
Relativizations for the
logic-automata connection∗

Nils Klarlund
Bell Labs, Lucent Technologies

Dedicated to the memory of Bob Paige
and his contributions to automata algorithms

September 21, 2004

Abstract

BDDs and their algorithms implement a decision procedure for Quantified
Propositional Logic. BDDs are a kind of acyclic automata. But unrestricted
automata (recognizing unbounded strings of bit vectors) can be used to decide
monadic second-order logics, which are more expressive. Prime examples are
WS1S, a number-theoretic logic, or the string-based logical notation of introduc-
tory texts. One problem is that it is not clear which one is to be preferred in prac-
tice. For example, it is not known whether these two logics are computationally
equivalent to within a linear factor, that is, whether a formula φ of one logic can
be transformed to a formulaφ′ of the other such thatφ′ is true if and only ifφ is
and such thatφ′ is decided in time linear in that of the time forφ.

Another problem is that first-order variables in either version are given automata-
theoretic semantics according to relativizations, which are syntactic means of re-
stricting the domain of quantification of a variable. Such relativizations lead to
technical arbitrations that may involve normalizing each subformula in an asym-
metric manner or may introduce spurious state space explosions.

In this paper, we investigate these problems through studies of congruences
on strings. This algebraic framework is adapted to language-theoretic relativiza-
tions, where regular languages are intersected with restrictions. The restrictions
are also regular languages. We introduce ternary and sexpartite characterizations
of relativized regular languages. From properties of the resulting congruences, we
are able to carry out detailed state space analyses that allow us to address the two
problems.

We report briefly on practical experiments that support our results. We con-
clude that WS1S with first-order variables can be robustly implemented in a way
that efficiently subsumes string-based notations.

∗Some of the material in this paper appeared inComputer Aided Verification, CAV ’99, LNCS 1633,
1999, under the title “A theory of restrictions for logics and automata.” This work was carried out while
the author was with AT&T Labs–Research; it was also supported in part by grant CCR-0341658 from the
National Science Foundation.

1

1 Motivation

The relationship between automata and logic has been very successfully exploited
through Binary Decision Diagrams[4]. This technique allows formulas of proposi-
tional logic to be decided through the use of automata representations for sets of strings
of bounded length. But, a more generallogic-automataconnection exists: Büchi[5],
Elgot[6], and Trakhtenbrot[17] argued fourty years ago that a logical notation, now
called the Weak Second-order theory of 1 Successor or WS1S, would be a more natural
alternative to what already was known as regular expressions. WS1S has an extremely
simple syntax and semantics: it is a variation of predicate logic with first-order vari-
ables that denote natural numbers and second-order variables that denote finite sets of
natural numbers; it has a single function symbol, which denotes the successor function,
and has usual binary operators such as≤,=,∈ and⊇.

Büchi, Elgot, and Trakhtenbrot showed that a decision procedure exists for this
logic. The idea is to view interpretations as finite strings over bit vectors and then
to show by explicit constructions of automata that the set ofsatisfying interpretations
for any subformula is a regular language. In this way, an automaton becomes an ob-
ject that represents the logical semantics of a subformula,and it makes sense to talk
about automata-theoretic semantics, which characterizesthe computational approach
to the logic. As with Binary Decision Diagrams, the idea behind the decision proce-
dure is to construct inductively a deterministic automatonfor each subformula. This
method, which we shall review in detail, handles each connective in the logic through
an automata-theoretic operation, such as product or subsetconstruction. Todecidea
sentence is then under this view the process of building the automaton inductively.

A main motivation of this article is to make the decision procedure feasible in prac-
tice. Since 1994, we have explored the practicality of the logic-automata connection in
theMonaproject, first described in [7]. The Mona tool has been used for a variety of
tasks, for example in linguistics[18], pointer verification[13], protocol verification[14],
and hardware verification[2]. Among other implementation challenges[12], we discov-
ered spurious state space explosions in intermediate automata. Sometimes, we would
be prevented from solving even trivial problems due to phenomena that we will uncover
and overcome in the present article.

1.1 The two approaches to a logic of one successor

The problems we encountered are in part linked to the existence of two formulations
of monadic second-order logic of one successor. Using the same syntax, the two ap-
proaches depend on different structures and different semantics.

The logic WS1S, the first approach, is a very natural notation. For example, a sen-
tence in WS1S is either true or false and a formula withk free first-order variables
defines a relation that is simply a subset ofN

k, whereN is the set of non-negative inte-
gers. Thus, we call this approach to the logic-automata connectionnumber-theoretic.
The automaton for a sentence is a simple one: it has one state (if minimized)! If it is
accepting, the formula is true; if rejecting, the formula isfalse.

The second approach, the one emphasized in presentations ofthe logic-automata
connection (such as in [15, 16]) is more complicated to explain, at least when it comes

2

to the semantics, which is tied to a parameterized, finite, unbounded domain repre-
sented by a numbern ≥ 0. This number defines a set{0, . . . , n− 1} of positions. All
second-order terms are interpreted as subsets of{0, . . . , n−1} and all first-order terms
are interpreted as numbers in{0, . . . , n − 1}. Under this view, the truth status of a
sentence depends onn. The successor function denoted by the termp+1 is interpreted
as ordinary addition except ifp is n− 1; in that case, we may choose—arbitrarily—to
define the meaning ofp+ 1 to bep.

For example, a sentence may be defined that is true if and only if n is even; intu-
itively, the sentence expresses:

• there a setP that is maximal (not properly contained in any other set);

• there is a setP ′ (which is a subset ofP sinceP is maximal) of the even positions
in P (which can be expressed:0 ∈ P ′ and for anyp either p + 1 = p or
p+ 1 ∈ P ′ ⇔ p ∈ P ′); and

• the maximal element ofP is inP ′.

More generally, a formula withk free first-order variables defines a parameterized
family of finite relations, where thenth relation is a subset of{0, . . . , n− 1}k.

We call this second approachstring-theoretic, because the semantics can be ex-
plained advantageously in terms of strings. The ideas of theautomata-theoretic deci-
sion procedure of WS1S still apply; in fact, the algorithm becomes simpler, which is the
reason why this approach is often preferred in introductions to the logic-automata con-
nection. The string-theoretic approach is also intrinsically appealing for certain appli-
cations, for example in the description and verification of parameterized hardware[2].
Among other names, these logics have been called MSO(S)[16], SOM[+][15], and
M2L(Str)[7, 9]. They vary slightly, but we will identify them as M2L(Str) in this pa-
per.

1.2 Comparison and the translation problem

There are two reasons for preferring the number-theoretic approach. First, its logical
semantics is simpler as just argued—it can be explained to people with little mathemat-
ical background. Second, WS1S appears to be the stronger logic in the following sense:
there is apparently no known polynomial time reductionf from sentences interpreted
under the WS1S view to sentences interpreted under the M2L(Str) view such thatf(φ)
is true for alln if and only ifφ is true. In contrast, there is a rather obvious, linear trans-
lation in the other direction: given a sentenceφ under the string-view, we turn it into a
formulaφ′ with one free variable$ such thatφ holds forn if and only ifφ′ holds under
the interpretation$ 7→ n. Specifically,φ′ is obtained fromφ by restricting quantified
variables to the domain{0, . . . , $ − 1}. Syntactically, the restriction to{0, . . . , $ − 1}
for a variable can be expressed as a formula that is conjoinedto the formula of the
existential quantifier introducing it. Such syntactic constructs are well-known in logic;
they are calledrelativizations, see[3]. We call the formulaφ′ aWS1S representationof
the M2L(Str) formulaφ.

A main focus of the present work is to show how relativizations can be guaranteed
to work in practice. In fact, even though the syntactic translation is linear, there is no

3

guarantee that the computations involved in calculating the automaton forφ′ (under the
WS1S view) are not asymptotically more involved than those involved inφ (under the
M2L(Str) view).

Indeed, during early experiments with this procedure, our problem was that seem-
ingly innocuous formulas would yield enormous automata after the conversion into
WS1S. So, we say that anefficient translation algorithmis one that in linear time
transforms any sentenceφ in M2L(Str) to a representationφ′ such thatφ′ is decided in
time that is linear in the time to decideφ. Let us call the question of finding such an
algorithm thetranslation problem.

1.3 Handling of first-order variables

Another computational problem we encountered with monadicsecond-order logics
stems from the way that first-order variables and terms are handled. Through for-
mula rewritings, they are transformed into second-order variables. The second-order
variables are subjected to relativizations that restrict them to singleton sets. Conse-
quently, automata corresponding to subformulas are not simply determined by the log-
ical semantics, but also according to how relativizations are formulated. So, to make
automata for formulas canonically determined, extra automata product operations are
used toconjunctively normalizethese intermediate automata as we shall see. (The
canonicity of representations is essential to the success of automata-based methods
such as BDDs—it guarantees that intermediate results are always pruned to their min-
imum size.) Thefirst-order semantics problemis to find an automaton representation
that is no bigger than the conjunctively normalized representation, while not requir-
ing such explicit normalization steps. This is important inpractice, since we want to
minimize the amount of computational work.

We note that there are other ways of deciding WS1S, for example through Ehren-
feucht-Fraissé games[15] or through bounded-model techniques[1].

1.4 Contributions of this paper

In this paper, we propose solutions to the translation problem and the first-order se-
mantics problem. We do so by studying relativizations in an algebraic framework. We
proceed as follows.

We formulate a syntax for WS1S, where relativizations are made explicit, and we
provide initially three different automata-theoretic semantics: (1) thead hocsemantics
that corresponds to the strategy we first used in the Mona implementation for first-
order variables, (2) theconjunctively normalized semantics, whereall the intermediate
automata are conjoined with relativizations, and (3) theternary semantics, which is
based on valuations that identify the membership status (0 or 1) for each string in the
restriction and assigns⊥ to each string not in the restriction. We explain why the
ad hoc semantics is unsuitable, and why the conjunctively normalized semantics, in
addition to being asymmetric, would slow down the decision procedure. We show that
the ternary semantics makes most normalizations unnecessary, since they inherently
propagate through the automata-theoretic constructions.Also, we indicate how the
ternary semantics can be implemented based on the standard WS1S decision procedure.

4

To study the question of automata sizes, we give a detailed congruence-theoretic
analysis of regular languages under relativizations, thatis, under intersections with
other regular sets that act as restrictions. We introduce a notion of athin language, and
we show that the relativizations occurring in the treatmentof first-order variables and
in the translation problem are thin. We prove that languagesunder thin relativizations
make comparisons of the conjunctively normalized semantics and the ternary semantics
easy: the latter is the same as the former except for some extra equivalence classes
that we characterize. We show that if the automata of restrictions are bounded then
the sizes of intermediate automata occurring under the ternary semantics are to within
this additive bound the same as the sizes of automata of the conjunctively normalized
semantics.

We strengthen this result by exhibiting congruences based on asexpartite semantics
that are no bigger than those of the conjunctively normalized semantics. The sexpartite
valuations are based on the ternary ones, but for certain strings they do not yield an
exact answer to what the ternary evaluation is. We are able toshow that operations cor-
responding to logical connectives may be formulated directly on automata represent-
ing these congruences, under the further assumption ofcrispness, a language-theoretic
property that the restrictions of the first-order semanticsproblem and the translation
problem enjoy.

Our main result is that the resulting decision procedure, while requiring only few
normalizations, involves intermediate automata that are at most the same in size (to
within a linear factor) as the ones occurring under the conjunctively normalized seman-
tics, but sometimes only logarithmic in size compared to theconjunctively normalized
semantics. Thus, we have found a symmetric and efficient representation of formulas
under restrictions.

We conclude that WS1S, and not a string-oriented logic, is the best interface to
the logic-automata connection, since in practice the string-theoretic view is effectively
subsumed by the number-theoretic view through the techniques developed in this arti-
cle.

1.5 Organization

In Section 2, we review WS1S and its decision procedure. We provide further moti-
vation for why normalizations are necessary, both in the case of first-order variables
(Section 2.3) and in the case of the translation problem (Section 2.4). For the latter, we
discuss an example in detail.

In Section 3, we formalize the classic semantics, the conjunctively normalized one,
and the ternary one. We also discuss the relationship between a syntax that explicitly
accommodates relativizations and the automata-theoreticsemantics.

In Section 4, we develop an understanding of restrictions imposed on regular lan-
guages through ternary valuations. In particular, Theorem1 relates sizes of automata
under the conjunctively normalized semantics and under theternary semantics.

In Section 5, we present state space engineering techniquesthat remove information
from ternary valuations. The resulting sexpartite valuations are specialized ternary
valuations. We discuss ways of calculating sexpartite valuations and how to reason
about them.

5

In Section 6, we study the problem of calculating the sexpartite representation of
intersections directly from the sexpartite representation of the sets involved.

In Section 7, we show how the sexpartite semantics of WS1S canbe reformulated in
ways that will support better algorithms; in particular, wetry to avoid normalizations.

In Section 8, we present the algorithms that may be used in a decision procedure
for WS1S based on techniques from the Sections 6 and 7. In particular, we formulate
algorithms that allow us to formulate our second theorem: WS1S under restrictions of
the kinds we are interested in can be decided in a way that is upto exponentially faster
than using the conjunctive normalization technique.

In Section 9, we summarize and provide some hints about the practical performance
of the Mona tool when equipped with techniques of this article.

2 WS1S: review and issues

We need to fix a syntax for WS1S. We follow the concrete, ASCII-based syntax of
Mona, but we keep only a small set of primitives.Nutshell WS1Scan be presented
as follows. A formulaφ is compositeand of the form̃ φ′ (negation),φ′ & φ′′ (con-
junction), orex2 P i : φ′ (existential second-order quantification), or it isatomicand
of the formP i sub P j (P i is a subset ofP j), P i < P j (elements inP i are less than
elements inP j), P i =P j \ P k (P i is the set difference ofP j with P k), orP i =P j +1
(P i are the successors of elements inP j). Here, we have assumed that variables are all
second-order and namedP i, wherei ≥ 1. Other comparison operators, second-order
terms with set-theoretic operators, and Boolean connectives can be introduced by triv-
ial syntactic abbreviations, see [11, 16]. The treatment offirst-order terms is discussed
later.

