Relativizations for the
logic-automata connection

Nils Klarlund
Bell Labs, Lucent Technologies

Dedicated to the memory of Bob Paige
and his contributions to automata algorithms

September 21, 2004

Abstract

BDDs and their algorithms implement a decision procedureQoantified
Propositional Logic. BDDs are a kind of acyclic automata. t Barestricted
automata (recognizing unbounded strings of bit vectors) lma used to decide
monadic second-order logics, which are more expressivémePexamples are
WS1S, a number-theoretic logic, or the string-based ldgiotation of introduc-
tory texts. One problem is that it is not clear which one isémbeferred in prac-
tice. For example, it is not known whether these two logies @mputationally
equivalent to within a linear factor, that is, whether a fatay of one logic can
be transformed to a formuld’ of the other such that’ is true if and only if¢ is
and such thap’ is decided in time linear in that of the time for

Another problem is that first-order variables in either i@rsre given automata-
theoretic semantics according to relativizations, whighgyntactic means of re-
stricting the domain of quantification of a variable. Suclatieizations lead to
technical arbitrations that may involve normalizing eagbfermula in an asym-
metric manner or may introduce spurious state space erpksi

In this paper, we investigate these problems through studfieongruences
on strings. This algebraic framework is adapted to languhgeretic relativiza-
tions, where regular languages are intersected with céistis. The restrictions
are also regular languages. We introduce ternary and dégpararacterizations
of relativized regular languages. From properties of tiseltang congruences, we
are able to carry out detailed state space analyses that adldo address the two
problems.

We report briefly on practical experiments that support esults. We con-
clude that WS1S with first-order variables can be robustlglémented in a way
that efficiently subsumes string-based notations.

*Some of the material in this paper appearedComputer Aided Verification, CAV '92NCS 1633,
1999, under the title “A theory of restrictions for logicsdaautomata.” This work was carried out while
the author was with AT&T Labs—Research; it was also supgdrtgart by grant CCR-0341658 from the
National Science Foundation.

1 Motivation

The relationship between automata and logic has been vegessfully exploited
through Binary Decision Diagrams[4]. This technique akofermulas of proposi-
tional logic to be decided through the use of automata reptations for sets of strings
of bounded length. But, a more genel@jic-automataconnection exists: Buchi[5],
Elgot[6], and Trakhtenbrot[17] argued fourty years aga thdogical notation, now
called the Weak Second-order theory of 1 Successor or WSdildwe a more natural
alternative to what already was known as regular expressiW$1S has an extremely
simple syntax and semantics: it is a variation of predicaggcl with first-order vari-
ables that denote natural numbers and second-order \esitifdlt denote finite sets of
natural numbers; it has a single function symbol, which desithe successor function,
and has usual binary operators suchkdas-, € andD.

Buchi, Elgot, and Trakhtenbrot showed that a decision gaace exists for this
logic. The idea is to view interpretations as finite stringgrobit vectors and then
to show by explicit constructions of automata that the sesatisfying interpretations
for any subformula is a regular language. In this way, anraaton becomes an ob-
ject that represents the logical semantics of a subfornaud,it makes sense to talk
about automata-theoretic semantics, which charactettiieesomputational approach
to the logic. As with Binary Decision Diagrams, the idea Ipehthe decision proce-
dure is to construct inductively a deterministic automdtmmeach subformula. This
method, which we shall review in detail, handles each cotiveen the logic through
an automata-theoretic operation, such as product or sabastruction. Talecidea
sentence is then under this view the process of buildinguken@aton inductively.

A main motivation of this article is to make the decision mdare feasible in prac-
tice. Since 1994, we have explored the practicality of tlygd@utomata connection in
the Monaproject, first described in [7]. The Mona tool has been usea feariety of
tasks, for example in linguistics[18], pointer verificatj@3], protocol verification[14],
and hardware verification[2]. Among other implementatibaltenges[12], we discov-
ered spurious state space explosions in intermediate atdorS8ometimes, we would
be prevented from solving even trivial problems due to phegra that we will uncover
and overcome in the present article.

1.1 The two approaches to a logic of one successor

The problems we encountered are in part linked to the exdstehtwo formulations
of monadic second-order logic of one successor. Using the syntax, the two ap-
proaches depend on different structures and differentistcsa

The logic WS1S, the first approach, is a very natural notafiam example, a sen-
tence in WS1S is either true or false and a formula vitfree first-order variables
defines a relation that is simply a subselNdf whereN is the set of non-negative inte-
gers. Thus, we call this approach to the logic-automata ectmmnumber-theoretic
The automaton for a sentence is a simple one: it has one Staiaimized)! If it is
accepting, the formula is true; if rejecting, the formuléalse.

The second approach, the one emphasized in presentatidins lofgic-automata
connection (such as in [15, 16]) is more complicated to expd least when it comes

to the semantics, which is tied to a parameterized, finitbounded domain repre-
sented by a number > 0. This number defines a sf, ...,n — 1} of positions All
second-order terms are interpreted as subs€is,of ., » — 1} and all first-order terms
are interpreted as numbers{0,...,n — 1}. Under this view, the truth status of a
sentence depends an The successor function denoted by the tprml is interpreted
as ordinary addition exceptjfis n — 1; in that case, we may choose—arbitrarily—to
define the meaning gf + 1 to bep.

For example, a sentence may be defined that is true if and bnlysieven; intu-
itively, the sentence expresses:

o there a seP that is maximal (not properly contained in any other set);

e thereis a seP’ (which is a subset aP sinceP is maximal) of the even positions
in P (which can be expressed: € P’ and for anyp eitherp +1 = p or
p+1€ P < pe P);and

e the maximal element aP is in P’.

More generally, a formula wittk free first-order variables defines a parameterized
family of finite relations, where theth relation is a subset d0, ... ,n — 1}*.

We call this second approadiring-theoreti¢c because the semantics can be ex-
plained advantageously in terms of strings. The ideas ohthemata-theoretic deci-
sion procedure of WS1S still apply; in fact, the algorithnatmes simpler, which is the
reason why this approach is often preferred in introdustiorthe logic-automata con-
nection. The string-theoretic approach is also intrinsiappealing for certain appli-
cations, for example in the description and verification afgmeterized hardware[2].
Among other names, these logics have been called MSO(S)E®M[+][15], and
M2L(Str)[7, 9]. They vary slightly, but we will identify thm as M2L(Str) in this pa-
per.

1.2 Comparison and the translation problem

There are two reasons for preferring the number-theorpficaach. First, its logical
semantics is simpler as just argued—it can be explaineddplpeavith little mathemat-
ical background. Second, WS1S appears to be the strongeimape following sense:
there is apparently no known polynomial time reductjofiom sentences interpreted
under the WS1S view to sentences interpreted under the M8w such thaf (¢)
is true for alln if and only if ¢ is true. In contrast, there is a rather obvious, linear trans
lation in the other direction: given a sentengcander the string-view, we turn it into a
formula¢’ with one free variabl@ such thaty holds forn if and only if ¢’ holds under
the interpretatior$ — n. Specifically,¢’ is obtained fromp by restricting quantified
variables to the domaifn, ..., $ — 1}. Syntactically, the restriction t0,...,$ — 1}
for a variable can be expressed as a formula that is conjdmélte formula of the
existential quantifier introducing it. Such syntactic douasts are well-known in logic;
they are calledelativizations see[3]. We call the formul@’ aWS1S representatiaf
the M2L(Str) formulag.

A main focus of the present work is to show how relativizasican be guaranteed
to work in practice. In fact, even though the syntactic ttatien is linear, there is no

guarantee that the computations involved in calculatiegiiitomaton fog’ (under the
WS1S view) are not asymptotically more involved than theselved in¢ (under the
M2L(Str) view).

Indeed, during early experiments with this procedure, sablem was that seem-
ingly innocuous formulas would yield enormous automatarattie conversion into
WS1S. So, we say that agfficient translation algorithnis one that in linear time
transforms any sentengen M2L(Str) to a representatiopf such thaty’ is decided in
time that is linear in the time to decide Let us call the question of finding such an
algorithm thetranslation problem.

1.3 Handling of first-order variables

Another computational problem we encountered with monadwond-order logics
stems from the way that first-order variables and terms anelled. Through for-
mula rewritings, they are transformed into second-ordeaftes. The second-order
variables are subjected to relativizations that resthietr to singleton sets. Conse-
quently, automata corresponding to subformulas are ngtlgidetermined by the log-
ical semantics, but also according to how relativizatiomsfarmulated. So, to make
automata for formulas canonically determined, extra aatarproduct operations are
used toconjunctively normalizehese intermediate automata as we shall see. (The
canonicity of representations is essential to the succkasitomata-based methods
such as BDDs—it guarantees that intermediate results &egyalpruned to their min-
imum size.) Thdirst-order semantics probleis to find an automaton representation
that is no bigger than the conjunctively normalized repméestéon, while not requir-
ing such explicit normalization steps. This is importanpiactice, since we want to
minimize the amount of computational work.

We note that there are other ways of deciding WS1S, for exauthpbugh Ehren-
feucht-Fraissé games[15] or through bounded-model tgqaks[1].

1.4 Contributions of this paper

In this paper, we propose solutions to the translation gmobdnd the first-order se-
mantics problem. We do so by studying relativizations in lgelaraic framework. We
proceed as follows.

We formulate a syntax for WS1S, where relativizations arderexplicit, and we
provide initially three different automata-theoretic setics: (1) thead hocsemantics
that corresponds to the strategy we first used in the Monaeimghtation for first-
order variables, (2) theonjunctively normalized semantjeghereall the intermediate
automata are conjoined with relativizations, and (3) tdr@ary semantigswhich is
based on valuations that identify the membership stdtws () for each string in the
restriction and assignsg to each string not in the restriction. We explain why the
ad hoc semantics is unsuitable, and why the conjunctivetynatized semantics, in
addition to being asymmetric, would slow down the decisiozcpdure. We show that
the ternary semantics makes most normalizations unnagesgece they inherently
propagate through the automata-theoretic constructiéiiso, we indicate how the
ternary semantics can be implemented based on the stan@&i8 @écision procedure.

To study the question of automata sizes, we give a detailadraence-theoretic
analysis of regular languages under relativizations, ihatinder intersections with
other regular sets that act as restrictions. We introduagiamof athin language, and
we show that the relativizations occurring in the treatnwdtfirst-order variables and
in the translation problem are thin. We prove that languameier thin relativizations
make comparisons of the conjunctively normalized semaatid the ternary semantics
easy: the latter is the same as the former except for soma egtrivalence classes
that we characterize. We show that if the automata of réistnis are bounded then
the sizes of intermediate automata occurring under thatgisemantics are to within
this additive bound the same as the sizes of automata of tijeradively normalized
semantics.

We strengthen this result by exhibiting congruences basedexpartite semantics
that are no bigger than those of the conjunctively normédlgamantics. The sexpartite
valuations are based on the ternary ones, but for certaimgstthey do not yield an
exact answer to what the ternary evaluation is. We are alslede that operations cor-
responding to logical connectives may be formulated diyeat automata represent-
ing these congruences, under the further assumptioriggfnessa language-theoretic
property that the restrictions of the first-order semangicsblem and the translation
problem enjoy.

Our main result is that the resulting decision procedurdlendequiring only few
normalizations, involves intermediate automata that amaast the same in size (to
within a linear factor) as the ones occurring under the aoctjuely normalized seman-
tics, but sometimes only logarithmic in size compared tocthrgunctively normalized
semantics. Thus, we have found a symmetric and efficieneseptation of formulas
under restrictions.

We conclude that WS1S, and not a string-oriented logic, ésktbst interface to
the logic-automata connection, since in practice thegtttireoretic view is effectively
subsumed by the number-theoretic view through the teclesigeveloped in this arti-
cle.

1.5 Organization

In Section 2, we review WS1S and its decision procedure. \Weige further moti-
vation for why normalizations are necessary, both in the addirst-order variables
(Section 2.3) and in the case of the translation problemti@e2.4). For the latter, we
discuss an example in detail.

In Section 3, we formalize the classic semantics, the canipgly normalized one,
and the ternary one. We also discuss the relationship batevegntax that explicitly
accommodates relativizations and the automata-the@atiantics.

In Section 4, we develop an understanding of restrictionsoised on regular lan-
guages through ternary valuations. In particular, Thedtaelates sizes of automata
under the conjunctively normalized semantics and undetettmary semantics.

In Section 5, we present state space engineering techrtltptgemove information
from ternary valuations. The resulting sexpartite valuadi are specialized ternary
valuations. We discuss ways of calculating sexpartiteatadns and how to reason
about them.

In Section 6, we study the problem of calculating the sexgantpresentation of
intersections directly from the sexpartite representadicthe sets involved.

