Mutual Exclusion Adgain

st — status of the process (critical seatjcor
not, or trying)
other-st — status of the other process
turn — ensures that they take turns

MODULE main
VAR
prl : process prc(pr2.st, turn, 0);
pr2 : process prc(prl.st, turn, 1);
turn : boolean;
ASSIGN
init(turn) := 0;
--safety
SPEC AG!((prl.st = c) & (pr2.st
--liveness
SPEC AG((pri.st = t) -> AF (pril.st
SPEC AG((pr2.st = t) -> AF (pr2.st
--no strict sequencing
SPEC EF(prl.st = ¢ & E[prl.st = c U
(lpri.st = c &
E[! pr2.st = ¢ U prl.st = ¢ 1)1)
39

c))

c))
c))

Model (Cont’d)

MODULE prc(other-st, turn, myturn)
VAR
st : {n, t, c};

ASSIGN
init(st) := n;
next(st) :=
case
(st = n) : {t, n};
(st = t) & (other-st = n) : c;
(st = t) & (other-st = t)
& (turn = myturn) : c;
(st = ¢c) : {c, n};
1 : st;
esac;
next (turn) :=
case
turn = myturn & st = ¢ : !turn;
1 : turn;
esac;

FAIRNESS running
FAIRNESS !(st = c)
40

41

Comments:

e The labels in the slide above denote the
process which can make the move.

e Variable turn was used to differentiate be-
tween states s3 and sg, SO we now distinguish
between ct0 and ctl. But transitions out of
them are the same.

e Removed the assumption that the system
moves on each tick of the clock. So, the
process can get stuck, and thus the fairness
constraint.

e In general, what is the difference between

the single fairness constraint Y1 A ¥ A . ./\ ¥n
and n fairness constraints 1, ¥y, etc., written

on separate lines under FAIRNESS?

42

Notion of Fairness

Fairness: a path p is fair w.r.t. property v if
1 is true on p infinitely often.

We may want to evaluate A and E constraints
only over those paths.

Example: each process will run infinitely of-
ten; a process can stay in a critical section
arbitrarily long, as long as it eventually leaves.

Two types of fairness: simple

Property ¢ is true infinitely often.
and compound

If ¢ is true infinitely often, then 1 is also
true infinitely often.

SMV can deal only with simple fairness.

43

Formal Definition of Fairness

Let C = {¥1,v¢o,...,¥n} be a set of n fairness

constraints. A computation path sg, sy, 1S
fair w.r.t. C if for each i there are infinitely

many j s.t. s; = 4, that is, each ; is true
infinitely often along the path.

We use Ags and E for the operators A and E
restricted to fair paths.

EcU, E¢G and EgX form an adequate set.

Also, a path is fair iff any suffix of it is fair.
Finally,

EclpUy] = E[pU(y A EcGT)]

EcXé = EX(¢ A EGGT)

We only need an algorithm for EoGég.

44

Algorithm for EoG¢

e Restrict the graph to states satisfying ; of
the resulting graph, we want to know from

which states there is a fair path.

e Find the maximal strongly connectednco
ponents (SCCs) of the restricted graph;

e Remove an SCC if, for some ;, it does not
contain a state satisfying ;. The resulting
SCCs are the fair SCCs. Any state of the
restricted graph that can reach one has a fair
path from it.

e Use backwards breadth-first searching to find
the states on the restricted graph that can
reach a fair SCC.

Complexity: O(n x |f| x (S 4+ |R]|)) (still linear
in the size of the model and formula).

45

Guidelines for Modeling with SMV

e Identify inputs from the environment.

e Make sure that the environment is non-
deterministic. All constraints on the environ-
ment should be carefully justified.

e Determine the states of the system and its
outputs. Model them in terms of the environ-
mental inputs.

e Specify fairness criteria, if any. Justify each
criterium. Remember that you can over-specify
the system. Fairness may not be implementable,
and in fact may result in no behaviors.

e Specify correctness in CTL. Comment each
CTL property in English.

e Ensure that CTL properties are not sat-
isfied vacuously. That is, each universally-
quantified property should be paired up with
an existentially-specified property. Also check
that LHSs of implications are not always false.