2.1 Logical Semantics of WS1S

A decision procedure takes as input a formulaφ0, called the main formula, whose
truth status is to be investigated. Following standard practice, we sometimes regard
the main formula as an abstract syntax or parse tree (with itsroot facing up—the usual
convention). We define itslogical semantics(or just semantics) inductively relative
to a stringw over the alphabetΣ = B

k, whereB = {0, 1} andk is the number of
variables inφ0. We assume thatφ0 is closed and that each variable is bound in at
most one occurrence of an existential quantifier. Generally, we consider only formulas
that are subformulas ofφ0, since the semantics is formulated in terms of strings over
a bounded alphabet—something that prevents us from giving semantics to all possible
formulas given a value ofk. We now regard a stringw = a0 · · · aℓ−1, whereℓ = |w| is
the length ofw, to be of the form:

P 1




a1
0

· · ·
ak
0









a1
ℓ−1

· · ·
ak

ℓ−1



· · · · · ·
P k

where we have indicated (left) that if the string is viewed asa matrix, then rowi is
called theP i-track. Each lettera is sometimes written in a transposed notation as the

6

vector(a1, . . . , ak)t. The interpretationw(P i) ⊆ N of P i defined byw is the finite
set{m | themth bit in theP i-track is1}. Note that suffixingw with a null-extension,
a string of the form0 · · ·0 with 0 = (0, . . . , 0)t, does not change the interpretation of
any variable.

The semantics of a formulaφ can now be defined inductively relative to an interpre-
tationw. We use the notationw � φ (which is read:w satisfiesφ) if the interpretation
defined byw makesφ true:

w � ˜ φ′ iff w 2 φ′

w � φ′ & φ′′ iff w � φ′ andw � φ′′

w � ex2 P i : φ′ iff ∃ finiteM ⊆ N : w[P i 7→M] � φ′

w � P i sub P j iff w(P i) ⊆ w(P j)
w � P i < P j iff ∀h ∈ w(P i) : ∀k ∈ w(P j) : h < k
w � P i = P j \ P k iff w(P i) = w(P j)\w(P k)
w � P i = P j +1 iff w(P i) = {m+ 1 | m ∈ w(P j)}

where we use the notationw[P i 7→ M] for the minimal stringw′, called thewitness
string, that is at least as long asw and interprets all variablesP j , j 6= i, asw does,
but interpretsP i asM . Note that the truth status of a subformulaφ that contains an
existential formula of the formex2 P i : φ′ does not depend on theP i-track, since we
assume that eachP i is bound by at most one existential quantifier, and consequently
there can be no free occurrence ofP i in φ. We could have chosen a model where these
unnecessary tracks are removed—but that gives us the complication of working with
different alphabets for each subformula.

To fully explain the decision procedure for WS1S, we need to look at the situation
for quantification in more detail. This discussion will be rather technical; it is the reason
why introductory texts concentrate on M2L(Str) for which existential quantification is
straightforward. Looking at the witness stringw[P i 7→ M] again, we observe that it
may be longer thanw, since the greatest element inM may be equal to or greater than
the length ofw. In this case, the extension consists of letters that are allzeros except
for theP i-track, which describes the elements ofM greater thanw − 1.

To characterize such extensions more formally, we letΣi
0 be the set of all letters

of the form(0, . . . , 0, X, 0, . . . , 0)t (where theX means that the value of theith com-
ponent is either0 or 1). An extensionzi in Σi

0
∗

is then called anull-but-i extension.
Thus, the witness string is of the formw′ · zi, wherew′ is the same string asw except
possibly for theP i-track.

Generally, we may decompose anyw into partsw̃ andzi such thatzi contains as
many letters from the end of the string as possible that are all 0 outside theP i-track;
more precisely, we letw = w̃ · zi, wherezi is a maximal, null-but-i extension of some
prefix ofw. Thus,w̃ is empty or at least one non-P i-track inw̃ ends with a1, i.e. the
last letter inw̃ is not inΣi

0. We say that̃w is but-i-minimal.
As defined, the witness string may not be shorter thanw. For example, ifw is all

zeros outside theP i-track, with theP i-track consisting of all ones andM = ∅, then
the witness string is0 · · ·0 of length|w|. We have introduced this requirement to avoid
other unpleasant technicalities later.

For any formulaφ, we associate thelanguageLφ = {w | w � φ} of satisfying
interpretations. The truth value ofφ0 is independent ofw, since by assumption it is a

7

closed formula. Thus,φ0 is either true, whenLφ0
= Σ∗, and we write� φ0, or φ0 is

false, whenLφ0
= ∅, and we write2 φ0.

Proposition 1 Wordsw andw′ that interpret all variables in the same way satisfy the
same set of formulas: if for alli, 1 ≤ i ≤ k, w(P i) = w′(P i), then for allφ, w � φ if
and only ifw′

� φ. Thus, the interpretation is invariant under null-extensions.

Proof (Idea) By a simple induction on formulasφ, we may show that for wordsw
andw′ such thatw′ is a null-extension ofw the following holds: either both satisfy
φ or both do not satisfyφ. For existential quantification, we note that ifw′ is a null-
extension ofw, thenw′[P i 7→M] is a null-extension ofw[P i 7→M]. 2

2.2 Automata-theoretic semantics

The automata-theoretic semantics constitutes a decision procedure that associates to
eachφ the deterministic, minimal automatonAφ accepting the languageLφ.

2.2.1 Automata preliminaries

We recall that an automatonA = (Σ, Q,Q0,→, QF) consists of an alphabetΣ, which
we here assume to beBk, a finite set of statesQ, a set of initial statesQ0, a transition
relation→⊆ Q × Σ × Q, and a set of final statesQF . A run (qm)m≤ℓ over a word
w = a0 · · ·aℓ−1 ∈ Σ∗ is a sequence of statesq0, . . . , qℓ such thatq0 ∈ Q0 and for
all m, 0 ≤ m < ℓ, (qm, am, qm+1) ∈→. The length of the run isℓ. The run is
acceptingif qℓ ∈ QF , and the language accepted byA is the set ofw that allows
some accepting run. The automatonA is deterministic ifQ0 is a singleton and if for
all q ∈ Q anda ∈ Σ there is exactly oneq′ such that(q, a, q′) ∈→. Our automata
are assumed deterministic if not otherwise indicated. For adeterministic automaton,
any wordw allows exactly one run; if its length isℓ, then last stateqℓ of this run is
denotedLASTA(w) and we say thatw bringsA to stateqℓ. Moreover, withB =
{0, 1} (equipped with the usual truth functions∧,∨, and¬), we also letA denote
the characteristic function ofL; in other words,A : Σ∗ → B is defined byA(u) =
(LASTA(w) ∈ QF).

Thesize|A| of an automaton is its number of states.

2.2.2 ConstructingAφ

For atomic formulasφ, a small, deterministic, minimal automaton can be directlycon-
structed that accepts the languageLφ. For example, for the formulaP 1sub P 2, a two-
state automaton exists that accepts exactly the set ofw for whichw(P 1) ⊆ w(P 2); see
Figure 1, where we have followed usual conventions: states are circles, the initial state
is denoted by an arrow pointing to it, transitions are denoted by arrows marked with
letters for which they apply, and the final states are designated by an inner circle.

Other atomic formulas are treated similarly, and for composite formulas we proceed
by induction.

8

„

1
0

«

„

0
0

«„

0
1

«„

1
1

«

„

0
0

«„

0
1

«„

1
0

«„

1
1

«

Figure 1: Automaton that accepts satisfying interpretations forP 1sub P 2.

For a formulaφ of the form˜ φ′, the automatonAφ is taken to be the complement
of the automatonAφ′ calculated by induction. This automaton will be minimal by
construction since it is obtained by simply reversing final and non-final states in the
automatonAφ′ . The case of conjunction is handled by an automata-theoretic product
construction: givenAφ′ acceptingLφ′ and givenAφ′′ acceptingLφ′′ , we construct the
minimized product automaton ofAφ′ andAφ′′ ; this automaton accepts the language
Lφ′ ∩ Lφ′′ .

The case of quantification is more complicated. Considerφ = ex2 P i : φ′. Define
the projection operatorPROJi that transforms functions of typeΣ → B according to:

PROJiA(u) =

{

1 if ∃M : A(u[P i 7→M]) = 1

0 if ∀M : A(u[P i 7→M]) = 0
(1)

Then, we desire to makeAφ an automaton that recognizesPROJiAφ′ . The quantifica-
tion over unbounded (but finite) sets seems to contradict ouruse of finite strings. We
describe how to calculatePROJi in two steps. In the first step, knowledge about possible
future extensions that only interpret theP i-track is used to change the labeling of the
Aφ′ automaton. In the second step, a conventional projection construction is carried
out.

From an automatonA, we construct thefuturizationof A, denotedFUTiA accord-
ing to null-but-i-extensions:

FUTiA(u) =

{

1 if ∃v ∈ Σi
0
∗

: A(u · v) = 1

0 if ∀v ∈ Σi
0
∗

: A(u · v) 6= 1

This description can clearly be implemented as a linear timeautomata-algorithm by
changing the labeling of the states ofA appropriately.

Define thebounded projectionoperatorBPROJi such that

BPROJiA(u) =

{

1 if ∃M with maxM < |u| : A(u[P i 7→M]) = 1

0 if ∀M with maxM < |u| : A(u[P i 7→M]) = 0

This operator describes the traditional projection operation on theP i track. It can
be formulated as an algorithm that yields a deterministic automaton via the subset
construction. The algorithm may run in exponential time, since the resulting automaton
may be exponentially bigger.

9

Proposition 2

PROJiA = BPROJi(FUTiA)

Proof We have

PROJiA(u) = 1 iff
∃M : A(u[P i 7→M]) = 1 iff
∃M̂, zi with max M̂ < |u| andzi ∈ Σi

0
∗

: A(u[P i 7→ M̂] · zi) = 1 iff
BPROJi(FUTiA)(u) = 1

where the second biimplication is valid because|u[P i 7→ M]| ≥ |u| holds thanks to
the definition ofu[P i 7→M]. 2

2.3 Automata-theoretic semantics of first-order variables

Let us look at the first-order semantics problem. Adding first-order variables to nut-
shell WS1S can easily be done as follows: a first-order variable p is regarded as a
second-order termP that is restricted to take on values that are singleton sets,whose
sole element denotes the value ofp, see [10, 15, 16]. This relativization is imposed syn-
tactically by conjoining a singleton predicatesingleton(P) to the formula where
P is quantified; the symbolP is a meta-variable that stands for one of theP i. The
predicatesingleton(P) is called therestrictionof the relativization.

(The singleton predicate can be expressed as a formula in nutshell logic for any
particularP i (the formula expresses thatP i is nonempty and that any two elements
in P i are the same). Thus, we view this predicate as a macro, a textual expansion
mechanism, not an additional primitive predicate that mustbe interpreted.)

Unfortunately, relativization is not entirely robust. Interpretationsw not fulfilling
singleton(P) take on “arbitrary” truth values for subformulas in the parse tree
below the point of relativization. We explain this arbitrariness through an example that
assumes that we have already added the ability to express both first-order and second-
order constants to the nutshell language. The formulaφ = p=0, wherep is first-
order, is then reasonably represented as{0} sub P , since this formula has the right
truth value relative to singleton interpretations ofP . Similarly, we would reasonably
translate the formulaφ′ = p < 1 intoP<{1}. Of course,φ andφ′ are to be considered
equivalent formulas, because there are interpreted overN. But {0} sub P andP<{1}
are not equivalent as WS1S formulas, because they take on “arbitrary” truth values
outside the restriction. For example, forw = 00 (which interpretsP as∅, thus making
no sense ofp) makes{0} sub P false, but{0} sub P true.

This phenomenon leads to the following problem: automata corresponding to sub-
formulas may have many states that describe spurious and irrelevant truth functions
outside the restrictions. There might be so many, as we shallsee, that the decision
procedure breaks down in practice. Of course, the extra states corresponding to in-
terpretations outside the restriction are eventually pruned thanks to the conjunction of
the restriction in the relativized quantified formula. For example, ifp is removed as

10

a free variable through first-order quantification inex1 p : p=0 and we representp=0
by {0} sub P , then the classic relativization conjoins the restrictionat the point of
quantification so that we obtainex2 P : {0} sub P & singleton(P) .

In order to fix the automata semantics of subformulas, we could arbitrate as follows:
conjoin the restriction to every subformulaφ in a procedure we callnormalization.
Then—after settling various technical choices of the normalization process—we would
have a firm automata-theoretic explanation of the languageL(φ) under what we call
theconjunctively normalized semantics. (We define the various semantics formally in
Section 3.)

The practical problem with this solution is that additionalproduct and minimization
calculations would be necessary: for each automatonA representing a subformula
φ and each free variableP i, the automaton representing the singleton property for
P i must be conjoined toA. Such extra calculational work slows down the decision
procedure in the following sense: each automata-theoreticoperation must be followed
by a product and a minimization. (Under certain assumptionson restrictions, the need
for minimization may disappear, see Section 4.) For example, complementation, which
is normally very fast since it consists of flipping acceptance statuses of states, now
would involve a product and a minimization operation.

In practice, the Mona implementation prior to the one implemented with the re-
sults of the present article used thead hoc semantics: the restriction for variablep is
conjoined only to atomic formulas wherep occur and to the formula in the existential
quantification introducingp. Note that this technique does not eliminate the prob-
lem of spurious behavior for intermediate formulas. For example, the conjunctively
normalized atomic formulap=0 is not equivalent to the negation of the conjunctively
normalized atomic formulap˜=0 , where˜ = means “not equal.”

2.4 Emulation of string semantics in WS1S

We turn to the translation problem of how to use restrictionsto efficiently translate
the string-theoretic version of monadic second-order logic into the number-theoretic
version. A simple choice of syntax for M2L(Str) is to make it identical to nutshell
WS1S syntax. The satisfaction relation is now denoted�string ; it is the same as for
WS1S except that quantification and successors are treated relative to|w|:

w �string ex2 P i : φ′ iff ∃M ⊆ {0, . . . , |w| − 1} : w[P i 7→M] �string φ
′

w �string P
i = P j +1 iff w(P i) = {m+ 1 | m ∈ w(P j) andm+ 1 < |w|}

where the notationw[P i 7→ M] again denotes the stringw altered so that theP i track
describesM . Note that herew[P i 7→ M] is exactly as long asw sinceM is a subset
of {0, . . . , |w| − 1}. The interpretation ofφ0 on a string ofw still does not depend
on the individual tracks ofw, but it doesdepend on the length ofw. Thus we write
i �string φ0 if φ0 holds for a stringw of lengthi.