In Section 7, we show how the sexpartite semantics of WS18eagformulated in
ways that will support better algorithms; in particular, ineto avoid normalizations.

In Section 8, we present the algorithms that may be used irtigide procedure
for WS1S based on techniques from the Sections 6 and 7. licylart we formulate
algorithms that allow us to formulate our second theorem1®/8nder restrictions of
the kinds we are interested in can be decided in a way thattis exponentially faster
than using the conjunctive normalization technique.

In Section 9, we summarize and provide some hints about #etipal performance
of the Mona tool when equipped with techniques of this aeticl

2 WSI1S: review and issues

We need to fix a syntax for WS1S. We follow the concrete, ASfal$ed syntax of
Mona, but we keep only a small set of primitiveSlutshell WS1$an be presented
as follows. A formulap is compositeand of the form ¢’ (negation),¢®’ & ¢ (con-
junction), orex2 P?: ¢’ (existential second-order quantification), or iti®micand

of the formP? sub PJ (P! is a subset ofP?), P? < PJ (elements inP’ are less than
elements inP’), P =PJ\ P* (P! is the set difference aP’ with P*), or P' =PJ +1

(P? are the successors of elementgi). Here, we have assumed that variables are all
second-order and naméd, wherei > 1. Other comparison operators, second-order
terms with set-theoretic operators, and Boolean conrectian be introduced by triv-
ial syntactic abbreviations, see [11, 16]. The treatmefitsiforder terms is discussed
later.

2.1 Logical Semantics of WS1S

A decision procedure takes as input a formula called the main formula, whose
truth status is to be investigated. Following standard taracwe sometimes regard
the main formula as an abstract syntax or parse tree (witbatsfacing up—the usual
convention). We define itkbgical semanticgor just semanticsinductively relative

to a stringw over the alphabet = B*, whereB = {0,1} andk is the number of
variables ingg. We assume thap, is closed and that each variable is bound in at
most one occurrence of an existential quantifier. Genera#tyconsider only formulas
that are subformulas afy, since the semantics is formulated in terms of strings over
a bounded alphabet—something that prevents us from giengaatics to all possible
formulas given a value df. We now regard a string = ag - - - ag—1, Wherel = |w]| is

the length ofw, to be of the form:

1 1 1
P ag ag_q
k k k
P o gy

where we have indicated (left) that if the string is viewedaamatrix, then rowi is
called thePi-track Each letter is sometimes written in a transposed notation as the

vector(al,...,a*)!. The interpretationv(P?) C N of P! defined byw is the finite
set{m | themth bit in the P*-track is1}. Note that suffixingo with a null-extension

a string of the forn0 - - - 0 with 0 = (0, ...,0)?, does not change the interpretation of
any variable.

The semantics of a formulacan now be defined inductively relative to an interpre-
tationw. We use the notatiowm = ¢ (which is readw satisfiesp) if the interpretation
defined byw makesp true:

wkE ™ ¢ iff wke¢

wkE ¢ &¢’ iff wk ¢ andwk ¢”

wkex2 Pi:¢/ iff Ffinite M CN:w[P'— M]E ¢
wE P'sub PJ iff w(P?) C w(P?)

wk Pi< PJ iff Vhew(P'):VkewP):h<k
wk Pt= PN\ PF iff w(P') =w(P)\w(P*)

wEP =P +1 iff w(P)={m+1]|mew(P?)}

where we use the notatian[P? — M] for the minimal stringw’, called thewitness
string, that is at least as long as and interprets all variableB?, j # i, asw does,
but interpretsP? as M. Note that the truth status of a subformgldahat contains an
existential formula of the fornex2 P?: ¢’ does not depend on th&/-track, since we
assume that each' is bound by at most one existential quantifier, and consettyuen
there can be no free occurrenceRifin ¢. We could have chosen a model where these
unnecessary tracks are removed—but that gives us the amatiph of working with
different alphabets for each subformula.

To fully explain the decision procedure for WS1S, we needtklat the situation
for quantification in more detail. This discussion will béver technical; it is the reason
why introductory texts concentrate on M2L(Str) for whichist&ntial quantification is
straightforward. Looking at the witness stringP® — M] again, we observe that it
may be longer thamw, since the greatest elementih may be equal to or greater than
the length ofw. In this case, the extension consists of letters that arseatls except
for the Pi-track, which describes the elementsidfgreater thanw — 1.

To characterize such extensions more formally, welebe the set of all letters
of the form(0, .. .,0, X,0,...,0)! (where theX means that the value of thith com-
ponent is eithed or 1). An extension:’ in ¥} " is then called awull-but<i extension
Thus, the witness string is of the foraf - ¢, wherew’ is the same string as except
possibly for theP?-track.

Generally, we may decompose amyinto partsw andz* such that:* contains as
many letters from the end of the string as possible that i@ @litside theP*-track;
more precisely, we lab = 0 - 2%, wherez® is a maximal, null-but-extension of some
prefix of w. Thus,& is empty or at least one noRt-track in ends with al, i.e. the
last letter imd is not inX§. We say thatv is but-i-minimal

As defined, the witness string may not be shorter thar-or example, ifw is all
zeros outside th@’-track, with thePi-track consisting of all ones antd’ = (), then
the witness string i8 - - - 0 of length|w|. We have introduced this requirement to avoid
other unpleasant technicalities later.

For any formulap, we associate thianguageLs = {w | w F ¢} of satisfying
interpretations. The truth value gf, is independent ofv, since by assumption it is a

closed formula. Thusjy is either true, wherl 4, = X*, and we write= ¢q, Or ¢g IS
false, whenLy, = (), and we write# ¢y.

Proposition 1 Wordsw andw’ that interpret all variables in the same way satisfy the
same set of formulas: if for all 1 < i < k, w(P?) = w'(P?), then for allp, w F ¢ if
and only ifw’ E ¢. Thus, the interpretation is invariant under null-extensi

Proof (Idea) By a simple induction on formulas we may show that for words
andw’ such thatw’ is a null-extension ofv the following holds: either both satisfy
¢ or both do not satisfyy. For existential quantification, we note thatif is a null-
extension ofw, thenw'[P? — M] is a null-extension ofv[P* — M]. O

2.2 Automata-theoretic semantics

The automata-theoretic semantics constitutes a decismregure that associates to
eachg the deterministic, minimal automatoh, accepting the languagde;.

2.2.1 Automata preliminaries

We recall that an automatoh = (2, Q, Qo, —, Q) consists of an alphab&, which
we here assume to ¥, a finite set of state€), a set of initial stateg),, a transition
relaton—C @ x ¥ x @, and a set of final state3”. A run (¢,,)m<, Over a word
w = ap---ap_1 € X* is a sequence of states, ..., ¢, such thatyy € Qo and for
allm, 0 < m < ¢ (Gm,am,qm+1) €—. Thelengthof the run is¢. The run is
acceptingif ¢, € QF, and the language accepted Hyis the set ofw that allows
some accepting run. The automatdrs deterministic ifQ, is a singleton and if for
all ¢ € Q anda € X there is exactly on@’ such that(q, a,¢’) €—. Our automata
are assumed deterministic if not otherwise indicated. Fodetarministic automaton,
any wordw allows exactly one run; if its length i§ then last statg, of this run is
denotedLAST A(w) and we say thatv brings A to stateq,. Moreover, withB =
{0,1} (equipped with the usual truth functions vV, and —), we also letA denote
the characteristic function af; in other words,A : ¥* — B is defined byA(u) =
(LAST A(w) € QF).
Thesize|A| of an automaton is its number of states.

2.2.2 ConstructingA,

For atomic formulag, a small, deterministic, minimal automaton can be directly-
structed that accepts the langudge For example, for the formul®*sub P?, a two-
state automaton exists that accepts exactly the seffof whichw(P!) C w(P?); see
Figure 1, where we have followed usual conventions: statesiecles, the initial state
is denoted by an arrow pointing to it, transitions are desdtg arrows marked with
letters for which they apply, and the final states are desighlay an inner circle.

Other atomic formulas are treated similarly, and for conitpdermulas we proceed
by induction.

G))6)
(1)~ E)6)
o

0

Figure 1: Automaton that accepts satisfying interpretatior P'sub P2.

For a formulap of the form™ ¢/, the automatom, is taken to be the complement
of the automatord, calculated by induction. This automaton will be minimal by
construction since it is obtained by simply reversing finadl mon-final states in the
automatord, . The case of conjunction is handled by an automata-theqresduct
construction: givem,s acceptingL, and givenAdy» acceptingl~, we construct the
minimized product automaton of, and A,-; this automaton accepts the language
L¢/ N L¢N.

The case of quantification is more complicated. Considerex2 P?: ¢'. Define
the projection operatarroJ that transforms functions of tyge — B according to:

1 if 3M : A(u[P? — M])

=1
0 if VM : A(u[P'— M])=0 (1)

PROJA(u) = {
Then, we desire to makeé,, an automaton that recognizeroJ A, . The quantifica-
tion over unbounded (but finite) sets seems to contradictiearof finite strings. We
describe how to calculatrod in two steps. In the first step, knowledge about possible
future extensions that only interpret ti-track is used to change the labeling of the
Ay automaton. In the second step, a conventional projectiostoaction is carried
out.

From an automator, we construct théuturizationof A, denoted-uT A accord-
ing to null-but4-extensions:

1 ifFweni Au-v)=1

FUT' A(u) =),
@) {o if Vo e 5% A(u-v) #£ 1

This description can clearly be implemented as a linear tin®mata-algorithm by
changing the labeling of the statestfappropriately.
Define thebounded projectiomperatoBPROJ such that

1 if 3IM with max M < |u| : A(u[P? — M]) =1
0 if VM with max M < |u| : A(u[P* — M]) =0

BPROJA(u) = {

This operator describes the traditional projection openabn the P* track. It can
be formulated as an algorithm that yields a deterministiomaton via the subset
construction. The algorithm may run in exponential timag¢sithe resulting automaton
may be exponentially bigger.

Proposition 2
PROJA = BPROJ(FUT'A)
Proof We have

PROJA(u) = 1 iff

M : A(u[P? — M]) = 1 iff

3M, 2% with max M < |u|andz’ € $" : A(u[P? — M] - 2) = 1iff
BPROJ(FUT!A)(u) = 1

where the second biimplication is valid becaligg”’ — M]| > |u| holds thanks to
the definition ofu[P? — M]. O

2.3 Automata-theoretic semantics of first-order variables

Let us look at the first-order semantics problem. Adding-firster variables to nut-
shell WS1S can easily be done as follows: a first-order virighis regarded as a
second-order tern® that is restricted to take on values that are singleton sdtese
sole element denotes the valuepp$ee [10, 15, 16]. This relativization is imposed syn-
tactically by conjoining a singleton predicaimgleton(P) to the formula where
P is quantified; the symbaP is a meta-variable that stands for one of the The
predicatesingleton(P) is called theestrictionof the relativization.

(The singleton predicate can be expressed as a formula sielutogic for any
particular P* (the formula expresses th&¥ is nonempty and that any two elements
in P* are the same). Thus, we view this predicate as a macro, aatextpansion
mechanism, not an additional primitive predicate that nbesnterpreted.)

Unfortunately, relativization is not entirely robust. énpretationsy not fulfilling
singleton(P) take on “arbitrary” truth values for subformulas in the gatsee
below the point of relativization. We explain this arbiiregss through an example that
assumes that we have already added the ability to exprdsgitsttorder and second-
order constants to the nutshell language. The forngula p=0, wherep is first-
order, is then reasonably represented@ssub P, since this formula has the right
truth value relative to singleton interpretations/éf Similarly, we would reasonably
translate the formula’ = p < 1 into P<{1}. Of courseg and¢’ are to be considered
equivalent formulas, because there are interpretedv8ut {0} sub P and P<{1}
are not equivalent as WS1S formulas, because they take bitraay” truth values
outside the restriction. For example, for= 00 (which interprets” asf, thus making
no sense op) makes{0} sub P false, but{0} sub P true.

This phenomenon leads to the following problem: automateesponding to sub-
formulas may have many states that describe spurious agidviant truth functions
outside the restrictions. There might be so many, as we shall that the decision
procedure breaks down in practice. Of course, the extrastirresponding to in-
terpretations outside the restriction are eventually pduihanks to the conjunction of
the restriction in the relativized quantified formula. Faample, ifp is removed as

10

a free variable through first-order quantificatioreixl p: p=0 and we represent=0
by {0} sub P, then the classic relativization conjoins the restrictadrthe point of
quantification so that we obta&x2 P:{0}sub P &singleton(P).

In order to fix the automata semantics of subformulas, wedcadditrate as follows:
conjoin the restriction to every subformuain a procedure we catormalization
Then—after settling various technical choices of the ndiration process—we would
have a firm automata-theoretic explanation of the language under what we call
the conjunctively normalized semantiadVe define the various semantics formally in
Section 3.)

