Mutual Exclusion Adgain

st — status of the process (critical seatjcor
not, or trying)
other-st — status of the other process
turn — ensures that they take turns

MODULE main
VAR
prl : process prc(pr2.st, turn, 0);
pr2 : process prc(prl.st, turn, 1);
turn : boolean;
ASSIGN
init(turn) := 0;
--safety
SPEC AG!((prl.st = c) & (pr2.st
--liveness
SPEC AG((pri.st = t) -> AF (pril.st
SPEC AG((pr2.st = t) -> AF (pr2.st
--no strict sequencing
SPEC EF(prl.st = ¢ & E[prl.st = c U
(lpri.st = c &
E[! pr2.st = ¢ U prl.st = ¢ 1)1)
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c))

c))
c))

Model (Cont’d)

MODULE prc(other-st, turn, myturn)
VAR
st : {n, t, c};

ASSIGN
init(st) := n;
next(st) :=
case
(st = n) : {t, n};
(st = t) & (other-st = n) : c;
(st = t) & (other-st = t)
& (turn = myturn) : c;
(st = ¢c) : {c, n};
1 : st;
esac;
next (turn) :=
case
turn = myturn & st = ¢ : !turn;
1 : turn;
esac;

FAIRNESS running
FAIRNESS !(st = c)
40
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Comments:

e The labels in the slide above denote the
process which can make the move.

e Variable turn was used to differentiate be-
tween states s3 and sg, SO we now distinguish
between ct0 and ctl. But transitions out of
them are the same.

e Removed the assumption that the system
moves on each tick of the clock. So, the
process can get stuck, and thus the fairness
constraint.

e In general, what is the difference between

the single fairness constraint Y1 A ¥ A . ./\ ¥n
and n fairness constraints 1, ¥y, etc., written

on separate lines under FAIRNESS?
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Notion of Fairness

Fairness: a path p is fair w.r.t. property v if
1 is true on p infinitely often.

We may want to evaluate A and E constraints
only over those paths.

Example: each process will run infinitely of-
ten; a process can stay in a critical section
arbitrarily long, as long as it eventually leaves.

Two types of fairness: simple

Property ¢ is true infinitely often.
and compound

If ¢ is true infinitely often, then 1 is also
true infinitely often.

SMV can deal only with simple fairness.

43

Formal Definition of Fairness

Let C = {¥1,v¢o,...,¥n} be a set of n fairness

constraints. A computation path sg, sy, 1S
fair w.r.t. C if for each i there are infinitely

many j s.t. s; = 4, that is, each ; is true
infinitely often along the path.

We use Ags and E for the operators A and E
restricted to fair paths.

EcU, E¢G and EgX form an adequate set.

Also, a path is fair iff any suffix of it is fair.
Finally,

EclpUy] = E[pU(y A EcGT)]

EcXé = EX(¢ A EGGT)

We only need an algorithm for EoGég.
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Algorithm for EoG¢

e Restrict the graph to states satisfying ; of
the resulting graph, we want to know from

which states there is a fair path.

e Find the maximal strongly connectednco
ponents (SCCs) of the restricted graph;

e Remove an SCC if, for some ;, it does not
contain a state satisfying ;. The resulting
SCCs are the fair SCCs. Any state of the
restricted graph that can reach one has a fair
path from it.

e Use backwards breadth-first searching to find
the states on the restricted graph that can
reach a fair SCC.

Complexity: O(n x |f| x (S 4+ |R]|)) (still linear
in the size of the model and formula).
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Guidelines for Modeling with SMV

e Identify inputs from the environment.

e Make sure that the environment is non-
deterministic. All constraints on the environ-
ment should be carefully justified.

e Determine the states of the system and its
outputs. Model them in terms of the environ-
mental inputs.

e Specify fairness criteria, if any. Justify each
criterium. Remember that you can over-specify
the system. Fairness may not be implementable,
and in fact may result in no behaviors.

e Specify correctness in CTL. Comment each
CTL property in English.

e Ensure that CTL properties are not sat-
isfied vacuously. That is, each universally-
quantified property should be paired up with
an existentially-specified property. Also check
that LHSs of implications are not always false.