To emulate�string in �, we must relativize all second-order terms to sets of num-
bers less than the last position in the string. Thus, we introduce a first-order vari-
able$ that simulates the entity|w|. (Of course,$ really stands for somePi variable
that is otherwise unused and that is relativized to act like afirst-order variable.) A

11

$-restriction for a variable expresses that the variable is a subset of{0, . . . , $ − 1}.
Then, under the normalization strategy we conjoin$-constraints for all free variables
of each subformula. The result is a WS1S formulaφ′ with one free variable$ such that
m �string φ ⇔ w � φ′, where the$-track ofw interprets$ asm. For example, the
formulaex1 p : ex1 q : p = q becomes in WS1S:

[singleton ($) &

ex2 P : ex2 Q :

[singleton (P) & singleton (Q) & singleton ($)

&P < $ &Q <$ &Psub Q &Q sub P]]

as expressed in nutshell syntax, where each normalized subformula is enclosed in
brackets. The M2L(Str) formulation is

[ex2 P : ex2 Q :

[singleton (P) & singleton (Q) &

Psub Q &Q sub P]]

Proposition 3 Under the translation outlined above, the minimized, canonical automata
arising during the M2L(Str) decision procedure are essentially the same as the ones
arising during the WS1S procedure except for at most two additional states.

Proof (Some insights) First, we must establish the relationship between the meaning
of a formulaφ in M2L(Str) and the meaning ofφ in WS1S, whereφ is obtained by
conjoining the$-restriction for each variable occurring free inφ. If there aren variables
in φ, then the$-variable receives indexn+1. Letw be a string interpreting thesen+1
variables. An inductive argument shows thatw � φ if and only if (1) thePn+1-track
is interpreted as a singleton{ℓ} and (2) for each free variableP i in φ theP i-track is
interpreted as a set of numbers less thanℓ.

Second, we can use this knowledge to construct the WS1S automaton forφ from
the M2L(Str) automatonφ by adding statessaccept (an accepting state) andsreject (a
rejecting state). The transition relation of the new automaton is the same as for the
old one as long as the additionalPn+1-component is0. All old states are turned into
rejecting states. When the$-component is1, corresponding to the end of the string
under the M2L(Str) representation, a transition is made tosaccept or sreject according
to the accept status of the state that would have been reachedin the old automaton,
provided that theP i-component of all free variables is 0 (if the latter is not true, then
a transition is made tosreject). Fromsaccept, a transition is made tosreject if any 1
occurs in the$-component (since$ must be interpreted as a singleton set) or in the
track corresponding to a free variable inφ. Thesreject state is connected to itself on all
letters.

Finally, it can be shown that during minimization of the new automaton, every
pair of any old states are still not equivalent with respect to the canonical equivalence
relation: the transitions to the two new states induce the same partition of the old states,
regarded as part of the new automaton, as the one defined by accepting or rejecting
states of the old automaton. 2

12

Our practical experiments with running string-based examples translated into WS1S
were based on the ad hoc strategy, where the restriction of variable is conjoined only to
atomic formulas involving the variable and to the place where the variable is introduced
by a quantifier.

The problem that bloated automata may occur thanks to the non-robustness of the
ad hoc strategy is not just a theoretical one. We discovered the following problem that
was serious enough to prevent benign formulas from being decided.

Parity example Consider the formulaφODD = ex1 p : (p in P 1 ⊕ · · · ⊕ p in Pn)
under the string-theoretic semantics, where⊕ denotes addition modulo 2 (properly
formulated in nutshell syntax). The formula holds if and only if there is a position
contained in an odd number of the setsP i. Translated into nutshell WS1S under the ad
hoc strategy, the formula becomes:

singleton($) &
P 1< $ &
· · ·
Pn< $ &
ex2 P : (singleton($) &

((P sub P 1 & singleton(P) & singleton($) & P 1< $)
⊕((· · ·)
⊕ (P sub Pn & singleton(P) & singleton($) & Pn< $) . . .).

(2)

where⊕ is a binary operator defined in terms of& and˜ .

Proposition 4 The parity formulaφODD expressed as (2) produces intermediate au-
tomata whose size is doubly exponential inn when constructed according to Sec-
tion 2.2.2. But if restrictions are conjoined to all subformula (that is, also to each
intermediate⊕ formula), then all intermediate automata have at most 21 states.

Proof (Intuition) Instead of providing a genuine proof, we provide some intuition and
experimental data. Initially, let us discuss the size of theminimal automaton forφODD.
The alphabet isBn+2, since the formula containsn variablesPi and the variables$
andp, whose real names in nutshell logic are, say,Pn+1 andPn+2. But sincep is
quantified away, thep-track does not influence the way the minimal automaton works.
So, we will regard the automaton as reading letters that are vectors of sizen + 1.
The automaton must check for each letter whether the number of ones among the first
n tracks is odd . The automaton forn = 2 is shown in Figure 2 as generated by
Mona and the Graphviz drawing program (the state labeled0 is an artifact of Mona’s
representation of Boolean variables—it can be ignored). Intuitively, the automaton can
be explained as follows, where states are named as in Figure 2. The initial state is1,
where the automaton can stay until it finds a letter with an oddnumber of ones among
tracksPi with i ≤ n. On such a letter it proceeds to state3 recording this fact, and
it stays there. So far, we have assumed that the end of the emulated string has not
been reached, that is, a1 in thePn+1-track has not yet occurred. When this1 occurs,

13

the automaton proceeds to either a rejecting state2 from which it cannot escape or an
accepting state4—according to which of the two previously mentioned states it was in.
The automaton leaves accepting state4 if another occurrence of a1 happens in track
Pn+1, since that violates the constraint on$ as a first-order variable.

4

0
0
0

2

0 0 1
0 1 X
1,X,X

0 1

X
X
X

0 1
0 1
0,0

0 0 1 1
0 1 0 1
1,1,1,1

3

0 1
1 0
0,0

X
X
X0

0
1

0 1
1 X
1,1

0 0 1
0 1 X
0,0,0

Figure 2: Automaton emulating string semantics forn = 2 of parity example.

Now consider the subformula inside the quantifierex2 P in (2). It hasP as a free
variable. The translation of this formula results in a minimal automaton whose size is
exponential inn. Intuitively, this explosion stems from the need to record the status
of whether positionm is in P i, for each1 ≤ i ≤ n, wherem is the first position in
Pn+1—if this information is not recorded, then it is impossible for the automaton to
figure out the eventual truth value of theith summand. In fact, whenm ∈ P i, the truth
value of theith summand still becomes false if theP i-track contains any 1s further out
than the number designated by$, because of the last conjoint in each summand.

Moreover, it can be seen that the subset construction applied in connection with
eliminating theP -variable will yield a further exponential blow-up. Intuitively, what
happens is that the subset construction results in automaton that records the set of all
vectors seen, since it must guess the value ofm.

While we do not present a formal proof, the experimental behavior supports the
intuition just given: forn = 1, 2 and,3, the size of the automaton corresponding to
the subformulaex2 P is 21, 265, and65553, approximately222

, 223

, and224

. It is not
possible to calculate the automaton forn = 5.

Finally, we have experimentally found that forn = 2, . . . , 10 the maximum num-
ber of states occurring in any intermediate automaton is 21 or less under a normalizing
semantics (with no increase fromn = 4 to 10). These experiments are done based on
a ternary semantics (as in Section 3.1; for the usual binary semantics, the maximum
number of states will possibly be less (according to resultslater this in article.) The
automata still grow linearly in size ofn since the transitions, represented by BDDs in
the Mona tool, become more complicated. We leave it to the reader to reflect on why
the number of states is limited by a constant. 2

14

φ′′

φ′φ

Case (2)Case (1)

ψ = ex2 P i where · · · : · · ·

ρ(P i)

φ′

φ

Figure 3: The two ways forφ� φ′ to hold.

3 WS1S with relativizations

To give a deeper understanding of relativizations, we introducenutshell WS1S-R, a
variation on WS1S where relativizations are explicitly marked. Letρ be a formula that
is therestrictionof variableP i. Existential quantification will now take the form

ex2 P i where ρ : φ′, (3)

whereφ′ is the traditional part of the quantified formula. The restrictionρ can be
an arbitrary formula (as long as the main formulaφ0 remains closed). In general, we
denote byρ(P i) the formulaρ introduced by the existential quantification ofPi. For
uniformity, we assume that eachP i is relativized in this way, possibly to the formula
P i=P i, which is another way of sayingtrue . Our goal in this section is to show how a
ternary semantics allows restrictions to bubble up when needed—eliminating the need
for normalization at every intermediate step.

To carry out inductive arguments, we define the partial ordering � among subfor-
mulas as the reflexive closure of� defined as:φ�φ′ if (1) φ is a proper subformula of
φ′ or (2) if there is a formulaψ = ex2 P i where ρ(P i) : φ′′ such thatφ is a subfor-
mula ofρ(P i) andφ′ is a subformula ofφ′′. This definition is illustrated by the parse
trees in Figure 3, where the root of the subtree for Case (2) isthe node for the formula
ψ, which has two children, the left one for the restriction andthe right one for the tra-
ditional part. The partial ordering� is well-founded: a post-order labeling of nodes
with numbers0, 1, . . . produces an ordering, where all children of a node are assigned
a number less than that of the parent (making the labeling consistent with case (1)) and
where any node that is a left descendant of some node is assigned a number less than a
right descendant (making the labeling consistent with case(2)).

When we formulate semantics, variable occurrences in the traditional part of for-
mulas will be subjected to restrictions. More precisely, a variable occurrence ofP i is
directly restrainedif it is inside the traditional partφ′ of the formula (3) introducingP i

(this formula exists as a subformula of the fixed main formulaφ0, which is assumed to
be closed). For a subformulaφ of φ0, the set ofdirectly restrained variablesDRV(φ)
is the set of free variables ofφ that have a directly restrained occurrence inφ.

15

Proposition 5 For eachφ and eachP ∈ DRV(φ), ρ(P) � φ.

Proof Let P i be a variable that has a directly restrained occurrence inφ. Then,φ is
a subformula ofφ′, whereex2 P i where ρ : φ′ is the formula introducingP i with
ρ = ρ(P i). Thus,ρ = ρ(P i) � φ holds according to (2) of the definition of�. 2

The treatment of restrained variable occurrences require additional attention. Con-
sider a variableQ that is relativized to the restrictionP = Q. When a subformulaφ
mentioningQ is given meaning, we must include the requirementP = Q in order to
avoid later normalizations. But ifP itself is relativized toP = ∅ in some outer exis-
tential quantificationψ, then the restriction onP itself must be included at some point.
The situation is detailed here:

ψ = ex2 P where P = ∅ : ex2 Q where P = Q : Q = Q
︸ ︷︷ ︸

φ

(4)

In this case, we wish to enforce also implied restrictions such asQ = ∅.
To do so, we define for a formulaφ the setRV(φ) of restrained variablesto be the

restrained variablesDRV(φ) of φ together with variablesRV(ρ(P)) for P ∈ DRV(φ).
This definition makes sense, because by virtue of Proposition 5,RV(φ) can be defined
inductively on formulas ordered according to�. For example, in (4) the restrained
variables ofφ areRV(φ) = {P,Q}.

For any formulaφ, we define the induced restrictionρRV(φ) to be the set of restric-
tions of restrained variables, that is, the set{ρ(P i) | P i ∈ RV(φ)}. In the example,
ρ

RV(φ) is {P = ∅, P = Q} and the conjunction of these formulas implyQ = ∅ as
desired. By a union-wise extension ofρ

RV to an operator taking a set of formulas as an
argument, the expressionρRV(ρRV(φ)) also makes sense.

Proposition 6 (a) ρ(P) � φ holds forP ∈ RV(φ).

(b) ρ
RV(φ) ⊇ ρ

RV(ρRV(φ))

Proof

(a) By Proposition 5,ρ(P) � φ holds forP ∈ DRV(φ). ConsiderP ′ ∈ RV(ρ(P))
for someP ∈ DRV(φ). We may by induction according to� assume that
ρ(P ′) � ρ(P). Thus, by transitivity,ρ(P ′) � φ holds.

(b) We need only to prove thatRV(φ) ⊇ RV(ρ(P i)) holds forP i ∈ RV(φ). But this
is a direct consequence of the definition of the restrained variables of a formula.

2

16

3.1 From binary to ternary semantics

Classic semantics There is an obvious way to define the semantics of Nutshell WS1S-
R. We will state them using a meaning function[[·]]C , which given a formulaφ defines
a value[[φ]]C ∈ {0, 1}. This notation anticipates multi-valued semantics:

[[˜ φ′]]Cw = ¬[[φ′]]Cw

[[φ′ & φ′′]]Cw = [[φ′]]Cw ∧ [[φ′′]]Cw

[[ex2 P i where ρ : φ′]]Cw =







1 if ∃M : [[φ′]]Cw[P i 7→M] = 1

and[[ρ]]Cw[P i 7→M] = 1

0 if ∀M : [[φ′]]Cw[P i 7→M] = 0

or [[ρ]]Cw[P i 7→M] = 0

[[P i sub P j]]Cw =

{

1 if w � P i sub P j

0 if w 2 P i sub P j

(Again, we have included only one kind of atomic formula; theothers also follow their
logical semantics.) Of course, we have the following correspondence between WS1S
and WS1S-R.

Proposition 7 Assume that for a formulaφ in Nutshell WS1S-R, we denote bŷφ the
formula obtained by convertingex2 P i where ρ : φ′ into ex2 P i : ρ &φ′. Then,w �
φ̂ holds if and only if[[φ]]Cw = 1 holds.

Since the classic semantics behave like expected, we also write w � φ for WS1S-R
formulas that satisfy[[φ]]Cw = 1.