The practical problem with this solution is that additiopedduct and minimization
calculations would be necessary: for each automatompresenting a subformula
¢ and each free variabl®?, the automaton representing the singleton property for
P? must be conjoined tol. Such extra calculational work slows down the decision
procedure in the following sense: each automata-theaypécation must be followed
by a product and a minimization. (Under certain assumptionsestrictions, the need
for minimization may disappear, see Section 4.) For exangpl@plementation, which
is normally very fast since it consists of flipping acceptstatuses of states, now
would involve a product and a minimization operation.

In practice, the Mona implementation prior to the one impeated with the re-
sults of the present article used thé hoc semanticsthe restriction for variable is
conjoined only to atomic formulas whepeoccur and to the formula in the existential
quantification introducing. Note that this technique does not eliminate the prob-
lem of spurious behavior for intermediate formulas. Fornegke, the conjunctively
normalized atomic formul@=0 is not equivalent to the negation of the conjunctively
normalized atomic formulg™=0 , where™ = means “not equal.”

2.4 Emulation of string semantics in WS1S

We turn to the translation problem of how to use restrictitmefficiently translate
the string-theoretic version of monadic second-orderdagio the number-theoretic
version. A simple choice of syntax for M2L(Str) is to makedentical to nutshell
WS1S syntax. The satisfaction relation is now dendtgg;,,; it is the same as for
WS1S except that quantification and successors are tresdive to|w|:

W Estring €X2 P12 ¢l it 3M C{0,... Jw| — 1} : w[P' — M] Estring &'
W Fgring PP =P7+1 iff w(P')={m+1|m e w(P?’)andm +1 < |w|}

where the notatiom|[P? — M| again denotes the string altered so that th&* track
describesV/. Note that herev[P* — M] is exactly as long as sinceM is a subset
of {0,...,|w| — 1}. The interpretation of, on a string ofw still does not depend
on the individual tracks ofv, but it doesdepend on the length af. Thus we write
i Estring $o if ¢o holds for a stringw of lengthi.

To emulate=:ng In F, we must relativize all second-order terms to sets of num-
bers less than the last position in the string. Thus, we dhice a first-order vari-
able$ that simulates the entitiw|. (Of course,$ really stands for som@; variable
that is otherwise unused and that is relativized to act lifes&-order variable.) A

11

$-restriction for a variable expresses that the variable is a subs¢bof ., $ — 1}.
Then, under the normalization strategy we conjbiconstraints for all free variables
of each subformula. The resultis a WS1S formpflavith one free variablé such that
m Esring @ < w E ¢, where the-track ofw interprets$ asm. For example, the
formulaexl p:exl ¢:p = ¢ becomesin WS1S:

[singleton (%) &

ex2 P:ex2 Q:
[singleton (P) & singleton (Q) & singleton ($)
& P<$&Q<$&Psub Q &Qsub P

as expressed in nutshell syntax, where each normalizedrsnbla is enclosed in
brackets. The M2L(Str) formulation is

[ex2 P:ex2 Q:
[singleton (P) &singleton (Q) &
Psub @ &Q sub PJ]

Proposition 3 Under the translation outlined above, the minimized, cécadautomata
arising during the M2L(Str) decision procedure are esaintihe same as the ones
arising during the WS1S procedure except for at most twoteahdil states.

Proof (Some insights) First, we must establish the relationskigvben the meaning
of a formula¢ in M2L(Str) and the meaning af in WS1S, wherep is obtained by
conjoining the-restriction for each variable occurring freefinif there aren variables
in ¢, then the§-variable receives index+ 1. Letw be a string interpreting theset 1
variables. An inductive argument shows tlat= ¢ if and only if (1) the P *!-track
is interpreted as a singletdii} and (2) for each free variablé’ in ¢ the Pi-track is
interpreted as a set of numbers less than

Second, we can use this knowledge to construct the WS1S atdarfor¢ from
the M2L(Str) automator by adding states,c..p+ (an accepting state) angyject (a
rejecting state). The transition relation of the new autimmas the same as for the
old one as long as the additional"*'-component i$). All old states are turned into
rejecting states. When tHiecomponent isl, corresponding to the end of the string
under the M2L(Str) representation, a transition is made,tQp¢ Or syeject according
to the accept status of the state that would have been reachied old automaton,
provided that theP*-component of all free variables is O (if the latter is no&trthen
a transition is made t8,¢ject). FromM s.ccept, @ transition is made t6,cject if any 1
occurs in the$-component (sincé must be interpreted as a singleton set) or in the
track corresponding to a free variablefinThes,.;cc; State is connected to itself on all
letters.

Finally, it can be shown that during minimization of the neutanaton, every
pair of any old states are still not equivalent with respedhe canonical equivalence
relation: the transitions to the two new states induce theegaartition of the old states,
regarded as part of the new automaton, as the one defined bgtancror rejecting
states of the old automaton. O

12

Our practical experiments with running string-based eXamfranslated into WS1S
were based on the ad hoc strategy, where the restrictiorriablais conjoined only to
atomic formulas involving the variable and to the place wettae variable is introduced
by a quantifier.

The problem that bloated automata may occur thanks to theatarstness of the
ad hoc strategy is not just a theoretical one. We discovéetbilowing problem that
was serious enough to prevent benign formulas from beinglddc

Parity example Consider the formul@opp = €x1 p: (pin P! & --- @ pin P")
under the string-theoretic semantics, wheralenotes addition modulo 2 (properly
formulated in nutshell syntax). The formula holds if andyoiflthere is a position
contained in an odd number of the séts Translated into nutshell WS1S under the ad
hoc strategy, the formula becomes:

singleton($) &
Pl<$&

Pi<3&
ex2 P: (singleton($)&
((Psub P! &singleton(P) &singleton($) & P'<§)
@ (Psub P" &singleton(P)&singleton($) & P"<$)...).

2)
whered is a binary operator defined in terms&and™ .

Proposition 4 The parity formulagop, expressed as (2) produces intermediate au-
tomata whose size is doubly exponentialrinvhen constructed according to Sec-
tion 2.2.2. But if restrictions are conjoined to all subfardm (that is, also to each
intermediated formula), then all intermediate automata have at most 2ésta

Proof (Intuition) Instead of providing a genuine proof, we pra¥isbme intuition and
experimental data. Initially, let us discuss the size ofttlieimal automaton fopgpp.
The alphabet i®"*2, since the formula contains variablesP; and the variable$
andp, whose real names in nutshell logic are, sBy,; and P, 2. But sincep is
quantified away, thg-track does not influence the way the minimal automaton works
So, we will regard the automaton as reading letters that ectovs of sizen + 1.
The automaton must check for each letter whether the nunilmeres among the first
n tracks is odd . The automaton far = 2 is shown in Figure 2 as generated by
Mona and the Graphviz drawing program (the state labeélisdan artifact of Mona'’s
representation of Boolean variables—it can be ignoreditinely, the automaton can
be explained as follows, where states are named as in FiguFaeinitial state isl,
where the automaton can stay until it finds a letter with anmauber of ones among
tracks P; with ¢ < n. On such a letter it proceeds to st&teecording this fact, and
it stays there. So far, we have assumed that the end of theatrduwdtring has not
been reached, that is,lan the P, ;-track has not yet occurred. When thisccurs,

13

the automaton proceeds to either a rejecting stdtem which it cannot escape or an
accepting staté—according to which of the two previously mentioned statess in.
The automaton leaves accepting sthiéanother occurrence of ahappens in track
P, 1, since that violates the constraint ®mas a first-order variable.

01 0011
01 0101
0,0 1111

Figure 2: Automaton emulating string semanticsifioe 2 of parity example.

Now consider the subformula inside the quantiég® P in (2). It hasP as a free
variable. The translation of this formula results in a miairautomaton whose size is
exponential inn. Intuitively, this explosion stems from the need to recdre status
of whether positionn is in P?, for eachl < i < n, wherem is the first position in
P,,.1—if this information is not recorded, then it is impossibte the automaton to
figure out the eventual truth value of tith summand. In fact, whem € P?, the truth
value of theith summand still becomes false if tfé-track contains any 1s further out
than the number designated ®$ybecause of the last conjoint in each summand.

Moreover, it can be seen that the subset construction abjplieonnection with
eliminating theP-variable will yield a further exponential blow-up. Intiviély, what
happens is that the subset construction results in autontlad records the set of all
vectors seen, since it must guess the value of

While we do not present a formal proof, the experimental bighasupports the
intuition just given: forn = 1,2 and, 3, the size of the automaton corresponding to
the subformul@x2 P is 21, 265, and65553, approximatel2?”, 22° and22". Itis not
possible to calculate the automaton fo¢= 5.

Finally, we have experimentally found that fer= 2, ..., 10 the maximum num-
ber of states occurring in any intermediate automaton isr24ss under a normalizing
semantics (with no increase from= 4 to 10). These experiments are done based on
a ternary semantics (as in Section 3.1; for the usual binamastics, the maximum
number of states will possibly be less (according to redatty this in article.) The
automata still grow linearly in size of since the transitions, represented by BDDs in
the Mona tool, become more complicated. We leave it to theeet reflect on why
the number of states is limited by a constant. O

14

P = ex2 Piwhere ---:---

‘ N

[=

Case (1) Case (2)

Figure 3: The two ways fop <1 ¢’ to hold.

3 WSS with relativizations

To give a deeper understanding of relativizations, we thicenutshell WS1S-Ra
variation on WS1S where relativizations are explicitly keat. Letp be a formula that
is therestriction of variableP?. Existential quantification will now take the form

ex2 P'where p: ¢/, (3)

where¢’ is thetraditional part of the quantified formula. The restrictigncan be
an arbitrary formula (as long as the main formglaremains closed). In general, we
denote byp(P?) the formulap introduced by the existential quantification Bf. For
uniformity, we assume that ead is relativized in this way, possibly to the formula
Pi=P? which is another way of sayirtgue . Our goal in this section is to show how a
ternary semantics allows restrictions to bubble up whenege-eliminating the need
for normalization at every intermediate step.

To carry out inductive arguments, we define the partial anged among subfor-
mulas as the reflexive closure afdefined asy <1 ¢’ if (1) ¢ is a proper subformula of
¢ or (2) if there is a formula) = ex2 P* where p(P?): ¢" such tha is a subfor-
mula of p(P*) and¢’ is a subformula of”. This definition is illustrated by the parse
trees in Figure 3, where the root of the subtree for Case {Beisode for the formula
1, which has two children, the left one for the restriction éimel right one for the tra-
ditional part. The partial ordering is well-founded: a post-order labeling of nodes
with numberd), 1, ... produces an ordering, where all children of a node are asdign
a number less than that of the parent (making the labelingistamt with case (1)) and
where any node that is a left descendant of some node is agsigmumber less than a
right descendant (making the labeling consistent with ¢age

When we formulate semantics, variable occurrences in thtitonal part of for-
mulas will be subjected to restrictions. More preciselyagable occurrence @’ is
directly restrainedf it is inside the traditional par’ of the formula (3) introducing®
(this formula exists as a subformula of the fixed main formalawhich is assumed to
be closed). For a subformudaof ¢, the set ofdirectly restrained variable®RV(¢)
is the set of free variables gfthat have a directly restrained occurrencein

15

Proposition 5 For eachp and each? € DRV(¢), p(P) < ¢.

Proof Let P? be a variable that has a directly restrained occurrenee ifihen, ¢ is
a subformula ofy’, whereex2 P?where p: ¢’ is the formula introducing?® with
p = p(P?%). Thus,p = p(P") < ¢ holds according to (2) of the definition ef. O

The treatment of restrained variable occurrences reqdit&ianal attention. Con-
sider a variable) that is relativized to the restrictioR = . When a subformula
mentioning(is given meaning, we must include the requirement @ in order to
avoid later normalizations. But iP itself is relativized toP = @ in some outer exis-
tential quantification), then the restriction o itself must be included at some point.
The situation is detailed here:

1 =ex2 Pwhere P=0:ex2 Qwhere P=0Q:Q =Q 4)
¢

In this case, we wish to enforce also implied restrictiorshsas = ().

To do so, we define for a formutathe sefRV(¢) of restrained variableso be the
restrained variableBRV(¢) of ¢ together with variableRV(p(P)) for P € DRV(¢).
This definition makes sense, because by virtue of Propodti&V(¢) can be defined
inductively on formulas ordered according 4o For example, in (4) the restrained
variables ofp areRV(¢) = {P, Q}.

For any formulap, we define the induced restrictigritV(¢) to be the set of restric-
tions of restrained variables, that is, the §ptP?) | P* € RV(¢)}. In the example,
p™(¢) is {P = 0, P = Q} and the conjunction of these formulas imgly =) as
desired. By a union-wise extension@f" to an operator taking a set of formulas as an
argument, the expressi@itV(pV(¢)) also makes sense.

