

T

6

•11

Formally,
�Kripke structures extended for MV case

� M = <L, S, A, s0, I , R>

� L is a quasi-boolean algebra ¬ , where (,) is a

lattice
� S is a (finite) set of states, each with a unique name

� A is a set of atomic propositions

� s0 is a unique initial state (s0 ∈ S)

� I: S × A→ is the interpretation function that assigns a logic
value to each atomic proposition

� R: S × S→ is the function that assigns a logic value to each
transition between states

•12

3-valued CTL
�multi-valued extension of CTL

� same syntax as CTL

� plus constants from the logic (T, M, F)

�semantics:
� replace existential quantification by disjunction, universal

quantification by conjunction, so
(EX φ) (s) = ∃ t∈ Ss.t. (R(s,t) ∧ φ (t)) ∨t∈S (R(s,t) ∧ φ (t))

For all states s,
(AX φφφφ) (s) = (¬ EX(¬ φφφφ)) (s)
(EG φφφφ) (s) = φφφφ (s) ∧ (EX EG φφφφ) (s)
(AG φφφφ) (s) = (¬ EF(¬ φφφφ)) (s)

Examples:
AG (request -> AX pressed)
AG (pressed \/ request)

� other operators are defined as in CTL:

T

F

M

pressed = T
request = F

pressed = T
request = F

pressed = M
request = T

T

T M

T

7

•13

Model-Checking Cont’d
�Can a True property evaluate to M?

�Answer:
� Yes

� AG (pressed \/ ¬ pressed) = M

� Comes from law of excluded middle

�Some terminology:
� Compositional semantics

� Evaluate each CTL operator, compose according to lattice rules

� Thorough semantics [Bruns&Godefroid 00]

� Property evaluates to M iff exists a refinement where it evaluates to T

and a refinement where it evaluates to F.

� $$ to evaluate

•14

Symbolic mv model-checking
� Similar idea to classical model-checking

� recursively go through the structure of XCTL property

� encode sets of states symbolically

� encode transition relation symbolically

� Data structures

� direct approach: MDDs

� the number of terminal nodes and branching
factor equal to number of values in logic

� Example: x∧y in 3-valued logic

�

� �

� � �

�

�

�

�

�
�

�

��

� can use BDD vector …

� or mixed approaches (MBTDDs, MTBDDs)

8

•15

Reduction to Classical
� [Bruns&Godefroid’99]. Assumption: transition relation is

classical
� Move negation to level of atomic propositions

� Create a positive and negative version of every atomic proposition

� Let x = M.

� Positive cut:

� Set x and and ¬ x to True

� PosAnswer = check property

� Negative cut:

� Set x and and ¬ x to False

� NegAnswer = check property

� If NegAnswer = PosAnswer (True or False)
� Return this as answer

� Else
� Return Maybe

•16

Example

�����
�����
	�
 ���
	�
 ���

�����
�����
	 ���

�����
�
 ���
�
 ���
	 ���

Model Positive Cut

�

�����
�����
	 ���

�����
�����
	 ���

�����
�����
	 ���

9

•17

Example

�����
�����
	�
 ���
	 � �

�����
�����
	 ���

�����
�
 ���
�
 ���
	 ���

Model Negative Cut

�����
�����
	 ���

�����
�����
	 ���

�����
�����
	 ���

�

•18

Example

�����
�����
	�
 ���
	�
 � �

�����
�����
	 ���

�����
�
 ���
�
 ���
	 ���

Model Positive Cut

�����
�����
	 ���

�����
�����
	 ���

�����
�����
	 ���

�

10

•19

Example

�����
�����
	�
 ���
	 � �

�����
�����
	 ���

�����
�
 ���
�
 ���
	 ���

Model Negative Cut

�����
�����
	 ���

�����
�����
	 ���

�����
�����
	 ���

�

•20

Reduction to Classical (Take Two)
� [Gurfinkel&Chechik 2003]

�Assumptions:
� States can be 3-valued, transition relation can be three-valued

�Reduction steps
� for True and Maybe, construct a cut formula equivalent to

� logic: from mv CTL to restricted mv-logic with two-valued answers

� model: unchanged

� transform each cut to a classical model-checking problem

� logic: from restricted mv-logic to classical CTL

� model: from
�

Kripke structure to classical Kripke structure

11

•21

Propositional Logic

�

�

�

�

�

�����
�����
	 ���

�����
�����
	 ���

�����
�����
� ���

�

�

�

�

�

•22

Propositional Logic – the cut

�

�

��

�

�����
�����
	 ���

�����
�����
	 ���

�����
�����
	 ���

�

�

�

�

�

12

•23

Combining Results

�

�

Therefore, �

�

�

�����
�����
	 ���

�����
�����
	 ���

�����
�����
	 ���

�

�

�

�

�

•24

Propositional Logic – final step

� � �
�

�

�

�

Legend
�

represents
�

represents

�����
�����
	 ���

�����
�����
	 ���

�����
�����
	 ���

�

�

�

�

�

�

�

�

�

�

�

�

13

•25

Existential Temporal Logic – the cut

EX (�

����� �

����� �

����� �

EX � T ((�

�����
�����
	 ���

�����
�����
	 ���

�����
�����
	 ���

•26

Existential Temporal Logic – final step

��� (
� � �

�

EX(
� � �

�

��� �

�����
�����
	 ���

�����
�����
	 ���

�����
�����
	 ���

�

�

�

�

�

�

�

�

�

�

�

�

14

•27

Universal Temporal Logic – the cut

�

����� �

����� �

����� �

����� �

����� �

[[AX � M ((�

�����
�����
	 ���

�����
�����
	 ���

�����
�����
	 ���

�

�

�

�

�

Dealing with negation
� In 3-valued logic

� iff
� since iff

•28

Universal Temporal Logic – final step

� M ((�

� M
� � �

�

� � �
�

�����
�����
	 ���

�����
�����
	 ���

�����
�����
	 ���

�

�

�

�

�

�

�

�

�

�

�

�

15

•29

Handling Mixed Modalities
�The first reduction step does not change

� � is transformed into [[AX ��� ��� �

�Problem with the second step
� need a Kripke structure with two types of transitions