Conjunctively normalized semantics Recall from Section 2.3 that a conjunctive se-
mantics solve the problem of spurious behavior of automata-based semantics. We de-
fine the semantics formally below, where we use the notation[[ρRV(P i sub P j)]]Nw =
1 to denote that for eachρ ∈ ρ

RV(P i sub P j) it holds that[[ρ]]Nw = 1.

[[˜ φ′]]Nw = ¬([[φ′]]Nw) ∧ ([[ρRV(φ′)]]Nw = 1)

[[φ′ & φ′′]]Nw = [[φ′]]Nw ∧ [[φ′′]]Nw

[[ex2 P i where ρ : φ′]]Nw =

{

1 if ∃M : [[φ′]]Nw[P i 7→M] = 1

0 if ∀M : [[φ′]]Nw[P i 7→M] = 0

[[P i sub P j]]Nw =







1 if w � P i sub P j

and[[ρRV(P i sub P j)]]Nw = 1

0 if w 2 P i sub P j

or [[ρRV(P i sub P j)]]Nw = 0

(The definition is a similar for the other atomic formulas.)

17

Following our goal of using as few normalization operationsas possible, we apply
the restrictions of free variables to atomic formulas and negations only. For conjunc-
tions, the free variables are the union of the free variablesin the contents; so, the
explicit normalization can be omitted. For existential quantification, any variable free
in the quantified formulaex2 P i where ρ : φ′ is also free inρ or in φ′. One problem
exists for the variableP i: if the restrictionρ is not satisfiable and the variableP i does
not occur inφ′, then the quantified formula unexpectedly evaluates to1. Anticipating
a similar problem for the ternary semantics, we settle on thefollowing assumption:

For all formulas of the formφ = ex2 P i where ρ : φ′ and for allw: it holds that

w � (&
P∈RV(φ)

ρ(P)) => ex2 P i : ρ

(5)

where “=>” stands for implication (by an obvious formula transformation). (Alter-
natively, we might demand that there is an occurrence ofP i in ρ for all existentially
quantified formulas.) If we letw � ρ

RV(φ) stand for the property that for allP i in
RV(φ) it holds thatw � ρ(P i), then we may state the correctness of the conjunctively
normalized semantics as follows.

Proposition 8 Given assumption (5),w � φ andw � ρ
RV(φ) both hold if and only if

[[φ]]Nw = 1.

Proof The proof is by induction.
Caseφ = ˜ φ′. We observe thatRV(φ) = RV(φ′). Then,[[˜ φ′]]Nw = 1 if and only

if [[φ′]]Nw = 0 and[[ρRV(φ)]]Nw = 0 if and only if (by applying induction hypothesis
twice) (w 2 φ′ orw 2 ρ

RV(φ)) andw � ρ
RV(φ) if and only ifw 2 φ′ andw � ρ

RV(φ)
if and only ifw � φ andw � ρ

RV(φ).
Caseφ = φ′ & φ′′. We observe thatRV(φ) = RV(φ′) ∪ RV(φ′′) holds and that

w � ρ
RV(φ) holds if and only if bothw � ρ

RV(φ′) andw � ρ
RV(φ′′) hold. Then,

[[φ]]Nw = 1 if and only if [[φ′]]Nw = 1 and[[φ′′]]Nw = 1 if and only if (by induction)
w � φ′ andw � ρ

RV(φ′) andw � φ′′ andw � ρ
RV(φ′′) if and only ifw � φ′ &φ′′ and

w � ρ
RV(φ′ & φ′′).

Caseφ = ex2 P i where ρ : φ′.
We need to consider the two directions separately.
(⇒) Assume thatw � φ andw � ρ

RV(φ). Then, there is a setM such that
w[P i 7→ M] � φ′ andw[P i 7→ M] � ρ. But, sinceRV(φ) does not mentionP i, we
also have thatw[P i 7→ M] � ρ

RV(φ). Taken together withw[P i 7→ M] � ρ, we
infer thatw[P i 7→ M] � ρ

RV(φ′). Now, together with the factw[P i 7→ M] � φ′, we
use the induction hypothesis to establish that[[φ′]]Nw[P i 7→ M] = 1. Consequently,
[[φ]]Nw = 1.

(⇐) Intuitively, this direction is valid because an occurrence ofP i in φ′ guarantees
thatρ = ρ(P i) holds thanks to the inclusion of restrictions on variable occurrences in
atomic formulas; in the absence of such a variable occurrence, the assumption (5) can
be used to find an alternativeM that makesρ hold without affecting the truth value of
[[φ′]]N .

18

We proceed more formally. Assume that[[φ]]Nw = 1. Then, there is aM such that
[[φ′]]Nw[P i 7→ M] = 1. By inductive hypothesis, we infer thatw[P i 7→ M] � φ′ and
w[P i 7→ M] � ρ

RV(φ′). Fromw[P i 7→ M] � ρ
RV(φ′), we infer thatw � ρ

RV(φ),
sinceP i is not a free variable inρRV(φ). That leaves us with the need to prove that
w � φ holds.

Now, if P i ∈ RV(φ′) holds, thenw[P i 7→ M] � ρ holds—due tow[P i 7→ M] �
ρ

RV(φ′)—andw � φ holds.
On the other hand, ifP i is not a free variable inφ′, then we can use assumption

(5) to find anM that makesw[P i 7→ M] � ρ hold without impacting the truth of
w[P i 7→ M] � φ′. By induction hypothesis, it holds thatw[P i 7→ M] � φ′ and
w[P i 7→M] � ρ. Thus, we conclude thatw � φ.

Case[[P i sub P j]]N . [[P i sub P j]]Nw = 1 if and only if (by definition)w �
P i sub P j and[[ρRV(P i sub P j)]]Nw = 1 if and only if (by induction)w � P i sub P j

andw � ρ
RV(P i sub P j) andw � ρ

RV(ρRV(P i sub P j)) if and only if (by Proposi-
tion 6(b))w � P i sub P j andw � ρ

RV(P i sub P j). 2

The ternary semantics Let B⊥ = B ∪{⊥} be theextended Boolean domain. We use
⊥ to denote a “don’t care” situation, one where not all the restrictions hold. Boolean
operators∧3 and¬3 are defined on this domain as for the usual case with the added
rule that if any argument is⊥, then the result is⊥.

[[˜ φ′]]3w = ¬3[[φ′]]3w

[[φ′ & φ′′]]3w = [[φ′]]3w ∧3 [[φ′′]]3w

[[ex2 P i where ρ : φ′]]3w =







1 if ∃M : [[φ′]]3w[P i 7→M] = 1

0 if ∀M : [[φ′]]3w[P i 7→M] 6= 1 and

∃M : [[φ′]]3w[P i 7→M] = 0

⊥ if ∀M : [[φ′]]3w[P i 7→M] = ⊥

[[P i sub P j]]3w =







1 if w � P i sub P j

and[[ρRV(P i sub P j)]]3w = 1

0 if w 2 P i sub P j

and[[ρRV(P i sub P j)]]3w = 1

⊥ if [[ρRV(P i sub P j)]]3w 6= 1

(The definition is similar for the other atomic formulas.)
The case of existential quantification above reflects the intuition that if a witness

M exists that makesφ′ true, thenφ is true; moreover, if there is anM that makesφ′

false, and noM makesφ′ true, thenφ is false; and, finally, if all witnessesM makeφ
not satisfy the restrictionsρRV(φ′), thenw does not satisfyρRV(φ).

Something seems to be missing in these semantics: the enforcement of a relativiza-
tion. The proposition below shows that the relativization bubbles up automatically if
needed:

19

Proposition 9 Given assumption (5), the following holds.

(a) w � ρ
RV(φ) ⇔ [[φ]]3w 6= ⊥.

(b) w � φ & ρ
RV(φ) ⇔ [[φ]]3w = 1

(c) w � ˜ φ & ρ
RV(φ) ⇔ [[φ]]3w = 0

Proof (Idea) The proof is similar to that of Proposition 8 and is omitted. 2

Part (a) states that the truth of all syntactic restrictionsρ
RV(φ) is equivalent to[[φ]]3w

not being⊥.

3.2 Automata-theoretic realization of the ternary semantics

The decision procedure of Section 2.2 can be modified to reflect the ternary semantics.
First, we classify states as either1, 0, or ⊥ states; that is, we replaceQF of an

automatonA, as defined in Section 2.2, with a valuation or labeling function λ : Q →
B
⊥. For a wordu, the valuationλ(LASTA(u)) of the last state of the run overu is

the truth valuecalculatedby A overu. We denote this valueA(u), and we callA a
ternary automaton. Of course, the logic-automata connection can now be expressed:
Aφ(u) = [[φ]]3u. Ternary automata can be minimized in the same way conventional
deterministic automata are minimized with the difference that the initial state partition
is given by the at most three maximal sets on whichλ is constant.

Second, we modify the automata-theoretic constructions. For the case of conjunc-
tion, we simply change the way product states are labeled; such a state is1 if both
component states are one, it is0 if both components are0 or if one is0 and the other1,
and it is⊥ if one of the components is⊥. Negation is handled by simply switching1
states in0 states and vice versa.

Third, we must generalize the projection operators and futurization to the ternary
domain. We definePROJ3,i, BPROJ3,i, andFUT3,i:

PROJ3,iA(u) =







1 if ∃M : A(u[P i 7→M]) = 1

0 if ∃M : A(u[P i 7→M]) = 0

and∀M : A(u[P i 7→M]) 6= 1

⊥ if ∀M : A(u[P i 7→M]) = ⊥

BPROJ3,iA(u) =







1 if ∃M with maxM < |u| : A(u[P i 7→M]) = 1

0 if ∃M with maxM < |u| : A(u[P i 7→M]) = 0

and∀M with maxM < |u| : A(u[P i 7→M]) 6= 1

⊥ if ∀M with maxM < |u| : A(u[P i 7→M]) = ⊥

FUT3,iA(u) =







1 if ∃v ∈ Σi
0
∗

: A(u · v) = 1

0 if ∃v ∈ Σi
0
∗

: A(u · v) = 0

and∀v ∈ Σi
0
∗

: A(u · v) 6= 1

⊥ if ∀v ∈ Σi
0
∗

: A(u · v) = ⊥

20

Proposition 10

PROJ3,iA = BPROJ3,i(FUT3,iA)

Proof Omitted. 2

Fourth, we explain how these operators are implemented as automata algorithms.
The construction ofFUT3,iA is quite obvious: we label any state1 for which a path
along a null-but-i extension to a state labeled1 exists; among the remaining states, we
label those0 for which a null-but-i extension exists that leads to a0-labeled state in
A; and finally, those not yet labeled retain their⊥-label. In a subset implementation of
BPROJ3,i, a subset is labeled1 if it contains a state labeled1; when it contains no such
state, it is labeled0 if it contains a state labeled0; and, when all states in the subset are
labeled⊥, the subset state is also labeled⊥.

We call the resulting algorithm theternary decision procedure.

4 Ternary valuations for restricted languages

All languages considered will be regular and over the alphabetΣ = B
k. For a language

L, thecanonical right-congruence∼L is defined asu ∼L v if and only if ∀w : u ·w ∈
L ⇔ v · w ∈ L, whereu, v, w ∈ Σ∗. The set of congruence classes is denoted
Σ∗/∼L. This set can be regarded as the state set of a canonical, finite-state automaton
recognizingL.

Consider languagesL, sometimes called theproperty, andR, assumed non-empty,
called arestriction. Thus,Lφ andLρRV(φ), forρRV(φ) defined in Section 3.1, constitute
are such a pair for any subformulaφ of φ0. Theconjunctively normalized representa-
tion isL′ = L ∩R, and theconjunctively normalized congruenceis∼L∩R.

Note that Proposition 8 tells us that[[φ]]N is just the characteristic function for the
setL ∩R with L = Lφ andR = LρRV(φ).

For a stringu, an accepting extensionv is a string such thatu · v ∈ L ∩ R and a
rejecting extensionv is such thatu · v in L ∩R . Theternary valuationdetermined by
L andR is a functionχL,R(u), defined to be1 if u ∈ L ∩R, 0 if u ∈ L ∩R, and⊥ if
u /∈ R.

Note that Proposition 9 tells us that that[[φ]]3 = χL,R with L andR identified as
above.

Theternary congruence∼L,R is then defined byu ∼L,R v if for all w it holds that
χL,R(u · w) = χL,R(v · w). The equivalence classes of a ternary congruence can be
viewed as the states of a ternary automatonA. More precisely,A is (Σ, Q, q0,→, χF),
whereQ = Σ∗/∼L,R along withq0 = {u | u ∼L,R ǫ} and→ are defined as usual;
moreover,λ is defined so thatA(u) = χL,R(u) holds—this makes sense: the valuation
functionλ is constant on all strings reaching the same state. We say that A recognizes
χ. Often, we will callA theχL,R-automaton. Note that this automaton respects∼R:
for any state, there is a uniquely determined equivalence class of∼R that all strings
reaching the state belongs to. This is just another way of saying that∼L,R refines∼R.
Obviously,∼L,R also refines∼L∩R.

21

4.1 Relating the conjunctive and ternary congruences

A thin languageR is a non-empty set of strings such that

∀u, v : u 6∼R v ⇒ ∀w : u · w /∈ R ∨ v · w /∈ R (6)

In particular, it can be seen that the canonical automaton for R has exactly one accept-
ing state: just makeu be a string that reaches one accepting state,v a string that reaches
a different accepting state, andw the empty string.

Proposition 11

(a) Thefirst-order restrictionRsingleton(i) = {u ∈ (Bk)∗ | P i-tracki contains exactly
one occurrence of a1} is thin.

(b) The$-restriction

R$-restrict(i) = {u ∈ B
k | the occurrences of1 in P i-track are all in positions

no greater than that of the first occurrence of a1

in track$} ∩ Rsingleton($)

is thin.

(c) If R andR′ are thin andR ∩R′ 6= ∅, thenR ∩R′ is thin.

(d) LetR be thin, and letL be any language. Ifu ∼L∩R v andu has an accepting
extension, thenu ∼L,R v.

(e) If u andv both have no accepting extensions, thenu ∼R v⇔ u ∼L,R v.