Proposition6 (a) p(P) < ¢ holds forP € RV(¢).
(b) p™(9) 2 P™(p™(9))
Proof

(a) By Proposition 5p(P) <1 ¢ holds forP € DRV(¢). ConsiderP’ € RV(p(P))
for someP € DRV(¢). We may by induction according ter assume that
p(P’) < p(P). Thus, by transitivityp(P’) <1 ¢ holds.

(b) We need only to prove th&V(¢) 2 RV(p(P?)) holds forP* € RV(¢). But this
is a direct consequence of the definition of the restraineidbkes of a formula.

a

16

3.1 From binary to ternary semantics

Classic semantics There is an obvious way to define the semantics of Nutshell$¥S1
R. We will state them using a meaning functiph®, which given a formula defines
avalue[¢] ¢ € {0,1}. This notation anticipates multi-valued semantics:

1% = —[¢]%w

[¢ &¢" 1w = [¢]w A [¢"]w

1 if 3M : [¢']Cw[Pi— M] =1
and[p] Cw[P’ — M] =1

0 if VM : [¢/]¢w[P! — M] =0
or [p] “w[P* — M] =0

1 ifwkE P'sub PJ

0 if wk P'sub PJ

wl
7 e _ w[
[ex2 P*where p:¢'[“w =

[P'sub PI]%w = {

(Again, we have included only one kind of atomic formula; tikeers also follow their
logical semantics.) Of course, we have the following cqroeslence between WS1S
and WS1S-R.

Proposition 7 Assume that for a formula in Nutshell WS1S-R, we denote bythe
formula obtained by convertirgx2 P’ where p: ¢’ intoex2 P': p &¢'. Thenw =
¢ holds if and only if[¢] “w = 1 holds.

Since the classic semantics behave like expected, we alwi= ¢ for WS1S-R
formulas that satisff¢] “w = 1.

Conjunctively normalized semantics Recall from Section 2.3 that a conjunctive se-
mantics solve the problem of spurious behavior of autorhated semantics. We de-
fine the semantics formally below, where we use the notdpéM(P* sub P7/)|Nw =

1 to denote that for eagh € p®V(P? sub P7) it holds that[p] ¥ w = 1.

[0 = ~(¢1"w) A (™ =1)
[[¢l&¢ll]]Nw = [[¢’]]Nw A [[(Z)”]]Nw
i . TN 1 if 3M : [¢ [V w[P— M] =1
[ex2 P*where p:¢'|Vw {0 it VM : [¢/ [N w[P? — M] =0
1 if wE Pisub PJ
and[p®V(P? sub P/)[Nw =1
0 if wk P*sub PJ
or [pRV(P? sub P/)|[Nw =0

[Pisub PINw

(The definition is a similar for the other atomic formulas.)

17

Following our goal of using as few normalization operatiasgossible, we apply
the restrictions of free variables to atomic formulas angatiens only. For conjunc-
tions, the free variables are the union of the free varialiethe contents; so, the
explicit normalization can be omitted. For existential giication, any variable free
in the quantified formulax2 P? where p: ¢’ is also free irp or in ¢’. One problem
exists for the variablé’: if the restrictionp is not satisfiable and the variali® does
not occur ing’, then the quantified formula unexpectedly evaluatek tAnticipating
a similar problem for the ternary semantics, we settle oridhewing assumption:

For all formulas of the fornp = ex2 P’ where p: ¢’ and for allw: it holds that

E & P))=>ex2 Pt:
w (PeRv(d))p() p

(5)

where ‘=>" stands for implication (by an obvious formula transforioa). (Alter-
natively, we might demand that there is an occurrencgin p for all existentially
quantified formulas.) If we letv F p®V(¢) stand for the property that for alP? in
RV(¢) it holds thatw F p(P?), then we may state the correctness of the conjunctively
normalized semantics as follows.

Proposition 8 Given assumption (5} F ¢ andw F pRV(#) both hold if and only if
[¢]Vw = 1.

Proof The proof is by induction.

Casegp =" ¢'. We observe thakV(¢) = RV(¢'). Then,[” ¢']Yw = 1 if and only
if [¢']Nw = 0 and[p®V(¢)]¥w = 0 if and only if (by applying induction hypothesis
twice) (w ¥ ¢’ orw ¥ p®V(¢)) andw F p?V(¢) if and only if w ¥ ¢’ andw F p*V(¢)
if and only if w £ ¢ andw £ pRV(4).

Casegp = ¢’ & ¢". We observe thaRV(¢) = RV(¢') U RV(¢”) holds and that
w E p™V(¢) holds if and only if bothw F pRV(¢') andw E pRV(¢”) hold. Then,
[¢]¥w = 1if and only if [¢']Yw = 1 and[¢"]¥w = 1 if and only if (by induction)
wk ¢ andw F p™V(¢') andw F ¢” andw F p®V(¢") if and only if w F ¢’ & ¢ and
w E PRV(¢/ &¢H>- 4

Casep = ex2 P'where p: ¢'.

We need to consider the two directions separately.

(=) Assume thatw £ ¢ andw F p®V(¢). Then, there is a se¥ such that
w[P* — M] E ¢/ andw[P' — M] E p. But, sinceRV(¢) does not mentio?, we
also have that[P* — M] F p®V(¢). Taken together withw[P? — M] & p, we
infer thatw[P? — M] F p®V(¢’). Now, together with the faab[P? — M] F ¢/, we
use the induction hypothesis to establish fgfi ¥ w[P? — M] = 1. Consequently,
[6]Vw = 1.

(<) Intuitively, this direction is valid because an occurren¢ P in ¢’ guarantees
thatp = p(P?) holds thanks to the inclusion of restrictions on variableuscences in
atomic formulas; in the absence of such a variable occuerghe assumption (5) can
be used to find an alternativd that makes hold without affecting the truth value of

[CARE

18

We proceed more formally. Assume tiaf| ¥ w = 1. Then, there is &/ such that
[¢']Nw[P? — M] = 1. By inductive hypothesis, we infer that P! — M] F ¢’ and
w[P" — M] E p™(¢'). Fromw[P? — M] £ p®V(¢'), we infer thatw £ p®V(¢),
since P! is not a free variable ipV(#). That leaves us with the need to prove that
w E ¢ holds.

Now, if P* € RV(¢’) holds, thenw[P? — M] F p holds—due taw[P? — M] E
p™V(¢')—andw F ¢ holds.

On the other hand, i’ is not a free variable im’, then we can use assumption
(5) to find anM that makesw[P® — M] E p hold without impacting the truth of
w[P® — M] E ¢'. By induction hypothesis, it holds that[P* — M] F ¢’ and
w[P* — M] E p. Thus, we conclude that F ¢.

Case[[P?sub P/]N. [Pisub P/|Nw = 1 if and only if (by definition)w =
Pisub P’ and[p®V(P? sub P7)]Nw = 1ifand only if (by induction)w F P* sub P’
andw F p®V(P? sub P7) andw F p®V(pRV(P? sub P7)) if and only if (by Proposi-
tion 6(b))w F P sub PJ andw F pRV(P? sub P7). |

The ternary semantics LetB+ = B U{ L} be theextended Boolean domaiwe use

L to denote a “don’t care” situation, one where not all therietitns hold. Boolean
operatorsh? and—3 are defined on this domain as for the usual case with the added
rule that if any argument ig, then the resultid_.

[oTw = [T
[¢ &' Pw = [0 A [¢"Fw
1 if 3M : [¢JPw[Pl— M] =1
0 ifYM : [¢'[Pw[P’+— M]+#1and

IM : [¢']Pw[Pt — M] =0

1L if VM : [¢'Pw[Pt— M] = L
1 ifwkE P'sub P’

and[p®V(P? sub P)]Pw =1
[Pisub P'JPw = <0 ifwk P'sub PJ

and[p®V(P? sub PH)]Pw = 1
L if [p®V(Pisub PH)Pw # 1

[ex2 Piwhere p: ¢'JPw =

(The definition is similar for the other atomic formulas.)

The case of existential quantification above reflects thdtioh that if a witness
M exists that makeg' true, theng is true; moreover, if there is al that makes)’
false, and nd// makesy’ true, theny is false; and, finally, if all withesse®/ make¢
not satisfy the restrictions®V(¢'), thenw does not satisfp™V(¢).

Something seems to be missing in these semantics: the enfert of a relativiza-
tion. The proposition below shows that the relativizatiabbles up automatically if
needed:

19

Proposition 9 Given assumption (5), the following holds.
@ wFp™o) & [o]Pw # L.
(b) wE ¢ &pV(9) & [¢]Pw =1
© wE"¢&p™o) & [¢]Pw=0
Proof (Idea) The proof is similar to that of Proposition 8 and is thed. O

Part (a) states that the truth of all syntactic restrictiph¥(¢) is equivalent t¢]>w
not being L.

3.2 Automata-theoretic realization of the ternary semantts

The decision procedure of Section 2.2 can be modified to teéfedernary semantics.

First, we classify states as either0, or L states; that is, we replacg’ of an
automatord, as defined in Section 2.2, with a valuation or labeling fiorch : Q —
BL. For a wordu, the valuation\(LASTA(u)) of the last state of the run overis
the truth valuecalculatedby A overwu. We denote this valuéi(u), and we callA a
ternary automaton Of course, the logic-automata connection can now be egpdes
Ap(u) = [¢]u. Ternary automata can be minimized in the same way conveaitio
deterministic automata are minimized with the differerica the initial state partition
is given by the at most three maximal sets on whidk constant.

Second, we modify the automata-theoretic constructionsttte case of conjunc-
tion, we simply change the way product states are labelezh austate id if both
component states are one, iDif both components ar@or if one is0 and the othet,
and it is_L if one of the components is. Negation is handled by simply switchirig
states in) states and vice versa.

Third, we must generalize the projection operators andriftdtion to the ternary
domain. We definerod ¢, BPROJ?, andruT?-:

1 if3IM : A(w[P'— M]) =1
0 if IM : A(u[P" — M]) =0

PROJ‘A(u) = :
andvM : A(u[P*— M]) #1
1 if VM : A(u[Pt — M]) =
1 if 3M with max M < |u| : A(u[P? — M]) =
BPROFIA(M) = 0 if 3M with ma>.<M < |u| : A(u[P* — M]) =0
andvM with max M < |u] : A(u[P" — M]) # 1
L if VM with max M < |u| : A(u[P" — M]) =L
1 ifJwe Zg* D A(u -
g — 40 I ES Al

v) =
):
andVveEO s A(u-v) #
L oifvwexi :Au-v) =L

20

Proposition 10

Proof Omitted. O

Fourth, we explain how these operators are implementedtasnata algorithms.
The construction ofuT?? A is quite obvious: we label any statefor which a path
along a null-but: extension to a state labelédexists; among the remaining states, we
label thosed for which a null-buté extension exists that leads tddabeled state in
A; and finally, those not yet labeled retain théilabel. In a subset implementation of
BPROJ!, a subset is labeledif it contains a state labeled when it contains no such
state, it is labeled if it contains a state labeled] and, when all states in the subset are
labeled L, the subset state is also labeled

We call the resulting algorithm thternary decision procedure

4 Ternary valuations for restricted languages

All languages considered will be regular and over the alph8b= B*. For a language

L, thecanonical right-congruence j, is defined as. ~ vifand only ifVw : u-w €

L & v-w € L, whereu,v,w € X*. The set of congruence classes is denoted
¥*/~. This set can be regarded as the state set of a canonica;dtaie automaton
recognizingl.

Consider languagels, sometimes called theroperty, and R, assumed hon-empty,
called arestriction Thus,L, andL prv4), for p*¥(¢) defined in Section 3.1, constitute
are such a pair for any subformupeof ¢y. Theconjunctively normalized representa-
tionis L’ = L N R, and theconjunctively normalized congruenise~ .

Note that Proposition 8 tells us that] "V is just the characteristic function for the
setL N Rwith L = Ly andR = L prv(g).

For a stringu, an accepting extensionis a string such that - v € L N R and a
rejecting extension is such that: - v in L N R . Theternary valuationdetermined by
L andRis afunctionyz r(u), definedtobd if u €¢ LN R, 0if u € LNR,andL if
u ¢ R.

Note that Proposition 9 tells us that tHaf]> = x ..z with L and R identified as
above.