Examples:
AG (a) —
AG (a — b) —
46

Binary Decision Diagrams

BDDs, OBDDs, ROBDDs

Operations

Model-Checking over BDDs

Readings: 6.1-6.3 of Huth, Ryan

Representation of Boolean Functions

47

Boolean Functions

Boolean functions: B = {0, 1},
f -Bx . X B—B

Boolean expressions:
ti=z|O|1|—-t|tAt|tVE|t—tt—t

Truth assignments: p,
[’U]_CC]_, '1)2/$2, Tt ,’Un/.'En]

Satisfiable: Exists p s.t. t[p] =1

Tautology: Forall p, t[p] =1

48

Truth Tables

TYz | — Y, 2

000
001
010
011
100
101
110
111

P, OOH,OFO

f(z1,- - 2n)

=

2" entries

49

What is a good representation of
boolean functions?

Perfect representation is hopeless:
Theorem 1 (Cook’'s Theorem)
Satisfiability of Boolean expressions is NP-
complete.
(Tautology-checking is co-NP-complete)
Good representations are

compact and

efficient
on real-life examples

50

Combinatorial circuits

1 A
\—’ v —
- _bnorj
Ia A __’
v —
_bnorj
12
1 R -
n '
=
| — A
o =] ==t
=
2

Are these equivalent? Do they represent a

tautology? Are they satisfiable?

51

Shannon Expansion
Def: z — yo,y1 = (= A yo) V (mx A y1)

x is the test expression and thus this is an
if-then-else.

We can represent all operators using if-then-
else on unnegated variables and constants O(false)

and 1(true). This is called INF.

Shannon expansion w.r.t. z:
t=ux — t[1/x],t[0/x]

Any boolean expression is equivalent to an ex-
pression in INF.

52

Example

t=(z1 < y1) N (2 & yp). Represent this in
INF form with order z1,y1, 2, ys.

t=x1 —t1,%0
to =y1 — 0,to00

(since z1 =1,y1 =0 —t=0)
t1 =y1 — 11,0

(since z11 =0,y17 =1 —-t=0)
too = z2 — too1, tooo
t11 = x2 — t111, %000
tooo =y2 —+ 0,1 (r1 =0,y1 = 0,20 = 0)
topor = y2 —+ 1,0 (r1 =0,y1 =0,20 =1)
t110=y2— 0,1 (z1=1,y1 =1,20 =0)
t111 =y2 — 1,0 (r1=1,y1=1,20=1)