(f) Assume thatR is thin. Then,Σ∗/∼L,R is a union of equivalence classes of
Σ∗/∼L∩R andΣ∗/∼R. More precisely, eitherΣ∗/∼L,R= Σ∗/∼L∩R holds or

Σ∗/∼L,R= (Σ∗/∼L∩R \{SL∩R}) ∪ S

holds, whereSL∩R = {u | ∀v : u · v /∈ L ∩ R} andS = {S ∈ Σ∗/∼R | ∃u ∈
S : ∀v : u · v /∈ L ∩R}.

(g) |Σ∗/∼L∩R | ≤ |Σ∗/∼L,R | ≤ |Σ∗/∼L∩R | + |Σ∗/∼R | -1.

Proof

(a) We note that there are three equivalence classes corresponding to this language:
strings containing zero occurrences, exactly one occurrence, or two or more oc-
currences of a 1 in theP i-track. Consideru andv such thatu 6∼R v. Letw be
any string, and assume thatu · w ∈ R. Thenu contains at most one occurrence
of a 1 in theP i-track. We must prove thatv · w /∈ R. Case(1): u contains no
1s in theP i-track. Then by assumption thatu · w ∈ R, w contains exactly one
occurrence of 1 in theP i-track. But, by assumption thatu 6∼R v, v contains
either one 1 or two or more 1s. In all cases,v · w /∈ R. Case(2): u contains
exactly one occurrence of a 1. Thenw contains no occurrences andv contains
zero or two or more occurrences. Thus, again it will hold thatv · w /∈ R.

22

(b) The proof is similar to the previous case. Also, it can be seen that the intersection
with the singleton language is necessary for thinness.

(c) Consideru andv such thatu 6∼R∩R′ v. Then, eitheru 6∼R v or u 6∼R′ v.
Assume the former and thatu · w ∈ R ∩R′. Then,v · w /∈ R thanks toR being
thin, and thusu · w /∈ R ∩R′.

(d) Letw be the accepting extension ofu. Fromu ∼L∩R v, we infer thatv · w ∈
L ∩ R. Assume for a contradiction thatu 6∼R v. Combined with the thinness
of R, and the fact thatu · w ∈ R, we would conclude thatv · w /∈ R. This
contradicts thatv · w ∈ L ∩ R. Thus, it must hold thatu ∼R v. It follows from
elementary considerations thatu ∼L∩R v andu ∼R v implies thatu ∼L,R v.

(e) Assume thatu andv both have no accepting extensions and thatu ∼R v. Letw
be any string. Then,u · w andv · w are both inR or none is. In the second case,
χL,R(u ·w) = χL,R(v ·w) = ⊥. In the first case, it follows from the assumption
thatu andv both have no accepting extensions thatχL,R(u ·w) = χL,R(v ·w) =
0.

(f) If SL∩R is empty, then all stringsu have an accepting extension. Then it follows
by (d) thatΣ∗/∼L∩R andΣ∗/∼L,R are identical. Otherwise, whenSL∩R is
nonempty, it follows again by 4. that equivalence classes of∼L∩R and∼L,R for
strings that have accepting extensions coincide. Strings that do not have such
extensions fall into equivalence classes of∼R according to (e).

(g) This follows from (f).

2

From this proposition, it follows easily that for anyφ the regular language representing
the conjunction of the restrictions inρRV(φ) is thin if variables are subjected to only
first-order relativizations or to$-relativizations (or to both). The proposition also tells
us thatΣ∗/∼L,R is pieced together fromΣ∗/∼L∩R plus a subset ofΣ∗/∼R.

4.2 The ternary decision procedure compared

Theorem 1 Assume that all restrictions are thin languages and that their automata
have at mostN states. Then, the size of each intermediate, minimized automaton (rep-
resenting some subformula) in the ternary decision procedure is the same, to within an
additive constant ofN − 1, as the size of corresponding automaton under the conjunc-
tive semantics.

Proof This follows from (g) of the previous proposition. 2

This result is the justification for the practical use of the ternary semantics since
usually the number of first-order variables in simultaneoususe is quite small. But note
that the size of the additive constant is exponential in the number of free first-order
variables. Also, thanks to Proposition 11(f), we see that the automata of the ternary

23

approach are, apart from theΣ∗/∼R parts, the same as those that occur when the
automaton of every subformula is normalized conjunctively.

5 The sexpartite approach

We show next how to get rid of the assumption in Theorem 1 that the automata of the
restrictions are bounded in size. We do so by re-introducinga normalization step at
the usual place of the relativization where the variable is introduced by a quantifier.
This will allow us to prune away states from the automaton representing the ternary
semantics. We want to get rid of all states following a state if all these states have the
same membership status with respect toL whenever they are inR.

5.1 Interesting strings, approximations, and sexpartification

To proceed more rigorously, we define a stringu to be interesting(for L andR) if
it has (a) some accepting extension and (b) some rejecting extension. Also, a“don’t
care” extension is one that makes a string fall outsideR. Note that all prefixes of an
interesting string are also interesting. In other words, anuninteresting string cannot be
extended so as to become interesting. Note also that ifu ∼L∩R v andu is interesting
then v is also interesting. Define the Boolean valuationιL,R(u) so that it denotes
whether a stringu is interesting. For an uninteresting string, letCUT(u) be the shortest
uninteresting prefix ofu. TheapproximationαL,R(u) of an uninterestingu is defined
by

α(u) =







1 if CUT(u) has an accepting extension

0 if CUT(u) has a rejecting extension

⊥ if all extensions ofCUT(u) are “don’t care”

(7)

(These three cases are clearly mutually exclusive.)
Foru 6= ǫ, we defineu− to be the prefixv such thatv · a = u for somea ∈ Σ.
We note that ifCUT(u) 6= ǫ, thenCUT(u)− is interesting. Moreover, ifCUT(u) = ǫ,

thenα(u) ∈ {0, 1}, since we assume thatR 6= ∅.
When u is interesting, we desire to makeα exact so we defineαL,R(u) to be

χL,R(u). We make thesexpartite valuationχ6
L,R be the interest status together with

the approximation:χ6
L,R(u) = (ι(u), α(u)). The valuationχ6

L,R is also called thesex-
partificationof χL,R since it can be defined fromχL,R alone. Thecanonical sexpartite
congruence∼6

L,R is defined from the valuation as for the ternary case.

5.1.1 The exactness property

WhenL andR are clear from the context, we often omit them as subscripts.The
uninteresting equivalence classes ofΣ∗/∼6 are just that: ifu is uninteresting, with
(ι(u), α(u)) = (0, X), then for any extensionv, (ι(u), α(v)) = (0, X). Thus, the only
transition inΣ∗/ ∼6 from an uninteresting equivalence class is to itself. Moreover,
there are at most three such classes.

24

The approximationα(u) satisfies the following properties: ifu is interesting or
χ(u) is not⊥, thenα(u) = χ(u) holds; otherwise, ifu is uninteresting andχ(u) is
⊥, thenα(u) may take on any value in{0, 1,⊥}. The fact thatα(u) = χ(u) usually
holds—with the only possible exception being thatχ(u) is⊥ for an uninterestingu—is
called theexactness property.

We note that ifu is uninteresting andα(u) is not⊥, then it is possible, and some-
what counterintuitive, that for allv the valueχ(u · v) is⊥. Whenα(u) 6= ⊥ holds, it is
only for u = CUT(u) that an extensionv is guaranteed to exist such thatχ(u · v) 6= ⊥
holds.

5.1.2 Recoveringχ6 and χ from α

In the following, we will be concerned only with the approximation valuationα be-
cause of the following property:

Proposition 12 Letχ6 = (ι, α) be a sexpartite valuation. Then the following property
holds:

ι(u) = 1 ⇔ ∃v0, v1 : α(u · v0) = 0 ∧ α(u · v1) = 1

Thus, the approximationα alone carries all the information of the sexpartite valuation
χ6.

We may even recuperateχ fromα by using the operator×⊥ on valuations that for
a ternaryχ and a binaryρ behaves according to

(χ×⊥ ρ)(u) =

{

χ(u) if ρ(u) = 1

⊥ if ρ(u) = 0
(8)

We writeχ×⊥R to denoteχ×⊥ ρ, whereρ is the characteristic function forR. Then,
it is easy to see thatχ can be recovered fromα:

χL,R = αL,R ×⊥ R

5.2 Sexpartification algorithm

Let us consider some properties of∼L,R through a study of the automatonA recogniz-
ing it. First, we note that the notions of “interesting,” “accepting extension,” “rejecting
extension,” and “don’t care” extension apply to states ofA as well. So, we can par-
tition the states ofA into at most four sets, namely the set of interesting statesI and
three sets of non-interesting states. The non-interestingsets are:N1, which consists
of states allowing some accepting extension (but no rejecting extension);N0, which
consists of states allowing some rejecting extension (but no accepting extension), and
N⊥, which consists of states allowing only don’t care extensions. Some of these sets
may be empty; for simplicity, we assume that none is.

Second, we infer various properties from the definition ofχL,R. (1)N⊥ is a sin-
gleton set (assuming thatA is minimal). (2) The only transitions among these sets of
states are as follows:I → N0, I → N1, I → N⊥,N0 → N⊥, andN1 → N⊥, where

25

⊥

⊥ ⊥

1

⊥

1

⊥

interesting

uninteresting

0

0

N1

1

0

I

N0

N⊥

Figure 4: The transition structure ofΣ∗/∼L,R.

M → N means that there is some transition fromM toN . Thus, Figure 4 illustrates
the structure ofΣ∗/ ∼L,R.

With these observations, we can present an algorithm calledsexpartificationthat
fromA recognizingχL,R calculates an automatonSEXP(A) recognizingαL,R.

First, we construct fromA a collapsedautomatonA′ by collapsing states in the
setN0 to one state, which for simplicity we also callN0. This state is defined to
have a transition to itself on all letters; in particular, the outgoing transitions, all of
which are toN⊥, are removed. (Of course, the removal of transitions is at odds with
the traditional ways of shrinking automata.) We do the same for N1. If there are no
incoming transitions fromI to N⊥, we removeN⊥. Each of the at most three states
of the formNZ is labeledZ. Each interesting state, i.e. each state inI, keeps its label.
This completes the construction ofA′.

Second, we minimizeA′ to obtainSEXP(A). The shape of this automaton is de-
picted in Figure 5.

Proposition 13 SEXP(A) calculated through sexpartification from an automatonA
recognizingχL,R is the minimal automaton recognizingαL,R.

Proof We consider the collapsed automatonA′ since the second step does not affect
what is recognized. We consider only the case where the emptystring is interesting.
(Other cases are simpler.) It follows that the initial stateis interesting. From the def-
inition of χ6

L,R, it can be seen that the state reached inA′ over a wordu correctly
identifiesαL,R(u) as long as the run stays withinI. When a lettera is such that the
run ofA′ overu · a leavesI on the transition ona, u · a is uninteresting, and it can
be seen from the definition ofχ6

L,R that CUT(u · a) = u · a. Moreover, theNX state
reached is such thatX is the value ofαL,R(u · a). Finally, we have already argued that
the equivalence classesNX allow no outgoing transitions except to themselves. Thus,

26

I

0

⊥

⊥

1

interesting

10 N⊥

N1N0

0

uninteresting

Figure 5: The transition structure ofΣ∗/∼6
L,R.

A′ so constructed recognizesαL,R. 2

We state a set of necessary and sufficient conditions for establishing that an au-
tomatonA is a sufficiently good approximation toχL,R for establishing that its sexpar-
tification is that ofαL,R:

Proposition 14 For establishingSEXP(A) = αL,R, it is necessary and sufficient that
(i) for any interestingu, χL,R(u) = A(u) holds and (ii) for any minimal uninteresting
u, the following three conditions obtain

(N1) If LASTαL,R(u) = N1, then there is an accepting extension forA of u and no
rejecting extensions.

(N0) If LASTαL,R(u) = N0, then there is a rejecting extension forA and no accepting
extensions.

(N⊥) If LASTαL,R(u) = N⊥, then there are but don’t care extensions forA.

Proof “⇐” Condition (i) makesA behave just likeχL,R for interesting states and con-
ditions (N1), (N0), and (N⊥) ensure that uninteresting states are correctly identified.

“⇒” (i) if u is interesting, thenSEXP(A)(u) = αL,R(u) = χL,R(u), but u will
also be interesting relative to the stateLASTA(u), and sexpartification will ensure that
A(u) = SEXP(A). (ii) (N1) Assume thatLASTαL,R(u) = N1 and thatu is minimal.
Then there is av such thatχL,R(u · v) = 1. But SEXP(A)(u · v) = αL,R(u · v) = 1,
soA(u · v) is also 1. A rejecting extensionu · v, i.e. one such thatA(u · v) = 0
would also be impossible senseLAST(SEXP(A))(u) is also theN1 state. (N0) is simi-
lar to (N1). (N⊥) SinceLASTA(u) isN⊥, there can be nov such thatA(u·v) 6= ⊥. 2

An automatonA satisfying the conditions of the proposition is called asexpartite
automaton forL andR.

27

Proposition 15 (a) |Σ∗/∼6
L,R | ≤ |Σ∗/∼L,R |.

(b) ∼L,R may not refine∼6
L,R.

(c) For interesting strings,∼L,R locally refines∼6
L,R, that is, ifu is interesting, then

u ∼L,R v implies thatu ∼6
L,R v.

Proof Items (a) and (c) follow from the sexpartification construction. The property (b)
that∼6

L,R is not coarser than∼L,R can be seen by construction of aχ corresponding
to someL andR such that there is a stringu · v with u bringing theχ-automaton into
aN0-state and withv from there driving the automaton into aN⊥-state (which will
be unique). Also, there must be a stringw bringing the automaton into theN⊥-state
without passing through anyN0-state. Then,u · v ∼L,R w holds, butu · v ∼6

L,R w

does not hold, since after sexpartificationu · v leads to theN0-state, butw leads to the
N⊥-state. 2

We shall later (in Section 8.2) introduce a property ofR that strengthens (c) such that
∼L,R and∼6

L,R locally coincide.