Theternary congruence-y, r is then defined by, ~, v if for all w it holds that
xr.r(u - w) = xz,r(v-w). The equivalence classes of a ternary congruence can be
viewed as the states of a ternary automatoMore preciselyA is (3, Q, qo, —, xF'),
whereQ = X%/ ~, g along with¢® = {u | u ~ g €} and— are defined as usual;
moreover is defined so thatl (u) = x 1 r(u) holds—this makes sense: the valuation
function X is constant on all strings reaching the same state. We sayitlecognizes
x. Often, we will call A the x 1, z-automaton. Note that this automaton respecis
for any state, there is a uniquely determined equivaleressabf~ that all strings
reaching the state belongs to. This is just another way ohgakiat~;, r refines~p.
Obviously,~r r also refinesvpng.

21

4.1 Relating the conjunctive and ternary congruences
A thin languageR is a non-empty set of strings such that
Yu,v:udpv =Vw:u-w¢ RVv-wé¢R (6)

In particular, it can be seen that the canonical automatoR fleas exactly one accept-
ing state: just make be a string that reaches one accepting stadestring that reaches
a different accepting state, andthe empty string.

Proposition 11

(@) Thefirst-order restrictionRgjngietor(i) = {u € (B¥)* | Pi-tracki contains exactly
one occurrence of &} is thin.

(b) The$-restriction

Ryg-restiic(i) = {u € B* | the occurrences dfin Pi-track are all in positions
no greater than that of the first occurrence af a
|n traCk$} N Rsing|eton($)

is thin.
(c) If RandR’ are thinand? N R’ # (), thenkR N R’ is thin.

(d) Let R be thin, and letl, be any language. i ~;~r v andu has an accepting
extension, them ~, r v.

(e) If w andv both have no accepting extensions, theRp v < u ~p g v.

(f) Assume thatR is thin. Then,X*/ ~, r is a union of equivalence classes of
¥*/~rnr andX*/~r. More precisely, eitheE*/~, r= ¥*/~1~g holds or

Y~ r= (X /~par \{SLnr})US

holds, Wher§LmR:{u|Vv:u~v¢LﬂR} andS:{SGE*/~R| Ju €
S:VYv:u-v¢ LNR}.

Q) 1Z*/~ear | < |Z/~er | < |E/~rar |+ X /~r |-1.
Proof

(&) We note that there are three equivalence classes comgisyg to this language:
strings containing zero occurrences, exactly one occoe;er two or more oc-
currences of a 1 in th@i-track. Consider: andv such thatu £z v. Letw be
any string, and assume that w € R. Thenwu contains at most one occurrence
of a 1 in thePi-track. We must prove that- w ¢ R. Case(1): v contains no
1s in the Pi-track. Then by assumption that w € R, w contains exactly one
occurrence of 1 in thé?i-track. But, by assumption that £ v, v contains
either one 1 or two or more 1s. In all cases,w ¢ R. Case(2): u contains
exactly one occurrence of a 1. Thencontains no occurrences andcontains
zero or two or more occurrences. Thus, again it will hold thatv ¢ R.

22

(b) The proofis similar to the previous case. Also, it candxnsthat the intersection
with the singleton language is necessary for thinness.

(c) Consideru andv such thatu “gng v. Then, eitheru £r v Oru %p wv.
Assume the former and that w € RN R'. Then,w - w ¢ R thanks toR being
thin, and thus. - w ¢ RN R'.

(d) Letw be the accepting extension of Fromu ~p~gr v, we infer thatv - w €
L N R. Assume for a contradiction that £z v. Combined with the thinness
of R, and the fact that. - w € R, we would conclude that - w ¢ R. This
contradicts that - w € L N R. Thus, it must hold that ~g v. It follows from
elementary considerations that-;nr v andu ~ v implies thatu ~, r v.

(e) Assume that andv both have no accepting extensions and thatg v. Letw
be any string. Theny - w andw - w are both inR or none is. In the second case,
xr,r(u-w) = xr.r(v-w) = L. Inthefirst case, it follows from the assumption
thatu andv both have no accepting extensions thatr (v-w) = xr,r(v-w) =
0.

() If SLng is empty, then all strings have an accepting extension. Then it follows
by (d) that¥*/ ~~r andX*/ ~p r are identical. Otherwise, whe$i;r is
nonempty, it follows again by 4. that equivalence classes ofz and~p, r for
strings that have accepting extensions coincide. Stringsdo not have such
extensions fall into equivalence classes-qf according to (e).

(g) This follows from (f).
O

From this proposition, it follows easily that for agythe regular language representing
the conjunction of the restrictions V(o) is thin if variables are subjected to only
first-order relativizations or t§-relativizations (or to both). The proposition also tells
us that¥*/~ g is pieced together froti*/~ 1~ plus a subset af*/~p.

4.2 The ternary decision procedure compared

Theorem 1 Assume that all restrictions are thin languages and that theomata
have at moskV states. Then, the size of each intermediate, minimizedwattn (rep-
resenting some subformula) in the ternary decision prageidithe same, to within an
additive constant oV — 1, as the size of corresponding automaton under the conjunc-
tive semantics.

Proof This follows from (g) of the previous proposition. O
This result is the justification for the practical use of teenfary semantics since
usually the number of first-order variables in simultaneggesis quite small. But note

that the size of the additive constant is exponential in thealmer of free first-order
variables. Also, thanks to Proposition 11(f), we see thatahtomata of the ternary

23

approach are, apart from the*/ ~p parts, the same as those that occur when the
automaton of every subformula is normalized conjunctively

5 The sexpartite approach

We show next how to get rid of the assumption in Theorem 1 timatitomata of the

restrictions are bounded in size. We do so by re-introduaimgrmalization step at

the usual place of the relativization where the variablenisoduced by a quantifier.

This will allow us to prune away states from the automatonesgnting the ternary
semantics. We want to get rid of all states following a sthtdl these states have the
same membership status with respect twhenever they are iR.

5.1 Interesting strings, approximations, and sexpartifiction

To proceed more rigorously, we define a strimgo beinteresting(for L and R) if

it has (a) some accepting extension and (b) some rejectirrm&on. Also, &don’t
care” extension is one that makes a string fall outsitleNote that all prefixes of an
interesting string are also interesting. In other wordgj@interesting string cannot be
extended so as to become interesting. Note also thatif,~r v andu is interesting
thenv is also interesting. Define the Boolean valuatignz(u) so that it denotes
whether a string: is interesting. For an uninteresting string,dett(u) be the shortest
uninteresting prefix ofi. Theapproximationny, z(u) of an uninteresting is defined

by

1 if cuT(u) has an accepting extension
a(u) =<0 if cuT(u) has a rejecting extension @)
1 ifall extensions otuT(u) are “don’t care”

(These three cases are clearly mutually exclusive.)

Foru # €, we defineu™ to be the prefix such that - « = u for somea € X.

We note thatifcuT(u) # ¢, thencuT(u)~ is interesting. Moreover, €UT(u) = e,
thena(u) € {0,1}, since we assume th&t # ().

When v is interesting, we desire to make exact so we define; r(u) to be
xr,r(u). We make thesexpartite valuatiorxg be the interest status together with
the approximationy§ 5 (u) = (:(u), a(u)). The valuationy} . is also called theex-
partificationof x 1, z since it can be defined fromy;, alone. Thecanonical sexpartite
congruence-$. is defined from the valuation as for the ternary case.

5.1.1 The exactness property

When L and R are clear from the context, we often omit them as subscriptse
uninteresting equivalence classes3f/~° are just that: ifu is uninteresting, with
(t(u), a(u)) = (0, X), then for any extension, (:(u), a(v)) = (0, X). Thus, the only
transition inX*/ ~°® from an uninteresting equivalence class is to itself. Moegp
there are at most three such classes.

24

The approximationv(u) satisfies the following properties: if is interesting or
x(u) is not L, thena(u) = x(u) holds; otherwise, iz is uninteresting ang () is
1, thena(u) may take on any value if0, 1, L}. The fact thatx(u) = x(u) usually
holds—uwith the only possible exception being thét) is L for an uninteresting—is
called theexactness property

We note that ifu is uninteresting and.(u) is not_L, then it is possible, and some-
what counterintuitive, that for all the valuey(u - v) is L. Whena(u) # L holds, itis
only foru = cuT(u) that an extension is guaranteed to exist such thgt: - v) # L
holds.

5.1.2 Recoveringy® and x from o

In the following, we will be concerned only with the approxtion valuationn be-
cause of the following property:

Proposition 12 Let x° = (1,) be a sexpartite valuation. Then the following property
holds:

wu)=1 & 30" rafw-v°) =0 A a(u-v')=1

Thus, the approximation alone carries all the information of the sexpartite valorati
6
X -

We may even recuperatefrom a by using the operatox ; on valuations that for
aternaryy and a binary behaves according to

(x xLp)(u) = {X(U) if p(u)

=1
i if p(u) =0 ®)

We writex x| R to denotey x p, wherep is the characteristic function fak. Then,
it is easy to see that can be recovered from:

XLR =0LRr X1 R

5.2 Sexpartification algorithm

Let us consider some properties-of r through a study of the automatenrecogniz-
ing it. First, we note that the notions of “interesting,” tapting extension,” “rejecting
extension,” and “don’t care” extension apply to statesAods well. So, we can par-
tition the states ofd into at most four sets, namely the set of interesting statasd
three sets of non-interesting states. The non-interestitgjare:N!, which consists
of states allowing some accepting extension (but no reigaitension);N°, which
consists of states allowing some rejecting extension (bwatepting extension), and
N+, which consists of states allowing only don’t care extensicSome of these sets
may be empty; for simplicity, we assume that none is.

Second, we infer various properties from the definitioryefz. (1) N is a sin-
gleton set (assuming that is minimal). (2) The only transitions among these sets of
states are as followd: — N°, I — N, — N+ N° — N1 andN' — Nt, where

25

interesting

)
@"’ @
’ O nintresting
N |/
OO

Figure 4: The transition structure &/ ~ 1, g.

M — N means that there is some transition frdito N. Thus, Figure 4 illustrates
the structure ok*/ ~p, g.

With these observations, we can present an algorithm caéiggartificationthat
from A recognizingy,, r calculates an automat®EXA(A) recognizingxy, g.

First, we construct fron¥ a collapsedautomatonA’ by collapsing states in the
set N° to one state, which for simplicity we also call’. This state is defined to
have a transition to itself on all letters; in particulare thutgoing transitions, all of
which are toN -, are removed. (Of course, the removal of transitions is dsatith
the traditional ways of shrinking automata.) We do the saone\f'. If there are no
incoming transitions frond to N+, we removeN . Each of the at most three states
of the formNZ is labeledZ. Each interesting state, i.e. each staté,ikeeps its label.
This completes the construction 4f.

Second, we minimizel’ to obtainsSexP(A). The shape of this automaton is de-
picted in Figure 5.

Proposition 13 SexP(A) calculated through sexpartification from an automatbn
recognizingyr, r is the minimal automaton recognizing, r.

Proof We consider the collapsed automatéhsince the second step does not affect
what is recognized. We consider only the case where the estity is interesting.
(Other cases are simpler.) It follows that the initial statenteresting. From the def-
inition of x¢ 5, it can be seen that the state reachedlirover a wordu correctly
identifieSaL;R(u) as long as the run stays within When a letter is such that the
run of A’ overu - a leaves] on the transition om, v - a is uninteresting, and it can
be seen from the definition of} , thatcuT(u - a) = u - a. Moreover, theN -~ state
reached is such th& is the value ofv;, r(u - a). Finally, we have already argued that
the equivalence class@&* allow no outgoing transitions except to themselves. Thus,

26

uninteresting

interesting

Figure 5: The transition structure af* / ~9 .

A’ so constructed recognizes, r. O

We state a set of necessary and sufficient conditions foblesiang that an au-
tomatonA is a sufficiently good approximation gy, r for establishing that its sexpar-
tification is that ofar, !

Proposition 14 For establishingsexP(A) = ay, g, it is necessary and sufficient that
(i) for any interesting:, x ., r(u) = A(u) holds and (ii) for any minimal uninteresting
u, the following three conditions obtain

(N1) If LASTay, r(u) = N1, then there is an accepting extension foof u and no
rejecting extensions.

(NO) If LASTay r(u) = NV, then there is arejecting extension fband no accepting
extensions.

(NL) If LASTay r(u) = N+, then there are but don't care extensionsAor

Proof “<=" Condition (i) makesA behave just likec, r for interesting states and con-
ditions (N1), (NO), and (N.) ensure that uninteresting states are correctly identified
“=" (i) if wis interesting, thersEXP(A)(u) = ar r(w) = xr,r(u), butw will
also be interesting relative to the statesT A(u), and sexpartification will ensure that
A(u) = sexP(A). (i) (N1) Assume thatAsTay, r(u) = N' and thatu is minimal.
Then there is @& such thatyz r(u - v) = 1. Butsexp(A)(u - v) = ar g(u-v) =1,
so A(u - v) is also 1. A rejecting extensiom - v, i.e. one such that(u - v) = 0
would also be impossible sensasT(SEXP(A))(u) is also theN® state. (NO) is simi-

lar to (N1). (NL) SinceLASTA(u) is N+, there can be nosuch thatd(u-v) # 1. O

An automaton satisfying the conditions of the proposition is calledexpartite
automaton forl and R.