53

Decision Tree:
— 1 branch

~~~ 0branch

Lots of common subexpressions:
- identify them!

BDDs — directed acyclic graph of Boolean ex-
pressions. If the variables occur in the same
ordering on all paths from root to leaves, we
call this OBDD.

54



Example OBDD

OBDD for (z1 < y1) A (22 < yo) with order-
ing z1 <y <zo <yYp

If an OBDD does not contain any redundant
tests, it is called ROBDD.

55

ROBDDs

A Binary Decision Diagram is a rooted, di-
rected, acyclic graph (V,E). V contains (up
to) two terminal vertices, 0,1 € V. v € V\{0, 1}
are non-terminal and have attributes var(v),
and low(v), high(v) € V.

A BDD is ordered if on all paths from the root
the variables respect a given total order.

A BDD is reduced if for all non-terminal ver-
tices u,wv,

1) low(u) # high(u)

2) low(u) = low(v), high(u) = high(v), var(u)
= var(v) implies u = v.

56



ROBDD

B @

Examples

jr

7 i bt
i | P
| | -

4 1 &

'y

ol el

reducedness
7
@)
5.7 \6
(z) ,

4
Y4 4 o
~ &
2 -
-
>

i

2 7 N3

-

@) )
* -

=

(1 & xz2) A (23 & 24)

57

Canonicity of ROBDDs

Lemma 1 (Canonicity lemma) For any func-

tion f : B" — B there is exactly one ROBDD

b with variables z; < zo < -+ <z, such that
tb[vl/xla T ,Un/wn] = f(v1, -, vn)

for all (vy,...,vn) € B™.

Conseguences:
- b is a tautology if and only if b=
- b is satisfiable if and only if b # @

58



But.”

The size of ROBDD depends significantly on
the chosen variable ordering!

Example: ROBDD for (z1 © y1) A (20 & o)
with ordering z1 < 2 < y1 < Y2

Under ordering z1 < y1 < 22 < yp had 6 nodes.

59

Furthermore...

e The size according to one ordering may be
exponentially smaller than another ordering.

e Figuring out the optimal ordering of vari-
ables is co-NP-complete.

e Some functions have small size independent
of ordering, e.g. parity.

e Some functions have large size independent
of ordering, e.g., multiplication

60



Implementing BDDs

{root: integer; var, low, high: array of inte-

ger;}

var low high
o| 7 ? ?
1| 7 ? ?
2| 4 1 0
3| 4 0] 1
4| 3 2 3
5| 2 4 0
6| 2 0 4
7 1 5 6

61

Helper Functions: Makenode and
Hashing

Makenode ensures reducedness using a hash
table
H:(,l,h) > u

Makenode(H, max, b,i,l,h)
if ] = h then return |
else if member(H,1i,l,h)
then return lookup(H,i,l, h)
else max «+ max + 1
b.var(max) <« i
b.low(max) «+ 1
b.high(max) < h
insert(H,1,l,h, max)
return max

0N RWNH

62



Build

Build: Maps a Boolean expression t into an Build Example

ROBDD. (z1 fi' T,1)
function Build(t) (0 & z2,2) (16 22)
1: H «+ emptytable; max < 1 P

3: return b

function build'(t, i) R
if i > n then (z2) (z5)

if ¢ is false then return 0O
else return 1 E

1

2

3

4: else [ < build’(t[0/z;],1 + 1)

5: h « build’(t[1/z;],i + 1)

6 return makenode(H, max, b,i,l,h)

63 64



Boolean Operations on ROBDDs
Ordering: z1 < -+- < xp,

(z; = l1,10) op (x; — h1,hg) =
z; — (11 op h1), (lo op hg)

op

(as) (a)
A A
() On () Om

(z:)
g ey
(O Onm 6O Om

65

Boolean Operations on
ROBDDs(Cont’'d)

If ¢; <
(z; = l1,l0) op (zj — h1,hg) =
z; — (I3 op (x; — h1,hg)),
(lo op (z; = h1,hg))
op

(&) (ay)

AN
6O Ounl On

(z:)
ggop@\ glop@\
() Omun( Cm

66



Function Apply

Used to perform operations on two ROBDDs.

Example:

Can be either recursive or using dynamic pro-
gramming.

67

Other Operations on ROBDDs

Restrict — blv/z]"”

given a truth assignment for x, compute ROBDD

for b

Size — size(b) = |{p | blp] = 1}|
"number of valid truth assignments”

Anysat — anysat(b) = p, for some p with b[p] =1
"give a satisfying assignment”

Compose — compose(b,z,b') = b[z/V']
"substitute ¥’ for all free occurrences of z”

Existential quantification — Jz.b = b[x/0] V
bz /1]

Using dynamic hash-table implementation, can
get amortized cost for operations to be O(1).

68



Representing Boolean Functions

Representation of

boolean functions compact? satisf'ty validity
Prop. formulas often hard hard
Formulas in DNF sometimes easy hard
Formulas in CNF sometimes hard easy
Ordered truth tables | never hard hard
Reduced OBDDs often easy easy
Representation of
boolean functions A \Y, =
Prop. formulas easy easy easy
Formulas in DNF hard easy hard
Formulas in CNF easy hard hard
Ordered truth tables hard hard hard
Reduced OBDDs medium medium easy
69

Uses of ROBDDs

Symbolic reasoning about:
e Combinatorial circuits
e Sequential circuits
e Automata
e Program analysis (theorem-proving)

and

e Temporal logic model checking

70