5.3 An example

Consider the alphabetΣ = {a, b},Rc = {w | |w| = 0 mod 3}, andLc = a · a ·Σ∗ ∪
b · a · a · Σ∗. SinceRc is the set of strings whose length is0 modulo 3, it follows that
Rc is thin. The automaton recognizingLc is shown in Figure 6, along with automata
for χLC ,RC

andχ6
LC ,RC

. In figure, we have used diamond shapes for the states that are
labeled⊥. All states in the depiction ofχ6

LC ,RC
are interesting, except for the states

N0 andN1.
This example is constructed to show that after sexpartification, interesting states

may no longer respect∼R, even when the restriction is a thin language. (We have
already noted that the states ofχ respect∼R, i.e. that∼L,R refinesR.) To see this,
consider the interestingχ-automaton statesq′ andq′′, which correspond to different
∼Rc

classes. They are fused as a result of sexpartification as canbe seen in the de-
piction of theχ6

LC ,RC
-automaton. Incidentally, this automaton is isomorphic tothe

original one, except for the labeling of states. The examplethus shows how sexparti-
fication may, in lucky cases, completely undo the complication of a restriction that is
conjoined to language.

6 Conjunctions of sexpartite representations

In order to normalize restrictions toR′ ∩ R′′, it is necessary to make further assump-
tions. We say that restrictionsR′ andR′′ arecompatibleif the following holds:

∀u : (∃v′ : u · v′ ∈ R′) ∧ (∃v′′ : u · v′′ ∈ R′′) ⇒ (∃v : u · v ∈ R′ ∩R′′)

Proposition 16 Any two restrictionsR′ andR′′ that are intersections of sets of the
formRsingleton(i) andR$−restrict(i) of Proposition 11 are compatible.

Proof Left to the reader. 2

28

b

a

b

a

a

Σ

Σ

b

b

a

b

a

a

b

Σ

Σ

Σ Σ

Σ

a

b

q′′

q′

Σ

b
b

a

b

N0

N1

a

a

Σ

Σ

Figure 6: Automata forLC , χLC ,RC
, andχ6

LC ,RC
.

Becauseχ can be recovered fromα (see 5.1.2), we may easily establish thatαL,R∩R′

= SEXP(αL,R ×⊥ R×⊥ R′). But it is obvious to ask whether the product×⊥R is re-
ally necessary; intuitively, it appears to be the case that the information is already built
into αL,R. Although we will not need the result, we show that the product with the
characteristic function ofR in this identity is indeed unnecessary whenR andR′ are
compatible:

Proposition 17 If R andR′ are compatible, then

αL,R∩R′ = SEXP(αL,R ×⊥ R
′).

More generally, if we replaceαL,R with any sexpartite automatonB for L andR, then
αL,R∩R′ = SEXP(B ×⊥ R

′).

Proof We use the method of Proposition 14, whereR of the proposition isR ∩R′ and
A is αL,R ×⊥ R′. (For the more general formulation, the argument is similar, except
thatαL,R is replaced byB. The exactness property and the notion of interesting remain
the same.)
Case(i): The stringu is interesting forL andR∩R′. We must show thatχL,R∩R′(u) =
A(u). We note thatu is also interesting forL andR; so, by the exactness prop-
erty, χL,R(u) = αL,R(u) holds. By definition ofχL,R∩R′ , we haveχL,R∩R′(u) =
(χL,R ×⊥ R

′)(u) = (αL,R ×⊥ R
′)(u). Thus,χL,R∩R′(u) = A(u) holds.

Case(ii) We now assume thatu is uninteresting and thatu− is interesting.
Subcase(N1) Assume thatLASTαL,R∩R′(u) = N1.

First, we prove that there is an accepting extension inA from LASTA(u). Let v
be such thatχL,R∩R′(u · v) = 1 (such av exists becauseLASTα(u) = N1 andu is
a minimal uninteresting string). Thus,u · v ∈ R ∩ R′ holds. In particular,u · v ∈ R
holds, and by the exactness property,χL,R(u · v) = αL,R(u · v)=1 holds, whence we
infer that(αL,R ×⊥ R

′)(u · v) = 1. That is, there is an accepting extension inA.
Second, we prove that there is no rejecting extension inA from LAST(u). To do so,

we assume for contradiction that there is av such that(αL,R ×⊥ R
′)(u · v) = 0.

Now, if u ·v is interesting forL andR, thenχL,R(u ·v) = αL,R(u ·v) = 0 (because
of the exactness property and because we just assumed that(αL,R ×⊥ R′)(u · v) = 0

29

holds). Moreover, we know thatu · v ∈ R′. Thus, we also haveχL,R∩R′(u · v) = 0,
but that contradicts the assumption thatLASTαL,R∩R′(u) = N1.

So, we may assume thatu·v is uninteresting forL andR. But, sinceu is interesting
for L andR andu · v is not, there is âu such thatu · û is uninteresting,u · û is a prefix
of u · v, andu · û− is interesting. Moreover, there is âv such thatu · û · v̂ ∈ L ∩ R,
because of the minimality ofu · û as an uninteresting string and becauseαL,R(u · û) is
also0 by definition of the approximation function. (For the more general formulation,
we note thatA(u · û) may be either⊥ or 0.)

By assumption that(αL,R ×⊥ R′)(u · v) = 0, we have thatu · v ∈ R′, whence
we may findv′ such thatu · û · v′ ∈ R′. By the condition of compatibility, we find a
ṽ such thatu · û · ṽ ∈ R ∩ R′. By the exactness property applied twice, we find that
χL,R(u · û · ṽ) = 1 andχL,R∩R′(u · û · ṽ) = 0, that isu · û · ṽ is inL and is not inL.
This is a contradiction. Thus, there is no rejecting extension.
Subcase (N0)This case is similar to that of (N1).
Subcase (N⊥) Assume thatLASTαL,R∩R′(u) = N⊥. We must prove that every exten-
sion inA from LAST(u) is don’t care. So, letv be a string so thatA(u · v) 6= ⊥, say
A(u · v) = 1. Then,u · v is inR′, but if u · v ∈ R also held, then we could not have
LASTαL,R∩R′(u) = N⊥ by the exactness property; thus,u · v /∈ R holds.

By our assumptionA(u · v) = 1, we infer thatαL,R(u · v) = 1 holds, and thatu · v
is uninteresting forL andR—if u · v was interesting, thenαL,R(u · v) should be⊥ by
the exactness property, sinceu · v /∈ R holds. But, sinceu is interesting forL andR,
we may find âu such thatu · û is uninteresting,u · û− is interesting, andu · û is a prefix
of u · v. Hence,αL,R(u · û) is also1 (or, in the general case, possibly⊥) and there is a
v̂ such thatu · û · v̂ is inL∩R. Also, sinceu ·v ∈ R′, there isv′ such thatu · û ·v′ ∈ R′.
By assumption of compatibility, we can then findṽ such thatu · û · ṽ is inR ∩ R′. In
particular, sinceu · û · ṽ is inR, we have thatχL,R(u · û · ṽ) = 1 by the exactness prop-
erty. Also, by the exactness property and the assumption that LASTαL,R∩R′(u) = N⊥

we have thatχL,R∩R′(u · û · ṽ) = ⊥, which is a contradiction. 2

The condition of compatibility in Proposition 17 is necessary. To see this, consider
the languagesL,R, andR′ defined in Figure 7, where we have also shown the transition
structure of an automaton forL. Each state is labeled with1 or 0 according to whether
it accepts or not; additionally, each state is marked with the membership status of a
string reaching the state with respect toR andR′. The idea is to constructχL,R∩R′ so
that theαL,R∩R′ -automaton already ona enters theN1 state, see Figure 8. It will do so
because aftera all extensions, except the empty string, lead to states not inR ∩R′ and
becauseu itself is inL, R, andR′. Intuitively speaking, the future has been restricted
to 1 except for most places, which are outside the restriction. In contrast,αL,R “sees”
more don’t-care extensions ofu, including some that are0. Therefore,αL,R only goes
into an uninteresting state after readingaa orab. Moreover, we have arranged it so that
aaa is inR′, but not inR (otherwise,αL,R∩R′ would not enter theN1 state ona); this
is the source of the failure ofSEXP(αL,R ×⊥ R′) to become identical toαL,R∩R′ as
can be seen in Figure 9. Technically, the compatibility requirement fails for the string
aa: the empty extension brings it intoR and the extensiona brings it intoR′, but there
is no extension ofaa that brings it into both.

30

a

Σ

b

R ∩ R′

0 0

1

1

0

0

b

R ∩ R′

R ∩ R′

R ∩ R′R ∩ R′

Σ

a

a

b

R ∩ R′

Σ

L = a ∪ ab ∪ Σ∗

R = Σ∗\a3Σ∗

R′ = ǫ ∪ a ∪ bΣ∗ ∪ a3Σ∗

Figure 7: An automaton for a languageL where restrictionsR andR′ are not compat-
ible.

αL,R∩R′

1

0

0
Σ

Σ

a

b

αL,R

Σ

1

1

0

0

b

Σ

a

b

a

Figure 8: The approximation automata forL.

Proposition 18 αL′∩L′′,R = SEXP(αL′,R ∧3 αL′′,R). More generally, if we replace
αL′,R with any sexpartite automatonB′ for L′ andR andαL′′,R with any sexpartite
automatonB′′ for L′′ andR, thenαL′∩L′′,R = SEXP(B′ ∧⊥ B′′).

Proof Again, we model our proof on Proposition 14. For notational simplicity, let
α = αL′∩L′′,R, α′ = αL′,R, andα′′ = αL′′,R. We use similar conventions for the
ternary valuationsχ, χ′, andχ′′. (For the more general formulation, the argument is
similar, except thatα′ is replaced byB′ andα′′ is replaced byB′′. The exactness
property and the notion of interesting remain the same.)
Case (i)Let u be interesting. Therefore, theα′-automaton onu is not inN⊥ and the
α′′-automaton is not inN⊥. Moreover,u is interesting forL′ andR or forL′′ andR;
assume the former, without loss of generality. Then,χ′(u) = α′(u) holds. Sinceα′′

onu is not inN⊥, the following holds: ifα′′(u) is ⊥, thenu is not inR and ifα′′(u)
is not⊥, thenα′′(u) = χ′′(u); in either case, we have thatχ(u) = α′(u) ∧3 α′′(u).
Case(ii). Let u be uninteresting withu− interesting.

31

αL,R ×⊥ R′

Σ

b

0

1

0

0

b

Σ

a

Σ

a
⊥

⊥
b

a

SEXP(αL,R ×⊥ R′)

Σ
1

0

0

b

Σ
⊥

b

a

a

Figure 9: The approximation automatonαL,R ×⊥ R′ and its sexpartification.

Subcase(N1) Assume thatLASTαL,R∩R′(u) = N1. Then, there is av such thatχ(u·v)
is 1, whenceχ′(u · v) andχ′′(u · v) are also 1. By the exactness property, we infer
that α′(u · v) andα′′(u · v) also are 1. Thus, there is an accepting extension for
αL′,R ∧3 αL′′,R.

Assume now for a contradiction that there is av such that(αL′,R(u·v)∧3αL′′,R(u·
v)) = 0 holds. Thus,αL′,R(u · v) andαL′′,R(u · v) are both 0. If theα′-automaton has
entered theN0 state afteru (in the general case, read “aN0 state”) or after a longer
prefix ofu · v, then there is âu and av̂ such thatu · v̂ is a prefix ofu · v andu · v̂ · û
is in L′ ∩ R. But then,χ(u · v̂ · û) must be equal to0, which is inconsistent with the
subcase assumption thatLASTαL,R∩R′(u) = N1. So, theα′-automaton cannot enter
theN0 state afteru. Consequently, and since we still assume thatαL′,R(u ·v) = 0, the
stringu · v̂ is interesting forL′ andR and, of course by similar reasoning, forL′′ and
R. Hence, we have thatχ′(u · v) andχ′′(u · v) are both 0, but that contradicts again
the subcase assumption.
Subcase(N0) This case is similar to subcase (N1).
Subcase(N⊥) Assume thatLASTαL,R∩R′(u) = N⊥. Then, for allv, u · v is not inR,
whenceu is uninteresting forL′ andR. In other words, both theα′-automaton and the
α′′-automaton are in an uninteresting state after readingu.

Now fix v. We must prove that(αL′,R(u · v) ∧3 αL′′,R(u · v)) = ⊥. So, the only
interesting cases are that both automata entered interesting states that are notN⊥. For
example, we may assume that both entered theN1 state (in the general case, read “an
N1 state”). (The other three cases are similar.) Then, there must exist a prefixu′ of
u such thatu′ is uninteresting forL′ andR and minimal for this property. A similar
uninteresting prefixu′′ exists forL′′ andR. Without loss of generality, we may assume
thatu′ is a prefix ofu′′. We know that foru′′− there are extensions in bothL′∩L′′∩R
andL′ ∩L′′ ∩R. Moreover, foru′′ all extensions are inR or inL′ ∩L′′ ∩R and there
is an extension inR. Therefore, theα-automaton must enter theN1 state onu. That
contradicts the subcase assumption. 2

32

7 Sexpartite semantics for WS1S

We define[[φ]]6 to be the approximation functionα for the ternary valuationχ = [[φ]]3.
The challenge is to calculate the approximation function ofa composite formula from
those of its constituents. For basic formulas, the approachis evident: we define[[φ]]6

to be the automaton (or function)SEXP([[φ]]3), where we adopt the convention that
sexpartification calculates the approximation function, not the sexpartite valuation, as
explained in the remarks after Proposition 13. The other cases are treated below.

7.1 Sexpartite negation

For negationφ = ¬φ′, we define[[¬φ′]]6 = ¬3[[φ′]]6. There is an obvious automata-
theoretic algorithm for achieving this operation. It holdsfor reasons of symmetry that
if [[φ′]]6 = SEXP([[φ′]]3), then[[¬φ′]]6 = SEXP([[¬φ′]]3) = ¬3[[φ′]]6.

7.2 Sexpartite conjunction

For conjunctionφ = φ′ ∧ φ′′, the case is more complicated, since[[φ′]]3 and [[φ′′]]3

may be based on different restrictions. Assume thatR′ = LρRV(φ′), R
′′ = LρRV(φ′′),

and thatR = R′ ∩ R′′ = LρRV(φ). Moreover, defineL′ = Lφ′ , L′′ = Lφ′′ , and
L = Lφ = Lφ′ ∩ Lφ′′ .