27

Proposition 15 (a) [X*/~§ | < [2*/~L & |-
(b) ~L r may notrefine~ ..

(c) Forinteresting stringsy . locally refines~%_’R, thatis, ifu is interesting, then
u ~r,r vimplies thatu ~§ . v.

Proof Items (@) and (c) follow from the sexpatrtification constioiet The property (b)
that~9 . is not coarser than 1, can be seen by construction ofiacorresponding
to someL andR such that there is a string- v with « bringing they-automaton into
a NO-state and withy from there driving the automaton into/é-state (which will
be unique). Also, there must be a strimgoringing the automaton into th&¥ *-state
without passing through any°-state. Theny - v ~, z w holds, butu - v ~$ w

does not hold, since after sexpartificationv leads to theV-state, butw leads to the
N-+-state. O

We shall later (in Section 8.2) introduce a propertyfbthat strengthens (c) such that
~r,r and~$§ p locally coincide.

5.3 Anexample

Consider the alphab& = {a,b}, R. = {w | |[w| =0 mod 3},andL, =a-a-¥*U
b-a-a-X* SinceR. is the set of strings whose lengthlisnodulo 3, it follows that

R, is thin. The automaton recognizirg. is shown in Figure 6, along with automata
for XLo,re @ndx$. .- Infigure, we have used diamond shapes for the states that are
labeledL. All states in the depiction oﬁc’ R are interesting, except for the states
NYandN'.

This example is constructed to show that after sexpartifinainteresting states
may no longer respeet i, even when the restriction is a thin language. (We have
already noted that the states pfrespect~pg, i.e. that~ r refinesR.) To see this,
consider the interesting-automaton stateg andq”, which correspond to different
~p, classes. They are fused as a result of sexpartification abecapren in the de-
piction of thex{ , p -automaton. Incidentally, this automaton is isomorphidtie
original one, except for the labeling of states. The exartipls shows how sexparti-
fication may, in lucky cases, completely undo the complaratf a restriction that is
conjoined to language.

6 Conjunctions of sexpartite representations

In order to normalize restrictions tB’ N R”, it is necessary to make further assump-
tions. We say that restrictio® and R” arecompatibleif the following holds:

Vu: (' :u-v" €eR)Y A (" :u-0"€R") = (Fv:u-ve RRNR")

Proposition 16 Any two restrictionsR’ and R” that are intersections of sets of the
form Rsingletors) @Nd Rs_restic(i) Of Proposition 11 are compatible.

Proof Left to the reader. O

28

|\l

Figure 6: Automata foL.c, xL..re > andxichc.

Becauseg can be recovered from(see 5.1.2), we may easily establish thatrn r/
= SEXP(ar,r X1 R x 1 R’). Butitis obvious to ask whether the product R is re-
ally necessary; intuitively, it appears to be the case tiairiformation is already built
into az, z. Although we will not need the result, we show that the praduth the
characteristic function oR in this identity is indeed unnecessary wherand R’ are
compatible:

Proposition 17 If R andR’ are compatible, then
ar, rnr: = SEXPaz,r X1 R').

More generally, if we replace, r with any sexpartite automatds for L andR, then
QL RNR' = SEXP(B X1 R/)

Proof We use the method of Proposition 14, whé&ef the proposition isz N R’ and
Aisap g %1 R'. (For the more general formulation, the argument is siméacept
thatar r is replaced byB. The exactness property and the notion of interesting remai
the same.)
Case(i): The stringu is interesting fo andRNR’'. We must show thatz, rnr/ (v) =
A(u). We note that is also interesting foi, and R; so, by the exactness prop-
erty, XLyR(u) = aL,R(u) holds. By definition OfXL,RﬂR/n we haVGXLyRmR/ (u) =
(XL,R X1 RI)(U) = (OéL7R X1 R')(u) ThUSaXL,RmR’ (u) = A(u) holds.
Case(ii) We now assume that is uninteresting and that~ is interesting.
SubcaséN1) Assume thatASTay, gar (u) = N1

First, we prove that there is an accepting extensiod iflom LASTA(u). Letwv
be such thak rrr/(u - v) = 1 (such aw exists becauseasTa(u) = N andu is
a minimal uninteresting string). Thusg,- v € RN R’ holds. In particulary - v € R
holds, and by the exactness propegty,r(u - v) = ar, r(u - v)=1 holds, whence we
infer that(ar, r x 1 R')(u-v) = 1. Thatis, there is an accepting extensiondin

Second, we prove that there is no rejecting extensiohfirom LAST(u). To do so,
we assume for contradiction that there is such tha{ar r x 1 R')(u-v) = 0.

Now, if - v is interesting foilL andR, thenxr r(u-v) = ar r(u-v) = 0 (because
of the exactness property and because we just assume@dthatx ; R')(u-v) =0

29

holds). Moreover, we know that- v € R’. Thus, we also havgr rnr/(u - v) = 0,
but that contradicts the assumption thasTay, grrs (u) = N1,

So, we may assume thatv is uninteresting fol. andR. But, sinceu is interesting
for L andR andu - v is not, there is @ such that: - @ is uninterestingy - @ is a prefix
of u - v, andu - 4~ is interesting. Moreover, there istasuch that - & - o € L N R,
because of the minimality of - 4 as an uninteresting string and becauger (v - @) is
also0 by definition of the approximation function. (For the morengeal formulation,
we note thatd(u - @) may be eitherl or 0.)

By assumption thatar, g x 1 R')(u - v) = 0, we have that. - v € R/, whence
we may findv’ such that - @ - v € R’. By the condition of compatibility, we find a
v suchthat -4 - o € RN R'. By the exactness property applied twice, we find that
XL,r(u-4-0) =1andxr ror (u-4-0) =0, thatisu- 4 - visin L and is notinL.
This is a contradiction. Thus, there is no rejecting extemsi
Subcase (NOJhis case is similar to that of (N1).

Subcase (M) Assume thatASTay, pnr (u) = N1. We must prove that every exten-
sion in A from LAST(u) is don't care. So, let be a string so thati(u - v) # L, say
A(u-v) =1. Thenu-visin R, butifu - v € R also held, then we could not have
LASTar pnre(u) = N+ by the exactness property; thus, v ¢ R holds.

By our assumptiomd(u - v) = 1, we infer thaiy, z(u - v) = 1 holds, and that - v
is uninteresting fol. and R—if w - v was interesting, then;, (v - v) should bel by
the exactness property, singe v ¢ R holds. But, since: is interesting for. and R,
we may find a: such that: - @ is uninterestingy - &~ is interesting, and - @ is a prefix
of u-v. Hencepy, r(u - @) is alsol (or, in the general case, possihly and there is a
v such that,-4-oisin LN R. Also, sinceu-v € R’, there isv’ suchthat-4-v" € R'.
By assumption of compatibility, we can then fifiduch that. - i - v isin RN R’. In
particular, since: - @.- v is in R, we have thak, z(u-@-0) = 1 by the exactness prop-
erty. Also, by the exactness property and the assumptidn sy, prg: (u) = N+
we have thak ;. rnr/ (v - @ - ©) = L, which is a contradiction. O

The condition of compatibility in Proposition 17 is necagsdo see this, consider
the languages, R, andR’ defined in Figure 7, where we have also shown the transition
structure of an automaton fd@r. Each state is labeled withor 0 according to whether
it accepts or not; additionally, each state is marked withrttembership status of a
string reaching the state with respectR@ndR’. The idea is to construgt, rnr’ SO
that thea, rnr/-automaton already onenters theV'! state, see Figure 8. It will do so
because after all extensions, except the empty string, lead to statesnBti R’ and
because: itself is in L, R, andR'. Intuitively speaking, the future has been restricted
to 1 except for most places, which are outside the restrictiorwohtrasto, r “sees”
more don't-care extensions of including some that af@ Thereforen, r only goes
into an uninteresting state after readingor ab. Moreover, we have arranged it so that
aaa is in R, but notinR (otherwise oz, rnr Would not enter théV'! state oru); this
is the source of the failure (fExP(az, g X1 R’) to become identical tour, rnr: as
can be seen in Figure 9. Technically, the compatibility rexquent fails for the string
aa: the empty extension brings it inf® and the extensioa brings it intoR’, but there
is no extension ofia that brings it into both.

30

b by

L=aUabUx*
o/ RN RNR R = $"\ax*
RAR R =eUaUbY* UadX*
X >
a
RNR o
S 8}:“”%
\%Rmfi’

Figure 7: An automaton for a langua@ilevhere restriction®2 and R’ are not compat-
ible.

=

OZ
(1)
N

QL RNR’ QLR

Figure 8: The approximation automata for

Proposition 18 ar/nr» g = SEXPlar g A® ar» g). More generally, if we replace
ars. r With any sexpartite automata®’ for L’ and R andar,» r With any sexpartite
automatonB” for L andR, thena . r = SEXP(B’ AL B").

Proof Again, we model our proof on Proposition 14. For notationalpdicity, let

a = apnp,r, & = ap r, anda” = ar» r. We use similar conventions for the
ternary valuationg, x’, andy”. (For the more general formulation, the argument is
similar, except that! is replaced byB’ anda” is replaced byB”. The exactness
property and the notion of interesting remain the same.)

Case (i)Let u be interesting. Therefore, thé-automaton on: is not in N+ and the
o'’-automaton is not itN--. Moreover,u is interesting for’ andR or for L andR;
assume the former, without loss of generality. Thefiu) = o/(u) holds. Sincex”
onw is notin N+, the following holds: ifa" (u) is L, thenu is notin R and if o (u)

is not L, thena’(u) = x”(u); in either case, we have thatu) = o’ (u) A3 o (u).
Case(ii). Let v be uninteresting withy~ interesting.

31

o
™

()
(L)

ol :
a K x a @K X
ap R X1 R SEXP(OéLyR X1 R/)

Figure 9: The approximation automatoen z x ; R’ and its sexpartification.

SubcaséN1) Assume thatASTay rnr (u) = Nt Then, thereis a such that(u-v)
is 1, whencey'(u - v) andx”(u - v) are also 1. By the exactness property, we infer
thato/(u - v) anda”(u - v) also are 1. Thus, there is an accepting extension for
ar/ R A3 Qr/ R.

Assume now for a contradiction that there issuch thata g (u-v) A2 g(u-
v)) = 0 holds. Thusqy/ r(u-v) andar r(u-v) are both 0. If they' -automaton has
entered theV' state after (in the general case, read M° state”) or after a longer
prefix of u - v, then there is & and a¢ such that - ¢ is a prefix ofu - v andwu - 0 - 4
isin L’ N R. But then,x(u - 9 - @) must be equal t6, which is inconsistent with the
subcase assumption thatsTay, rnr/(u) = N*'. So, thea’-automaton cannot enter
the NV state after. Consequently, and since we still assume thatr (u - v) = 0, the
stringw - © is interesting forL’ and R and, of course by similar reasoning, fbf and
R. Hence, we have that'(u - v) andx” (u - v) are both 0, but that contradicts again
the subcase assumption.
Subcas€NO) This case is similar to subcase (N1).
Subcas€N L) Assume thatASTay, gar/ (u) = N+. Then, for allv, u - vis notin R,
whenceu is uninteresting fol.” andR. In other words, both the’-automaton and the
«'’-automaton are in an uninteresting state after reading

Now fix v. We must prove thatar: g(u - v) A% apr g(u-v)) = L. So, the only
interesting cases are that both automata entered integesttites that are not-. For
example, we may assume that both entered\thestate (in the general case, read “an
N1 state”). (The other three cases are similar.) Then, thers exist a prefix:’ of
u such that' is uninteresting fol.’ and R and minimal for this property. A similar
uninteresting prefix” exists forL” andR. Without loss of generality, we may assume
thatu’ is a prefix ofu”. We know that for,”~ there are extensionsin bafiNL”" N R
andL’ N L" N R. Moreover, foru” all extensions are i or in L' N L N R and there
is an extension ik. Therefore, thex-automaton must enter thg' state onu. That
contradicts the subcase assumption. O

32

7 Sexpartite semantics for WS1S

We defing]4]° to be the approximation functiam for the ternary valuatiory = [¢]°.
The challenge is to calculate the approximation functioa obmposite formula from
those of its constituents. For basic formulas, the appréaekiident: we defing$]®

to be the automaton (or functiosexP([¢]*), where we adopt the convention that
sexpartification calculates the approximation functiaot, the sexpartite valuation, as
explained in the remarks after Proposition 13. The othezsase treated below.

