Symbolic model checking

Why?

Saves is from constructing a model's state

spad&ffective " cure” for state space explo-
sion problem.

How?

Sets of states and transition relations are rep-

resented by formulg, and set operations are
defined in terms of formula manipulations.

Data structures

BDDs - allow for efficient storage and manip-
ulation of logic formulas.

71

Symbolic Model Checking

- A system state represents an interpretation
(truth assignment) for a set of propositional
variables V.

- Formulas represent

sets of states that

satisfy it é 6
a - set of states in which

a is true - ({so,s1})

b - set of states in which

b is true - ({s1,s2}) %

aVb = {so,s1,82}

- State transitions are described by relations
over two sets of variables, V (source state)
and V' (destination state)

Transition from sy to s3 is described by (—ma AbA —=a’ A
—b).

Transition from sg to s1 and s, and from s; to s>
and to itself is described by (a A bJ.

Relation R is described by (a Ab)V (ma AbA—a’ A=b")

72



Symbolic model checking

(Cont’d)

The meaning for CTL formulas can be rede-
fined in terms of sets of states:

sEf

s = ~f
s=fvg

s =EXf

s = AXf

s = E(fUg)

iff
iff
iff
iff
iff
iff

s € f where feV

se€~f

se€(fVvyg)

se (AVI(RA f(V/V))
se-~FVI(RA=f(V/V")))
s g-fg Vv (f NEXy))

s =A(fUg) iff s@gfgV (fAAXy))

73

Example: M, s, = E(aU—b)

N

1. Model

@/

o

3.~bV (aA EX E[aU ~b])

@ Q/

N
i
o

NN

4.~bV (aNEX E[aU ~b]) V (a A EX EX E[a U~b])

74



Symbolic Model-Checking

Procedure MC(p)

Case

peEA

P =
P=pAY
p=¢Vy
p=EXgp
p=AXyp
p = E[pU4y]
p = AlpUd]

Algorithm

return p

return (S — )

return (o N)

return (p U )

return pre(yp)

return (S — pre(S — ¢))
Qo=10

Qi+1 =QiU(V (p N EXQi))
return @, when Q, = Qn41
Qo=190

Qit1 = QiU V (p N AXQ:))
return @, when Q, = Qn41

where pre(Q) = {s |t € Q@ AN (s,t) € R} (all
states that can reach elements in Q in one

step).

75

Symbolic Model-Checking
Algorithm on BDDs

Procedure MC(p)

Case

pEA

P =g
P=@AY
p=eVy
p=EXgp
p=AXp
p = E[eU4y]
p = AlpUr]

return Build("p")
return Apply('=', MC(p))
return Apply('A’, MC(yp), MC(%))
return Apply('A', MC(p), MC(%))
return Quantify (V’,
Apply (‘A', R, Prime(MC(y)))
return Apply('—', MC(EX —¢))
Qo = Build("L")
Qi+1 = Apply('V', Qi, Apply('V’, MC(¥),
Apply ('A", MC(¢), MC(EX Q:))))
return @, when Qn = Qn+1
Qo = Build('L")
Qi+1 = Apply('V', Qi, Apply('V', MC(¥),
Apply (' A', MC(yp),
Apply ('A', MC(EX Q;), MC(AX Q:)))))
return @, when Qn, = Qn41

76



Abstractions

Effective model-checking is impossible with-
out the use of abstraction!

e "Machete style”: decrease the number of
processos, decrease the desired length of counter-
example, etc.

— Advantages:

— Disadvantages:

e Remove variables that are not important to
the property being verified (slicing)
— One problem: non-determinism

e Abstract " big" variables (integes, large ranges)
with variables with smaller ranges.

— Replace integers with bits, bytes, if possi-
ble

— Boolean predicates (z > 0 — PossX())

— Modulo arithmetic

— Any other criterion that correctly charac-
terizes the property at hand

A lot of research work on property-preserving
abstractions. Still, the burden is largely the
developer’s.

7

Pros and Cons of Model-Checking

e Often cannot express full requirements

— instead, check several smaller properties
e Few real systems have sufficiently small state
space to allow direct checking

— must generally abstract them or "down-
scale” them. Abstractions may enable check-
ing systems with virtually unlimited number
of states
e Largely automatic and fast
e Produces counterexamples
e Can handle systems with 100-200 state vari-
ables
e Generally used for debugging rather than as-
surance
e Usually, find more problems by exploring all
the behaviors of a downscaled system than
by testing only some of the behaviors of full
system.

78