We can express the semantics of conjunction according to:

[[φ′ ∧ φ′′]]6 = SEXP(([[φ′]]6 ∧3 [[φ′′]]6) ×⊥ ρ
RV(φ)) (9)

This is correct: if[[φ′]]6 = αL′,R′ and[[φ′′]]6 = αL′′,R′′ hold, then we have the follow-
ing identities:

SEXP(([[φ′]]6 ∧3 [[φ′′]]6) ×⊥ ρ
RV(φ))

= SEXP(([[φ′]]6 ×⊥ ρ
RV(φ′)) ∧3 ([[φ′′]]6 ×⊥ ρ

RV(φ′′)))
= SEXP((αL′,R′ ×⊥ R

′) ∧3 (αL′′,R′′ ×⊥ R
′′))

= SEXP(χL′,R′ ∧3 χL′′,R′′)
= SEXP([[φ′]]3 ∧3 [[φ′′]]3)
= SEXP([[φ]]3)
= [[φ′ ∧ φ′′]]6

7.3 Sexpartite projection

We fix an indexi as found in the existential quantificationφ = ex2 P i where ρ : φ′.
To simplify notation, we writeuM for the stringu[i 7→M].

33

Proposition 19 For a given ternary valuationχ′ = χL′,R′ , we defineχ = PROJ3,iχ′

andR = {u | χ(u) 6= ⊥}. Assume that there is someRi withR′ = R∩Ri. Moreover,
assume that for allu

u ∈ R ⇒ ∀M : uM ∈ R (10)

holds. Then these equalities between function hold:

χ = PROJ3,iχ′ = PROJ3,i(SEXPχ′ ×⊥ R
i) ×⊥ R

Proof We use the following notation:α′ = SEXPχ′,R′ = R∩Ri B′ = α′×⊥R
i, and

B = PROJ3,iB′. We must prove thatχ = B ×⊥ R.

Claim 1 The following three properties hold:

i. χ′(u) 6= ⊥ ⇒ B′(u) = χ′(u)

ii. u ∈ R ⇒ B′(u) = χ′(u)

iii. u ∈ R ⇒ B(u) = χ(u)

Proof

i. Assume thatχ′(u) 6= ⊥ holds. Then, we know by the exactness property that
α′(u) = χ′(u) holds. Moreover, from assumptionsR′ = R∩Ri andχ′(u) 6= ⊥,
we know thatu is inRi. Thus, we concludeB′(u) = (α′ ×⊥R

i)(u) = α′(u) =
χ′(u).

ii. Assume thatu is inR. If u is also inRi, thenχ′(u) 6= ⊥, and we use (i). Ifu is
not inRi, thenB′(u) = (α′ ×⊥ R

i)(u) = ⊥ = χ′(u).

iii. Assume thatu ∈ R. Consider anyM . ThenuM is in R by (10), so by (ii),
B′(uM) = χ′(uM). Thus, according to the definition of projection, we obtain
thatB(u) = χ(u).

2

From (iii) of the Claim, we infer thatχ(u) = (B×⊥R)(u), since the×⊥-product with
R takes care of the situations whenu is not inR. 2

Then, the following identity holds:

[[ex2 P i where ρ : φ′]]6 = SEXP(PROJ3,i([[φ′]]6 ×⊥ ρ) ×⊥ ρ
RV(φ)) (11)

To see the correctness of this identity, note thatR = {u | χ(u) 6= ⊥} is the set of
w such thatw � ρ

RV(φ) (by Proposition 9(a)); similarly,R′ = {u | χ′(u) 6= ⊥}
is described byρRV(φ′). Additionally,Ri can be chosen to be the set represented by
ρ. Thus,ρRV(φ′) is equivalent toρRV(φ) ∧ ρ (where for convenience we assume that
P i occurs inφ′). Thus, the identityR′ = R ∩ Ri holds. Also, the condition (10)

34

holds sinceρRV(φ) does not depend on theP i-track. Thus, from the Proposition the
following equalities obtain:

SEXP(PROJ3,i([[φ′]]6 ×⊥ ρ) ×⊥ ρ
RV(φ))

= SEXP(PROJ3,i(α′ ×⊥ Ri) ×⊥ R)
= SEXP(PROJ3,iχ′)
= SEXP([[ex2 P i where ρ : φ′]]3)
= [[ex2 P i where ρ : φ′]]6

8 The sexpartite decision procedure

Propositions 18 and 19 are not quite as appealing as we would like: both involve ex-
tensive normalization. Fortunately, for first-order and$−restrictions, we can show that
the normalizations are superfluous or can be made computationally inexpensive.

8.1 Orthogonality of conjunctions of thin languages

In the sequel, we will often see that the state of theR-automaton is implicitly de-
termined by the state of a sexpartite automaton. Sometimes,knowing the stater is
important, since a product construction with theR-automaton is to be carried out from
r. Since it is the goal to avoid the construction of the fullR-automaton, we need an
effective way of representing its states. We will take advantage of the following prop-
erty.

Proposition 20 LetR = R1 ∩ · · · ∩Rn, where eachRi is a thin language. Ifu ∼R v
and there is aw such thatu · w ∈ R, then for alli, 1 ≤ i ≤ n, it holds thatu ∼Ri

v.

Proof Assume thatu ∼R v andu ·w ∈ R hold. Moreover, for a contradiction, assume
that for somei, u 6∼Ri

v holds. By assumption thatRi is a thin language, either
u · w /∈ Ri or v · w /∈ Ri holds, whence from the factu · w ∈ Ri, we infer that
v · w /∈ Ri holds. But then, we would have thatv · w /∈ R, which contradicts the
assumptions thatu · w ∈ R andu ∼R v. 2

The proposition entails that if we know that a stateq in an automatonA determines a
stater of the automaton forR (in the sense that∀u : LASTA(u) = q ⇒ LASTR(u) =
r) andr is not the rejecting sink state, thenr is determined by the tuple of states of the
Ri-automata.

8.2 Crispness

The identification of different interesting states (after collapse and minimization) that
we saw in the example of Section 5.3 makes it difficult in general to recover the state
of theR-automaton from the sexpartification. Fortunately, this phenomenon does not
occur for the restrictions that we interested in.

Let us consider languagesL andR as expressed throughχ = χL,R. Let us say that
stringu is readily distinguishedfrom v if there is a lettera ∈ Σ such that for allw it
holds thatu · a · w /∈ R but there is aŵ such thatv · a · ŵ ∈ R. Intuitively speaking,

35

the automaton forR is in a non-accepting sink (N0 or N⊥) after readingu · a, but it
goes into a state from where it can still accept after readingv ·a. We say thatR is crisp
if for all u andv with u 6∼R v, eitheru is readily distinguished fromv or v is readily
distinguished fromu.

Crispness ofR ensures that sexpartification does not merge interesting states ofχ
that are not equivalent with respect to∼R.

Proposition 21 Assume thatR is crisp.

(a) Then,∀u, v : ιL,R(u) ∧ u ∼6
L,R v ⇒ u ∼R v holds.

(b) Moreover, ifR is also thin andu is interesting, thenu ∼L,R v ⇔ u ∼6
L,R v ⇔

u ∼L∩R v.

(c) Consider the automatonA for L ∩ R and theα-automaton representing the ap-
proximation valuation forL andR. Then there is a transition-respecting map-
ping f from the states ofA, except the rejecting sink state, to the states of the
α-automaton except for theN0 andN⊥ states. On this domain and codomain,
f is surjective.

Proof

(a) The proof is by contraposition. We assume thatι(u) andu 6∼R v. If ι(v) does
not hold, thenu 6∼6

L,R v holds, becauseι(u) holds by assumption. Thus, we may
further assume thatι(v) holds. Letq′ be the state reached in theχ-automaton
on u, and letq′′ be defined similarly forv. We may assume that it isu that is
not readily distinguished fromv according to some lettera. Then, it will be the
case that(q′, a,N⊥) and(q′′, a, q) are transitions of theχ-automaton, whereq
is different fromN⊥. Consequently, the statesq′ andq′′ are not united during
the minimization phase of sexpartification.

(b) The first bi-implication follows from (a) and Proposition 15(c). For the second
bi-implication, the direction⇒ holds becauseu · w ∈ L ∩ R if and only if
(u · w ∈ R and (u · w ∈ R impliesu · w ∈ L)) if and only if, by (a) and the
exactness property (sinceu is interesting and the antecedentu ∼6

L,R v holds),
(v · w ∈ R and (v · w ∈ R impliesv · w ∈ L)) if and only if v · w ∈ L ∩R; the
direction⇐ holds by virtue of Proposition 11(d), which relies on thinness ofR.

(c) It can be seen that the subautomaton induced by the interesting states of the
αL,R-automaton is identical, except for state labels, to a subautomaton ofA. (A
subautomaton maybe incomplete: for some states and labels,no outgoing transi-
tions may be defined.) Consequently, the notion of interesting state makes sense
forA. And, we definef on the subautomaton ofA so that it maps isomorphically
to the interesting states are seenαL,R-automaton. A transition out of this set of
interesting states corresponds inαL,R to a transition to theN1,N⊥, orN0 state.
In the latter two cases, theA automaton proceeds to a rejecting sink state (this
is why f cannot map the rejecting sink state to a state of theαL,R-automaton).
In the first case, theA automaton state reached is mapped byf toN1; so is ev-
ery other state, except the rejecting sink state, that is further reachable from this
state.

36

2

Part (c) of this Proposition is a key property: it tells us that the automaton of the
conjunctive representation is the same as the automaton of the sexpartite representation
except that the latter represents by at most three states theuninteresting states.

Proposition 22 Any languageR ⊆ Σk that is the conjunction ofR$−restrict(i) for i < k

andRsingleton(i) for i ∈ S, whereS ⊆ {0, . . . , k − 1} and where theP k-track is used
to encode the variable$, is crisp.

Proof We proceed somewhat informally by directly studying the automatonA for R.
In particular, we fixk = 3 and we assume thatS = {1, 2}. The automatonA is shown
in Figure 10. We note that it has an accepting state, reached only after the first1 in the
$-track has occurred and after each of the first-order variable tracks have seen exactly
one occurrence of a1. It also has a rejecting sink. The remaining22 states keep track
of which 1s have occurred for first-order tracks. All states except thesink state has a
transition to the sink state in addition to a transition to a non-sink state. 2

0

@

X

X

X

1

A

0

@

0

1

0

1

A

0

@

0

0

1

1

A

0

@

0

0

0

1

A

0

@

0

0

0

1

A

0

@

0

0

0

1

A

0

@

1

0

0

1

A

0

@

0

1

0

1

A

0

@

X

1

X

1

A

0

@

1

X

X

1

A

0

@

X

X

0

1

A

0

@

X

X

1

1

A

0

@

X

1

X

1

A

0

@

1

0

0

1

A

0

@

1

X

X

1

A

0

@

X

1

X

1

A

0

@

X

X

1

1

A

0

@

X

X

1

1

A

0

@

1

X

X

1

A

0

@

0

0

0

1

A

0

@

0

0

0

1

A

Figure 10: The automaton for first-order and$-restrictions onP 1 andP 2.

The two preceding propositions tell us that the sexpartite representation of M2L(Str)
subformulas in an WS1S encoding is identical to the ternary representation, except for
the collapsing ofNZ states in the ternary automaton. In particular, each interesting
state specifies the state of each restriction automaton. This fact will help us formulate
algorithms for conjunction and projection that avoid most explicit normalization.

37

8.3 Algorithm for conjunction

Given automata forα′ = αL′,R′ andα′′ = αL′′,R′′ , which are approximations based
on crisp, thin, and compatibleR′ andR′′, a product automatonB = (Σ, Q, q0,→, λ)
recognizingαL′∩L′′,R′∩R′′ can be constructed as follows. We assume that theα′-
automaton is(Σ, Q′, q′0,→

′, λ′) and theα′′-automaton is(Σ, Q′′, q′′0 ,→
′′, λ′′). The

languageR′ is represented by an automaton(Σ, QR′ , q0R′ ,→R′ , QF
R′) andR′′ is rep-

resented by an automaton(Σ, QR′′ , q0R′′ ,→R′′ , QF
R′′). The state of theR′-automaton

that is a rejecting sink is denotedr′rej(it exists by the assumption thatR′ is crisp); the
stater′′rej of theR′′-automaton is defined similarly.

By the above assumptions and Proposition 22(b), any interesting stateq′ of theα′-
automaton determines a stater′ of theR′-automaton; a similar observation holds for
theα′′-automaton. We now let

Q = Q′ ×Q′′ ∪ Q′ ×QR′′ ∪ QR′is×Q′′ ∪ {N1, N0, N⊥}.

Assuming again that the initial states are interesting (to avoid various special cases),
we letq0 = (q′0, q

′′
0). To define the transition relation→ ofB, we introduce the relation

a

′ onQ′ ∪ (QR′′\{r′′rej}) ∪ {N0, N⊥} defined according to:

q′
a

′ q̂′ if (q′, a, q̂) ∈→′ andq̂′ is interesting
q′

a

′ r̂′ if (q′, a, q̂) ∈→′, q̂′ is theN1-state, and̂r′ is determined bŷq′

q′
a

′N⊥ if (q′, a, q̂) ∈→′ andq̂′ is theN⊥-state
q′

a

′N0 if (q′, a, q̂) ∈→′ andq̂′ is theN0-state
r′

a

′ r̂′ if (r′, a, r̂′) ∈→R′ andr̂′ 6= r′rej
r′

a

′N⊥ if (r′, a, r̂′) ∈→R′ andr̂′ = r′rej

Note that in the second line abover̂′ is notr′rej becausêq′ is theN1-state (and̂q′ thus
determines a state of theR′-automaton that is notr′rej). The transition relation

a

′′ on
Q′′ ∪ (QR′\{r′′rej}) ∪ {N0, N⊥} is defined similarly.