7.1 Sexpartite negation

For negationp = —¢', we defing[-¢']® = —3[¢']°. There is an obvious automata-
theoretic algorithm for achieving this operation. It hofdsreasons of symmetry that

if [¢']° = sexP([¢']%), then[-¢]® = sEXK([~¢]*) = =°[¢']°.

7.2 Sexpartite conjunction

For conjunctionp = ¢’ A ¢, the case is more complicated, sineg]* and [¢"]?
may be based on different restrictions. Assume ffat Lprvigry, R’ = L prvigrmy,
and thatR = R' . N R" = Lprv(g). Moreover, definel’ = Ly, L” = Ly, and
L= L¢ = L¢/ ﬂL¢N.

We can express the semantics of conjunction according to:

[¢" A ¢"1° = sEXP(([#']° A® [¢"]°) x 1 p™(9)) (9)

This is correct: if[¢']® = oz r and[¢"]® = ar» g~ hold, then we have the follow-
ing identities:

SExP(([¢']° A% [¢"]°) x 1 P™(9))
= SExA(([¢']° x L pP™(@) A ([¢"]° x 1 P™(¢")))
SEXP((O(L/7R/ X1 RI) A3 (OzLH,RH X1 R”))
SEXP(XL’,R’ /\3 XL”,R”)
SExP([¢']° A° [¢"]°)
SEx®([4]°)
— [[(z)/ A (;5//]]6

7.3 Sexpartite projection

We fix an indexi as found in the existential quantificatign= ex2 P’ where p: ¢'.
To simplify notation, we writes for the stringu[i — M].

33

Proposition 19 For a given ternary valuatioy’ = x 1. r/, we definey = PROF %y’
andR = {u | x(u) # L}. Assume that there is sonf¥ with ' = RN R‘. Moreover,
assume that for att

ueER =VYVM:uMcR (10)

holds. Then these equalities between function hold:
x = PROJ"'Y’ = PROF*(SEXPY’ x| R") x, R
Proof We use the following notationt’ = SExPy’, R’ = RN R’ B’ = o/ x| R}, and
B = PrRoJ*B’. We must prove that = B x, R.
Claim 1 The following three properties hold:
i () # L= B'(u) = X' (u)

ii. ue R= B'(u) =x'(u)

ii. we R= B(u)=x(u)
Proof

i. Assume thaty’(u) # L holds. Then, we know by the exactness property that
o' (u) = x'(u) holds. Moreover, from assumptiof®% = RN R* andy’(u) # L,
we know thatu is in R?. Thus, we conclud®’(u) = (o/ x | R*)(u) = o/ (u) =
X' (u).

ii. Assume thatisin R. If u is also inR?, thenx’(u) # L, and we use (i). If. is
notin R, thenB’(u) = (o/ x R)(u) = L = x'(u).

iii. Assume thatu € R. Consider anyM. Thenu™ is in R by (10), so by (ii),
B'(uM) = x/(uM). Thus, according to the definition of projection, we obtain
that B(u) = x(u).

a

From (iii) of the Claim, we infer thag (u) = (B x . R)(u), since thex | -product with
R takes care of the situations wheris not in R.]

Then, the following identity holds:
[ex2 Piwhere p: ¢']% = SEXR(PROF([¢']6 x 1 p) x1 p™V(9)) (11)
To see the correctness of this identity, note tRat= {u | x(u) # L} is the set of
w such thatw F p®V(¢) (by Proposition 9(a)); similarlyR?’ = {u | x'(u) # L}
is described by™V(¢'). Additionally, R* can be chosen to be the set represented by

p. Thus,p™(¢') is equivalent tgp™V(¢) A p (Where for convenience we assume that
P? occurs ing’). Thus, the identityR’ = R N R’ holds. Also, the condition (10)

34

holds sincep™V(¢$) does not depend on thié-track. Thus, from the Proposition the
following equalities obtain:

SEXP(PROF ([¢/]6 x 1 p) x 1 V(@)
= SEXP(PROJP'(a/ x| R;) X1 R)
SEXP(PROJ ')
SExP([ex2 Pt where p: ¢'[?)
= [ex2 Piwhere p: ¢']°

8 The sexpartite decision procedure

Propositions 18 and 19 are not quite as appealing as we wigatddoth involve ex-
tensive normalization. Fortunately, for first-order d@nerestrictions, we can show that
the normalizations are superfluous or can be made compuddlfignexpensive.

8.1 Orthogonality of conjunctions of thin languages

In the sequel, we will often see that the state of fk@utomaton is implicitly de-
termined by the state of a sexpartite automaton. Sometikmesying the state- is
important, since a product construction with tReautomaton is to be carried out from
r. Since it is the goal to avoid the construction of the fiilautomaton, we need an
effective way of representing its states. We will take adaga of the following prop-
erty.

Proposition 20 Let R = R; N --- N R, where eaclR; is a thin language. & ~r v
and there is a such that, - w € R, thenforalli, 1 < i < n, it holds thatu ~p, v.

Proof Assume that. ~r v andu - w € R hold. Moreover, for a contradiction, assume
that for somei, u g, v holds. By assumption thak; is a thin language, either
u-w ¢ R;orv-w ¢ R; holds, whence from the faet- w € R;, we infer that
v-w ¢ R; holds. But then, we would have that w ¢ R, which contradicts the
assumptionsthat- w € R andu ~g v. O

The proposition entails that if we know that a statim an automatomd determines a
stater of the automaton foR (in the sense thatu : LASTA(u) = ¢ = LASTR(u) =

r) andr is not the rejecting sink state, therns determined by the tuple of states of the
Ri-automata.

8.2 Crispness

The identification of different interesting states (aftel@pse and minimization) that
we saw in the example of Section 5.3 makes it difficult in gahtr recover the state
of the R-automaton from the sexpartification. Fortunately, thisqdmenon does not
occur for the restrictions that we interested in.

Let us consider languagésand R as expressed through= x 1, r. Let us say that
stringu is readily distinguishedrom v if there is a lettern € X such that for alkw it
holds thatu - a - w ¢ R but there is ab such tha - a - w € R. Intuitively speaking,

35

the automaton foR? is in a non-accepting sink\° or N-+) after reading: - a, but it
goes into a state from where it can still accept after reading We say thaf? is crisp
if for all w andv with u £ g v, eitheru is readily distinguished from or v is readily
distinguished fromu.

Crispness ofR ensures that sexpartification does not merge interestitgssofy
that are not equivalent with respect-g;.

Proposition 21 Assume that? is crisp.

(@) ThenVu,v: ¢ r(u) A uNng = u ~p v holds.

(b) Moreover, ifR is also thin and. is interesting, them ~ r v < u ~§ v &
U ~rNR V.

(c) Consider the automatat for L N R and thea-automaton representing the ap-
proximation valuation fol, and R. Then there is a transition-respecting map-
ping f from the states ofi, except the rejecting sink state, to the states of the
a-automaton except for th&’® and N+ states. On this domain and codomain,
f is surjective.

Proof

(a) The proof is by contraposition. We assume tia) andu % v. If «(v) does
not hold, theru 74%7}{ v holds, becauséw) holds by assumption. Thus, we may
further assume thatv) holds. Letq’ be the state reached in theautomaton
onu, and letq” be defined similarly for. We may assume that it is that is
not readily distinguished from according to some letter. Then, it will be the
case thatq’,a, N*) and(q”, a, q) are transitions of thg-automaton, where
is different fromN L. Consequently, the statgsandq” are not united during
the minimization phase of sexpatrtification.

(b) The first bi-implication follows from (a) and Propositid.5(c). For the second
bi-implication, the direction= holds because - w € L N R if and only if
(u-w e Rand - w € Rimpliesu - w € L)) if and only if, by (a) and the
exactness property (sineeis interesting and the antecedent-% . v holds),
(v-we Rand @-w € Rimpliesv-w € L))ifand only ifv-w € L N R; the
direction< holds by virtue of Proposition 11(d), which relies on thing®fR.

(c) It can be seen that the subautomaton induced by the stitegestates of the
ar, p-automaton is identical, except for state labels, to a stapaaton ofA. (A
subautomaton maybe incomplete: for some states and laloadsitgoing transi-
tions may be defined.) Consequently, the notion of intergstiate makes sense
for A. And, we definef on the subautomaton &f so that it maps isomorphically
to the interesting states are seef p-automaton. A transition out of this set of
interesting states correspondsip r to a transition to thev!, N+, or NO state.

In the latter two cases, thé automaton proceeds to a rejecting sink state (this
is why f cannot map the rejecting sink state to a state okthg;-automaton).

In the first case, thel automaton state reached is mappedftip N!; so is ev-

ery other state, except the rejecting sink state, that teéareachable from this
state.

36

a

Part (c) of this Proposition is a key property: it tells ustthi@e automaton of the
conjunctive representation is the same as the automatbe separtite representation
except that the latter represents by at most three statemihieresting states.

Proposition 22 Any languageR C X* that is the conjunction ORs_restricys) fori < k
and Rsingletor(i) for i € S, whereS C {0,...,k — 1} and where the?*-track is used
to encode the variabl is crisp.

Proof We proceed somewhat informally by directly studying theoadtonA for R.

In particular, we fixc = 3 and we assume th&t= {1, 2}. The automatom! is shown
in Figure 10. We note that it has an accepting state, readhlgdhfier the firstl in the
$-track has occurred and after each of the first-order varithtks have seen exactly
one occurrence of & It also has a rejecting sink. The remainifgstates keep track
of which 1s have occurred for first-order tracks. All states excepsthk state has a
transition to the sink state in addition to a transition taa4sink state. O

Figure 10: The automaton for first-order ahwestrictions onP! and P2.

The two preceding propositionstell us that the sexpaejpeasentation of M2L(Str)
subformulas in an WS1S encoding is identical to the terngpyasentation, except for
the collapsing ofV# states in the ternary automaton. In particular, each istierg
state specifies the state of each restriction automators. faét will help us formulate
algorithms for conjunction and projection that avoid mogilit normalization.

37

8.3 Algorithm for conjunction

Given automata fot’ = ar/ r anda” = ar~ g, which are approximations based
on crisp, thin, and compatiblg’ and R”, a product automato® = (2, Q, o, —, \)
recognizingar/nr. rnr- €an be constructed as follows. We assume thatathe
automaton ig%, @', ¢;, —', \') and thea”-automaton g%, Q”, ¢, —",\"). The
languageR’ is represented by an automat@n, Qr, ¢%/, —r', Q%) and R” is rep-
resented by an automatdR, Qr, ¢%,, —r+, Q%). The state of the?’-automaton
that is a rejecting sink is denot@{jej (it exists by the assumption thaY is crisp); the
stater;,; of the R”-automaton is defined similarly.

By the above assumptions and Proposition 22(b), any integestateg’ of the o’-
automaton determines a stateof the R’-automaton; a similar observation holds for
thea//-automaton. We now let

Q=Q xQ" U Q xQr U Qrisx Q" U{N'N° N}

Assuming again that the initial states are interesting Ydcavarious special cases),
we letgo = (g, q¢)- To define the transition relatior of B, we introduce the relation
~'onQ' U (Qr\{r.:}) U{N° N1} defined according to:

rej

¢~'q it (¢,a,q) €= andd is interesting

q ' if (¢',a,4) €', ¢ istheN!-state, and” is determined by}’
¢~ Nt if (¢, a,q) €—" andq is the Nt -state

¢ ~'N° if (¢, a,q) €—'"andq is the N°-state

S it (r',a,7') €E-p ands’ £ rp;

S NE i (7 a,) €—p and? = Trei

Note that in the second line aboyeis notr/.; becausg’ is the N'!-state (andy’ thus

determines a state of thi¢/-automaton that is not, ;). The transition relatior~" on
Q" U (Qr\{rly}) U{N® N+}is defined similarly.
Now, define— of the automatoB to consist of the following transitions for a

lettera, wheres’ ~' §' ands” ~" &'

((s,8"),a,(8,8")) if s,s"¢{N°,N*-}and§' € Q ors” € Q")
((s',8"),a,N*) if & =NLtors =N+

((s',8"),a,N1) if s € Qgr ands” € Qr~

((s',8"),a,N°) if (& =NC%ands” # N+t)or (5" =NCands’ # N*)

Here, N°, N1, and N are sink states, for which takes on the valué, 1, and L,
respectively. For states of the forfa, ¢”’), we define\((¢/, ¢")) = N (¢’) A3 N'(¢").
For states of the fornig’, "), we definex((¢,7")) = N(¢), if v’ € QF,, and
M(d', ") = L, if v ¢ Q%,. As in the usual algorithmic treatment of product
automata, we consider in the following only the state®dhat are reachable from the
initial state.