� ��� for universal modality

� �
�

for existential modality

�Solution
� treat transitions labels as actions

� convert the resulting Labeled Transition System into a Kripke
structure

�Disadvantage
� introduces a new variable

� size of the statespace doubles

•30

Summary of the Reduction
�Multi-valued model-checking problem is reduced

to several classical problems
� one classical problem for True and one for Maybe

� size of the formula does not change

� atomic literals are changed to “plus” and “minus” versions

� other parts remain unchanged

� for universal and existential fragments

� statespace of resulting Kripke structure is similar to the original

� for formulas with both universal and existential modalities

� statespace of the resulting Kripke structure is double of the original

� formulas with fixpoint operators are handled similarly

� (see Gurfinkel, Chechik, CONCUR’03)

16

•31

Abstraction

α α αα α

���������
	��
�����������������������
α ����� � �

•32

Abstraction
� Using 3-valued logic

� introduce new special value Maybe to stand for “unknown”

� Formally:

� [[v]] (a) = T iff ∀ s ∈ γ(a) [[v]](s) = T

� [[v]] (a) = F iff ∀ s ∈ γ(a) [[v]](s) = F

� [[v]] (a) = M iff ∃ s ∈ γ(a) [[v]](s) = T and ∃ t ∈ γ(a) [[v]](t) = F

� Examples:

�
���������
	�� ��� ������	��
� ����� ���
	��

�

�
���

�
�
�

� �
�!�

"$# "&%

"$'

"(#*)+% "('
��! �
� !#" $! �

��! �
� ! � $!#"

T

F

M

17

•33

Refresher:
Over- and Under-approximations

�M’ is an over-approximation of M, or M’ simulates
M if
� R∃∃ [Dams’97]: (t, t1) ∈ R’ iff ∃ s ∈ γ(t) s.t. ∃ s1 ∈ γ(t1) and (s, s1)

∈ R

�M’ is an under-approximation of M, or M simulates
M’ if
� R∀∃ [Dams’97]: (t, t1) ∈ R’ iff ∀ s ∈ γ(t) s.t. ∃ s1 ∈ γ(t’) and (s, s1)

∈ R

•34

Existential Abstraction (Over-Approximation)

�

�

18

•35

Universal Abstraction (Under-Approximation)

�

�

•36

3-Val Transition Relation

�Let R(s,t) = T if R(s,t) ∈∈∈∈ R∀∃∀∃∀∃∀∃

� R∀∃ [Dams’97]: (t, t1) ∈ R’ iff ∀ s ∈ γ(t) s.t. ∃ s1 ∈ γ(t’) and (s, s1)
∈ R

�Let R(s,t) = F if R(s,t) R∃∃∃∃∃∃∃∃

� R∃∃ [Dams’97]: (t, t1) ∈ R’ iff ∃ s ∈ γ(t) s.t. ∃ s1 ∈ γ(t1) and (s, s1)
∈ R

�Else R(s,t) = M

19

•37

3-valued abstraction

�

�

M

T

TM

M

M

M

M

M

T

•38

T

F

M

Abstraction
�Using 3-valued logic

� introduce new special value Maybe to stand for “unknown”

��� ������� ��	��
�

��� ���������
	�� �

�
���

�
�
�

� �
�!�

"$# "&%

"$'

�
�
¬

"(#*)+% "('

�

�

���! �
� ! " ! �

��! �
� ! � ! "

20

•39

Model Checking 3-Val abstract
Models

� Preservation Theorem
M’ M

•40

3-Val Abstraction-Refinement Loop

����� ���
� � � ��� � � ��� 	
	���
 �� ��� ��� �

� ��� �
 ����� ������������
	����
�� � � α � ���#���

� 	����

��	#��

�#���

� ��� �
�������
α�

21

•41

No spurious counterexamples, but
abstraction can be too coarse

�

�

���������	�
�
�
� � � � �

�����
� � � � � � � �	� � ������ � � � �

�
T M M

•42

Refinement

α� α� α�α� α�

α

α�α�

22

•43

Other use of 3-valued logic
�Algebra:

� use three-valued algebra (Kleene)

� intermediate value represents incomplete information or
uncertainty

T

F

M

� compact representation for all possible refinements of this
model

� if a property is True/False on the partial model, it is True/False
on a refined one

� initial theory developed by Bruns & Godefroid, CAV’99

p=T
q=F
r=T

p=M
q=M
r=F

p=T
q=M
r=T

s0

s2

s1

T

T

M

MT

Application:
• Most models are incomplete!
• Allows verification before

specification is completed

•44

Summary
�Abstraction

� Effective tool for combating state explosion

� Over-approximation – sound for true universal properties,
otherwise – check if counterexample is feasible and then refine

� Under-approximation – same for existential properties

�3-Valued Abstraction
� Specified in 3-val Kleene logic

� Allows reasoning about mixed-quantifier properties

� No need to check if counter-example is spurious

� Counterexample used for refinement

�3-Val Model-Checking
� Reduces to two runs of classical model-checker

� Or can be done directly, say, using MDDs

23

•45

Next topic:
�Software model-checking

� (and software model-checking with 3-valued logic)