Now, define→ of the automatonB to consist of the following transitions for a
lettera, wheres′

a

′ ŝ′ ands′′
a

′′ ŝ′′:

((s′, s′′), a, (ŝ′, ŝ′′)) if s′, s′′ /∈ {N0, N⊥} and (s′ ∈ Q′ or s′′ ∈ Q′′)
((s′, s′′), a,N⊥) if ŝ′ = N⊥ or ŝ′′ = N⊥

((s′, s′′), a,N1) if s′ ∈ QR′ ands′′ ∈ QR′′

((s′, s′′), a,N0) if (ŝ′ = N0 andŝ′′ 6= N⊥) or (ŝ′′ = N0 andŝ′ 6= N⊥)

Here,N0, N1, andN⊥ are sink states, for whichλ takes on the value0, 1, and⊥,
respectively. For states of the form(q′, q′′), we defineλ((q′, q′′)) = λ′(q′) ∧3 λ′′(q′′).
For states of the form(q′, r′′), we defineλ((q′, r′′)) = λ′(q′), if r′′ ∈ QF

R′′ , and
λ((q′, r′′)) = ⊥, if r′′ /∈ QF

R′′ . As in the usual algorithmic treatment of product
automata, we consider in the following only the states ofB that are reachable from the
initial state.

38

Proposition 23 The automatonB constructed above recognizesαL′∩L′′,R′∩R′′ . More-
over, there is a surjective mapping from the reachable states of the non-minimized
product automaton for(L ∩ R′) and(L′′ ∩ R′′), except for the rejecting sink state, to
the reachable states ofB (except for one state).

Proof (Idea) Using the exactness property, we see thatχL′∩L′′,R′∩R′′ = (α′∧3α′′)×⊥

(R′ ∩ R′′) = (α′ ×⊥ R′′) ∧3 (α′′ ×⊥ R′). Thus, it holds thatαL′∩L′′,R′∩R′′ =
SEXP((α′ ×⊥ R′′) ∧3 (α′′ ×⊥ R′)). Now using Proposition 17, we may evaluate
SEXP((α′ ×⊥ R

′′) ∧3 (α′′ ×⊥ R
′)) as

SEXP(SEXP(α′ ×⊥ R
′′) ∧3 SEXP(α′′ ×⊥ R

′)) (12)

To reflect the expressionSEXP(α′ ×⊥ R′′) ∧3 SEXP(α′′ ×⊥ R′) in (12), we make an
automatonC based on tuples of the form((q′, r′′), (q′′, r′)) when statesq′ and q′′

are both interesting. The statesr′ andr′′ are determined byq′ andq′′, respectively.
The assumption of compatibility ensures that if bothq′ and q′′ are interesting then
(q′, r′′) of α′ ×⊥ R′′ is also interesting. The pair(q′, r′′) can be viewed as a state of
SEXP(α′ ×⊥ R′′) because the interesting part ofα′ ×⊥ R′′ is locally isomorphic to
SEXP(α′ ×⊥ R

′′) (due to crispness and thinness and Proposition 21(b)).
But sincer′ and r′′ are determined already byq′ and q′′, respectively, we may

generate an isomorphic subautomaton for states of the form((q′, r′′), (q′′, r′)) by just
considering tuples of the form(q′, q′′). This is how the automatonB acts for interesting
states: it simulatesC. We note that during the construction of theQ′ ×Q′′-part of the
state space ofB it is possible to simultaneously keep track of the determined r′ andr′′

states—information that is needed in some cases whenq′ or q′′ turn toN1 states. We
omit a detailed discussion, but we remark that this auxiliary information is needed only
for the frontier or queue of not-yet-fully explored productstates; the information does
not need to be stored along with the states.

We are not done describing the simulation. Say that on some transition the pair
(q′, q′′) becomes(q̂′, q̂′′) with q̂′ being theN1-state and̂q′′ still interesting. The sex-
partification ofα′ ×⊥ R

′′ then yields anN1-state as well. Therefore, the automatonC
enters a state(N1, (q̂′′, r̂′)). Thus, to continue simulating theC automaton using pairs,
we let theB automaton enter the state(r̂′, q̂′′); this is explained in detail through the
rules that define its transitions. If instead a transition turns(q′, q′′) into (q̂′, q̂′′) with q̂′

being theN0-state, the the simulation of theC automaton may be stopped, since the
outer sexpartification in (12) will yield either anN0 or anN⊥ state. Other cases are
explained in a similar vein.

Finally, the surjective mapping from the product automatonof the conjunctive se-
mantics is constructed from the mappingsf ′ andf ′′ that exist according to Proposi-
tion 21(c). 2

8.4 Algorithm for projection

To formulate an algorithm for projection that largely does away with normalizations,
we substitute the identityPROJ3,iA = BPROJ3,i(FUT3,iA) of Proposition 10 in the

39

reformulation of projection in Proposition 19. Thus, our starting point is the identities

αL,R = SEXP(PROJ3,iχL′,R′)
= SEXP(PROJ3,i(αL′,R′ ×⊥ R

i) ×⊥ R)
= SEXP(BPROJ3,i(FUT3,i(αL′,R′ ×⊥ R

i)) ×⊥ R)

where we use the notations of Proposition 19. The challenge is to construct a subset
automatonE recognizingBPROJ3,i(FUT3,i(αL′,R′ ×⊥ Ri)) and to avoid the subse-
quent product×⊥R. To do so we focus on representingαL′,R′ ×⊥ Ri as an equiva-
lent automatonD. We note that each interesting stateq of theα′-automaton (where
α′ = αL′,R′) determines a stateri of Ri. So, in analogy with the construction of the
automaton for conjunction, we may omit inD the explicit construction of pairs cor-
responding toαL′,R′ ×⊥ Ri. And, when theαL′,R′ -automaton exits to anN1-state,
the automatonD simulatesRi whose rejecting states are then relabeled⊥. A state
from this copy ofRi is denotedri

+. Similarly, when theαL′,R′ -automaton exits to
anN0-state,D also simulatesRi, but the accepting states are now labeled0 and the
rejecting states are labeled⊥. A state from this copy ofRi is denotedri

−. When
αL′,R′-automaton exits toN⊥, D also enters aN⊥-state. To avoid the×⊥R product,
we note that any subset ofD containing an interesting stateq of α′-automaton deter-
mines the stater of R; also, any subset containing no interesting states can be replaced
by someNZ -state, and the×⊥R-product is again unnecessary, because of the outer
sexpartification. Thus, the effect of the×⊥R-product can be effectuated by a simulta-
neous traversal of the subset automaton and the automatonR, where subset states not
satisfyingR are labeled⊥. We also note that if a subset contains say bothN0 andN⊥

thenN⊥ can be removed without changing the accepted language; moregenerally, we
may prune all subsets states so that they contain at most one non-interesting state.

Proposition 24 Given the assumptions of Proposition 19 and the further assumption
that restrictions are crisp and thin and that the automatonE described above recognizes
SEXP(PROJ3,iχL′,R′).

Moreover, the number of states ofE is at mostN · 2|Ri|+1, whereN is the number
of subset states encountered when determinizingBPROJi(FUT3,iF), whereF recog-
nizesL′ ∩R′.

Proof (Idea) We have already outlined the reasons why the above construction is cor-
rect. As regards the size ofE, we study the partial mappingf from states of the
automatonF recognizingL′ ∩ R′ to states of theα′-automaton that exists according
to Proposition 21(c). We note that this mapping is undefined only for the rejecting
sink stateqrej of F , since there are two corresponding states,N0 andN⊥, in theα′-
automaton.

We may define a mappingg that maps statesq of F to subsets ofC defined as
follows: if q is interesting then letg(q) = {q′}; if q is not interesting, but allows
an accepting extension, then letri be the state of theRi-automaton determined (by
Proposition 11(d) and Proposition 20) and letg(q) = {ri

+}; and if q is qrej, then
g(q) = {N⊥, N0} ∪ {ri

−) | ri 6= rrej}. Then, for any stringu, the subsetN of states
of E reachable onu is related to the subsetM of reachable states ofFUT3,iF onu:

N = ∪q∈Mσ(q)

40

for some functionσ that selects a nonempty subset ofg(q), whereq ∈ M . The nu-
meric bound of the proposition follows from combinatorial properties ofg: only oneq
is mapped to a non-singleton set and that set has|Ri| + 1 members. 2

8.5 The sexpartite decision procedure compared

Theorem 2 For first-order and$-restrictions, WS1S can be decided in a way such that

(a) The sizes of the intermediate automata occurring duringthe sexpartite decision
procedure are at most those of the conjunctively normalizedsemantics, except
for the subset construction (and before minimization), where the automata of
the sexpartite decision may be up to 32 times bigger. These bounds ignore an
additive constant of1.

(b) The conjunctively normalized automata may be exponentially bigger than the
sexpartite automata.

Proof

(a) That the property holds for minimized automata follows from Proposition 21(b).
The bounds on the number of states come from Proposition 23 and Proposi-
tion 24, where we have used the fact that the biggestRi-automata stem from a
simultaneous$-restriction and a first-order restriction, which yield an automaton
with 4 states. Thus, the factor of Proposition 24 is24+1 = 32.

(b) It suffices to consider a subformula of the formφ1st−vars = ((· · · (p1 = p1

& · · ·)& pj = pj), where eachpi is a first-order variable. The sexpartite automa-
ton has one state, namely anN1 state, whereas the automaton for the conjunc-
tively normalized semantics has2j +2 states. To see this, forj = 2, contemplate
the automaton of Figure 10, which is identical to the automaton obtained under
the conjunctively normalized semantics and which has22 + 2 = 6 states. The
sexpartification for this formula operates on the same automaton except that the
5 rejecting states are turned into⊥-states. Consequently, a singleN1 state arises
from the collapse.

2

9 In practice

We showed experimental evidence in [8] that WS1S could be as fast a way to decide
string-theoretic problems as M2L(Str) but only after sometimes solving by hand state
explosion problems like the one discussed in Section 2.4.

Since June 1998, the Mona tool has been based on the ternary semantics for WS1S,
and our state explosion problems stemming from running M2L(Str) formulas through

41

WS1S have disappeared. Moreover, with a default relativization mechanism that we
have added to Mona, M2L(Str) formulas can be directly embedded in WS1S. The run-
ning times under these semantics is in all non-contrived cases the same (to within 5%
or so) as for the ad hoc semantics we used before. (In practice, we used first-order
relativizations that are not thin languages, but which enjoy similar properties.) Thus,
we can state that also from a practical point of view the techniques presented here solve
both the translation problem and the first-order semantics problem. We have not yet
implemented the sexpartite semantics.

Future work should look at factorization techniques that would be more generally
applicable. Consider for example the formulaP = Q & φ1st−vars, whereφ1st−vars

simply introduces a numberj of first-order variables (as described in the proof of The-
orem 2). This formula produces automata with a number of states exponential inj,
even under sexpartification.

Also the sexpartite semantics should be investigated in practice; the factor 32 blow-
up of subset automata before minimization may turn out to be atheoretical limit that
is never encountered in practice—perhaps, a tighter analysis will show that it is too
pessimistic.

Acknowledgements Anders Møller implemented the ideas presented here and contributed
many useful insights. Jacob Elgaard found exploding Mona code from which the parity example
was derived. Ken McMillan kindly discussed relativizationissues with me. I thank the referees
for their many positive and detailed encouragements to complete the job. Glenn Bruns asked
pointed questions that led to many improvements. The patience of the editor, Olivier Danvy, is
also kindly acknowledged.

References
[1] A. Ayari and D.A. Basin. Bounded model construction for monadic second-order logics.

In Computer Aided Verification, pages 99–112, 2000.

[2] D. Basin and N. Klarlund. Automata based symbolic reasoning in hardware verification.
Formal Methods in System Design, pages 255–288, 1998. Extended version of “Hardware
verification using monadic second-order logic,”Computer aided verification : 7th Interna-
tional Conference, CAV ’95,LNCS 939, 1995.

[3] J. Bell and M. Machover.A Course in Mathematical Logic. North-Holland, 1977.

[4] R. E. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams.
ACM Computing surveys, 24(3):293–318, September 1992.

[5] J.R. Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik Grundl.
Math., 6:66–92, 1960.

[6] C.C. Elgot. Decision problems of finite automata design and related arithmetics.Trans.
Amer. Math. Soc., 98:21–52, 1961.

[7] J.G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B.Paige, T. Rauhe, and A. Sand-
holm. Mona: Monadic second-order logic in practice. InTools and Algorithms for the
Construction and Analysis of Systems, First InternationalWorkshop, TACAS ’95, LNCS
1019, 1996.

[8] A. Møller J. Elgaard, N. Klarlund. Mona 1.x: new techniques for WS1S and WS2S. In
Computer Aided Verification, CAV ’98, Proceedings, volume 1427 ofLNCS. Springer Ver-
lag, 1998.

42

[9] P. Kelb, T. Margaria, M. Mendler, and C. Gsottberger. Mosel: a flexible toolset for Monadic
Second-order Logic. InComputer Aided Verification, CAV ’97, Proceedings, LNCS 1217,
1997.

[10] N. Klarlund. Mona & Fido: the logic-automaton connection in practice. InCSL ’97
Proceedings. LNCS 1414, Springer-Verlag, 1998.

[11] N. Klarlund and A. Møller. MONA Version 1.3 User Manual. BRICS, 1998. URL:
http://www.brics.dk/mona .

[12] Nils Klarlund, Anders Moller, and Michael I. Schwartzbach. MONA implementation se-
crets.International Journal of Foundations of Computer Science, 13(4):571–586, 2002.

[13] A. Møller and M. Schwartzbach. The Pointer Assertion Logic Engine. InProceedings of
ACM SIGPLAN Conference of Programming Language Design and Implementation, 2001.

[14] M. Smith and N. Klarlund. Verification of a sliding window protocol using IOA and
MONA. In FORTE/PSTV 2000: IFIP TC6 WG6.1 Joint International Conference on
Formal Description Techniques for Distributed Systems andCommunication Protocols
(FORTE XIII), and Protocol Specification, Testing, and Verification (PSTV XX), pages 19–
34. Kluwer Academic Publishers, 2000.

[15] H. Straubing.Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, 1994.

[16] W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, chapter Languages, automata, and logic. Springer Verlag,
1997.

[17] B.A. Trakhtenbrot. Finite automata and the logic of one-place predicates.Sib. Math. J,
3:103–131, 1962. In Russian. English translation:AMS Transl., 59 (1966), pp. 23-55.

[18] N. Vaillette. Logical specification of finite-state transductions for NLP.Natural Language
Engineering, 9(1), 2003.

43