38

Proposition 23 The automato®? constructed above recognizes nr r'nr~. More-
over, there is a surjective mapping from the reachable switehe non-minimized
product automaton fofZ N R’) and(L” N R"), except for the rejecting sink state, to
the reachable states 6f(except for one state).

Proof (Idea) Using the exactness property, we seethat, rnrr = (@' A3a") x|
(RRNR" = (¢ x. R") A3 (o x R’). Thus, it holds thatvp/nr» gpingr =
SEXP((a/ x R") A3 (o x, R')). Now using Proposition 17, we may evaluate
SEXP((a/ x 1 R") A3 (" x| R')) as

SEXP(SEXP(a’ x | R") A* SEXP(a” x | R')) (12)

To reflect the expressig®EXP(a’ x| R"”) A3 SEXP(a” x| R’) in (12), we make an
automatonC' based on tuples of the forif{¢’, "), (¢”, ")) when states/ and ¢”
are both interesting. The state’sandr” are determined by’ andq”, respectively.
The assumption of compatibility ensures that if bgthand ¢” are interesting then
(¢',r") of o/ x, R" is also interesting. The pafy/’, ") can be viewed as a state of
SEXP@’ x; R') because the interesting partof x; R” is locally isomorphic to
SEXP(a’ x R") (due to crispness and thinness and Proposition 21(b)).

But sincer’ andr” are determined already by andq”, respectively, we may
generate an isomorphic subautomaton for states of the farm"’), (¢”, r')) by just
considering tuples of the for@’, ¢”'). This is how the automataB acts for interesting
states: it simulate€’. We note that during the construction of ¢ x Q”-part of the
state space aB it is possible to simultaneously keep track of the deterchiri@ndr”
states—information that is needed in some cases wheng” turn to N'! states. We
omit a detailed discussion, but we remark that this auyiliaformation is needed only
for the frontier or queue of not-yet-fully explored prodgtates; the information does
not need to be stored along with the states.

We are not done describing the simulation. Say that on soamsition the pair
(¢',q") becomesq’, ¢") with ¢’ being theN!-state andj” still interesting. The sex-
partification ofa’ x | R” then yields anV!-state as well. Therefore, the automaton
enters a stateéV'!, (¢”,#')). Thus, to continue simulating th& automaton using pairs,
we let theB automaton enter the staf#, ¢); this is explained in detail through the
rules that define its transitions. If instead a transitiansdq’, ¢’’) into (¢’, ") with ¢’
being theN-state, the the simulation of th& automaton may be stopped, since the
outer sexpartification in (12) will yield either aN® or an N state. Other cases are
explained in a similar vein.

Finally, the surjective mapping from the product automaibthe conjunctive se-
mantics is constructed from the mappinffsand f” that exist according to Proposi-
tion 21(c). O

8.4 Algorithm for projection

To formulate an algorithm for projection that largely do@gag with normalizations,
we substitute the identitproF*A = BPROF(FUT??A) of Proposition 10 in the

39

reformulation of projection in Proposition 19. Thus, owartihg point is the identities

arr = SEXP(PROP'\L/ Rrr)
= SEXP(PROF*(ar/ r X1 R') x| R)
SEXP(BPROF(FUT* (o s X1 RY)) X1 R)

where we use the notations of Proposition 19. The challeng® ¢onstruct a subset
automatonE recognizingePROF‘(FUT*(ar, rr x 1 RY)) and to avoid the subse-
quent product< ; R. To do so we focus on representing. - x| R’ as an equiva-
lent automatornD. We note that each interesting statef the o/-automaton (where
o' = ay/ p) determines a staté of R'. So, in analogy with the construction of the
automaton for conjunction, we may omit in the explicit construction of pairs cor-
responding tav; r x 1 R'. And, when then . r/-automaton exits to awv!-state,
the automatorD simulatesR’ whose rejecting states are then relabeledA state
from this copy of R’ is denoted-, . Similarly, when thex . r--automaton exits to
an N°-state,D also simulates?’, but the accepting states are now labelezhd the
rejecting states are labeleld. A state from this copy of®’ is denotedr’ . When
o, pr-automaton exits tov 1, D also enters & --state. To avoid thec; R product,
we note that any subset @f containing an interesting stageof o’-automaton deter-
mines the state of R; also, any subset containing no interesting states canpiecesl
by someN“4-state, and thex | R-product is again unnecessary, because of the outer
sexpartification. Thus, the effect of the, R-product can be effectuated by a simulta-
neous traversal of the subset automaton and the autom@atehere subset states not
satisfyingR are labeled.. We also note that if a subset contains say béthand N -
then N+ can be removed without changing the accepted language;geaezally, we
may prune all subsets states so that they contain at mostoommteresting state.

Proposition 24 Given the assumptions of Proposition 19 and the furtherragan
that restrictions are crisp and thin and that the automatdescribed above recognizes
SEXP(PROP \ 1/ /).

Moreover, the number of states Bfis at most\V - 2/%:+1 whereN is the number
of subset states encountered when determinigimgoJ (FUT®‘F'), where F' recog-
nizesL' N R'.

Proof (Idea) We have already outlined the reasons why the abow&rcation is cor-
rect. As regards the size df, we study the partial mapping from states of the
automaton?’ recognizingL’ N R’ to states of thex’-automaton that exists according
to Proposition 21(c). We note that this mapping is undefinglgt tor the rejecting
sink stateg,.; of F, since there are two corresponding stafg8,and N, in the/-
automaton.

We may define a mapping that maps stateg of F' to subsets of” defined as
follows: if ¢ is interesting then ley(q) = {¢'}; if ¢ is not interesting, but allows
an accepting extension, then l€tbe the state of thé‘-automaton determined (by
Proposition 11(d) and Proposition 20) and () = {r}; and if ¢ is g.cj, then
g(q) = {NL,N°Y U {rl) | r* # rw;}. Then, for any string:, the subsetV of states
of E reachable o is related to the subsat of reachable states LT3 F onu:

N = Ugemo(q)

40

for some functiors that selects a nonempty subsetgd§), whereq € M. The nu-
meric bound of the proposition follows from combinatoriabperties ofy: only onegq
is mapped to a non-singleton set and that sef Rgs+ 1 members. O

8.5 The sexpartite decision procedure compared

Theorem 2 For first-order an@-restrictions, WS1S can be decided in a way such that

(a) The sizes of the intermediate automata occurring duhiagexpartite decision
procedure are at most those of the conjunctively normalsssdantics, except
for the subset construction (and before minimization), rehthe automata of
the sexpartite decision may be up to 32 times bigger. Thegadsoignore an
additive constant of.

(b) The conjunctively normalized automata may be expoa#wtbigger than the
sexpartite automata.

Proof

(a) Thatthe property holds for minimized automata follovesri Proposition 21(b).
The bounds on the number of states come from Proposition 83Panposi-
tion 24, where we have used the fact that the bigg¥sautomata stem from a
simultaneou$-restriction and a first-order restriction, which yield ari@amaton
with 4 states. Thus, the factor of Proposition 221! = 32.

(b) It suffices to consider a subformula of the formy, vars = ((--- (p* = p?

& ---)&p’ = p?), where each’ is a first-order variable. The sexpartite automa-
ton has one state, namely ai' state, whereas the automaton for the conjunc-
tively normalized semantics has-+ 2 states. To see this, fgr= 2, contemplate
the automaton of Figure 10, which is identical to the autamatbtained under
the conjunctively normalized semantics and which 2as- 2 = 6 states. The
sexpatrtification for this formula operates on the same aatomexcept that the

5 rejecting states are turned intestates. Consequently, a singlé state arises
from the collapse.

9 In practice

We showed experimental evidence in [8] that WS1S could bastsafway to decide
string-theoretic problems as M2L(Str) but only after sames solving by hand state
explosion problems like the one discussed in Section 2.4.

Since June 1998, the Mona tool has been based on the terngaptes for WS1S,
and our state explosion problems stemming from running N2i) formulas through

41

WS1S have disappeared. Moreover, with a default relatidizanechanism that we
have added to Mona, M2L(Str) formulas can be directly embddd WS1S. The run-
ning times under these semantics is in all non-contriveds#se same (to within 5%
or so) as for the ad hoc semantics we used before. (In prasteeaised first-order
relativizations that are not thin languages, but which gsjmilar properties.) Thus,
we can state that also from a practical point of view the tepies presented here solve
both the translation problem and the first-order semanticblpm. We have not yet
implemented the sexpartite semantics.

Future work should look at factorization techniques thatildde more generally
applicable. Consider for example the formuta= Q & P15t vars, Wheredigs—vars
simply introduces a numbgrof first-order variables (as described in the proof of The-
orem 2). This formula produces automata with a number oéstakponential iry,
even under sexpartification.

Also the sexpartite semantics should be investigated ictipeg the factor 32 blow-
up of subset automata before minimization may turn out to tiearetical limit that
is never encountered in practice—perhaps, a tighter aisalil show that it is too
pessimistic.

Acknowledgements Anders Mgller implemented the ideas presented here andiloated
many useful insights. Jacob Elgaard found exploding Mok ¢dmm which the parity example
was derived. Ken McMillan kindly discussed relativizatissues with me. | thank the referees
for their many positive and detailed encouragements to tetaphe job. Glenn Bruns asked
pointed questions that led to many improvements. The paiefthe editor, Olivier Danvy, is
also kindly acknowledged.

References

[1] A. Ayari and D.A. Basin. Bounded model construction foomadic second-order logics.
In Computer Aided Verificatigrpages 99-112, 2000.

[2] D. Basin and N. Klarlund. Automata based symbolic re&sgin hardware verification.
Formal Methods in System Desjgrages 255-288, 1998. Extended version of “Hardware
verification using monadic second-order logi€dmputer aided verification : 7th Interna-
tional Conference, CAV '98,NCS 939, 1995.

[3] J. Bell and M. MachoverA Course in Mathematical LogidNorth-Holland, 1977.

[4] R. E. Bryant. Symbolic Boolean manipulation with ordgreinary-decision diagrams.
ACM Computing survey24(3):293-318, September 1992.

[5] J.R. Buchi. Weak second-order arithmetic and finiteomata. Z. Math. Logik Grundl.
Math., 6:66-92, 1960.

[6] C.C. Elgot. Decision problems of finite automata desigd eelated arithmeticsTrans.
Amer. Math. So¢98:21-52, 1961.

[7] J.G. Henriksen, J. Jensen, M. Jgrgensen, N. Klarlund®dge, T. Rauhe, and A. Sand-
holm. Mona: Monadic second-order logic in practice. Twols and Algorithms for the
Construction and Analysis of Systems, First Internationdirkshop, TACAS 95, LNCS
1019 1996.

[8] A. Mgller J. Elgaard, N. Klarlund. Mona 1.x: new technegufor WS1S and WS2S. In
Computer Aided Verification, CAV '98, Proceedingslume 1427 oL NCS Springer Ver-
lag, 1998.

42

9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

P. Kelb, T. Margaria, M. Mendler, and C. Gsottberger. Elos flexible toolset for Monadic
Second-order Logic. I€omputer Aided Verification, CAV '97, ProceedingbICS 1217,
1997.

N. Klarlund. Mona & Fido: the logic-automaton connectiin practice. InCSL '97
ProceedingsLNCS 1414, Springer-Verlag, 1998.

N. Klarlund and A. Mgller. MONA Version 1.3 User Manual BRICS, 1998. URL:
http://www.brics.dk/mona

Nils Klarlund, Anders Moller, and Michael |. Schwartth. MONA implementation se-
crets.International Journal of Foundations of Computer Sciert#(4):571-586, 2002.

A. Mgller and M. Schwartzbach. The Pointer AssertiorgicoEngine. InProceedings of
ACM SIGPLAN Conference of Programming Language Design ieapteimentation2001.

M. Smith and N. Klarlund. Verification of a sliding windoprotocol using I0A and
MONA. In FORTE/PSTV 2000: IFIP TC6 WG6.1 Joint International Coefee on
Formal Description Techniques for Distributed Systems &umnmunication Protocols
(FORTE XIlII), and Protocol Specification, Testing, and feation (PSTV XX)pages 19—
34. Kluwer Academic Publishers, 2000.

H. Straubing.Finite Automata, Formal Logic, and Circuit Complexitgirkhauser, 1994.
W. Thomas. Languages, automata, and logic. In G. Razgnand A. Salomaa, editors,

Handbook of Formal Languageshapter Languages, automata, and logic. Springer Verlag,

1997.

B.A. Trakhtenbrot. Finite automata and the logic of qu&ce predicatesSib. Math. J
3:103-131, 1962. In Russian. English translatidMS Transl. 59 (1966), pp. 23-55.

N. Vaillette. Logical specification of finite-state treductions for NLPNatural Language
Engineering 9(1), 2003.

43