Examples:
AG (a) —
AG (a — b) —
46



Binary Decision Diagrams

BDDs, OBDDs, ROBDDs

Operations

Model-Checking over BDDs

Readings: 6.1-6.3 of Huth, Ryan

Representation of Boolean Functions

47

Boolean Functions

Boolean functions: B = {0, 1},
f -Bx . X B—B

Boolean expressions:
ti=z|O|1|—-t|tAt|tVE|t—tt—t

Truth assignments: p,
[’U]_CC]_, '1)2/$2, Tt ,’Un/.'En]

Satisfiable: Exists p s.t. t[p] =1

Tautology: Forall p, t[p] =1
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Truth Tables

TYz | — Y, 2

000
001
010
011
100
101
110
111

P, OOH,OFO

f(z1,- - 2n)

=

2" entries
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What is a good representation of
boolean functions?

Perfect representation is hopeless:
Theorem 1 (Cook’'s Theorem)
Satisfiability of Boolean expressions is NP-
complete.
(Tautology-checking is co-NP-complete)
Good representations are

compact and

efficient
on real-life examples
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Combinatorial circuits

1 A
\—’ v —
- _bnorj
Ia A _\_’
v —
_bnorj
12
1 R -
n '
=
| — A
o =] ==t
=
2

Are these equivalent? Do they represent a

tautology? Are they satisfiable?
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Shannon Expansion
Def: z — yo,y1 = (= A yo) V (mx A y1)

x is the test expression and thus this is an
if-then-else.

We can represent all operators using if-then-
else on unnegated variables and constants O(false)

and 1(true). This is called INF.

Shannon expansion w.r.t. z:
t=ux — t[1/x],t[0/x]

Any boolean expression is equivalent to an ex-
pression in INF.
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Example

t=(z1 < y1) N (2 & yp). Represent this in
INF form with order z1,y1, 2, ys.

t=x1 —t1,%0
to =y1 — 0,to00

(since z1 =1,y1 =0 —t=0)
t1 =y1 — 11,0

(since z11 =0,y17 =1 —-t=0)
too = z2 — too1, tooo
t11 = x2 — t111, %000
tooo =y2 —+ 0,1 (r1 =0,y1 = 0,20 = 0)
topor = y2 —+ 1,0 (r1 =0,y1 =0,20 =1)
t110=y2— 0,1 (z1=1,y1 =1,20 =0)
t111 =y2 — 1,0 (r1=1,y1=1,20=1)
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Decision Tree:
— 1 branch

~~~ 0branch

Lots of common subexpressions:
- identify them!

BDDs — directed acyclic graph of Boolean ex-
pressions. If the variables occur in the same
ordering on all paths from root to leaves, we
call this OBDD.
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Example OBDD

OBDD for (z1 < y1) A (22 < yo) with order-
ing z1 <y <zo <yYp

If an OBDD does not contain any redundant
tests, it is called ROBDD.
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ROBDDs

A Binary Decision Diagram is a rooted, di-
rected, acyclic graph (V,E). V contains (up
to) two terminal vertices, 0,1 € V. v € V\{0, 1}
are non-terminal and have attributes var(v),
and low(v), high(v) € V.

A BDD is ordered if on all paths from the root
the variables respect a given total order.

A BDD is reduced if for all non-terminal ver-
tices u,wv,

1) low(u) # high(u)

2) low(u) = low(v), high(u) = high(v), var(u)
= var(v) implies u = v.
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ROBDD
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Examples
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Canonicity of ROBDDs

Lemma 1 (Canonicity lemma) For any func-

tion f : B" — B there is exactly one ROBDD

b with variables z; < zo < -+ <z, such that
tb[vl/xla T ,Un/wn] = f(v1, -, vn)

for all (vy,...,vn) € B™.

Conseguences:
- b is a tautology if and only if b=
- b is satisfiable if and only if b # @
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But.”

The size of ROBDD depends significantly on
the chosen variable ordering!

Example: ROBDD for (z1 © y1) A (20 & o)
with ordering z1 < 2 < y1 < Y2

Under ordering z1 < y1 < 22 < yp had 6 nodes.
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Furthermore...

e The size according to one ordering may be
exponentially smaller than another ordering.

e Figuring out the optimal ordering of vari-
ables is co-NP-complete.

e Some functions have small size independent
of ordering, e.g. parity.

e Some functions have large size independent
of ordering, e.g., multiplication
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Implementing BDDs

{root: integer; var, low, high: array of inte-

ger;}

var low high
o| 7 ? ?
1| 7 ? ?
2| 4 1 0
3| 4 0] 1
4| 3 2 3
5| 2 4 0
6| 2 0 4
7 1 5 6
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Helper Functions: Makenode and
Hashing

Makenode ensures reducedness using a hash
table
H:(,l,h) > u

Makenode(H, max, b,i,l,h)
if ] = h then return |
else if member(H,1i,l,h)
then return lookup(H,i,l, h)
else max «+ max + 1
b.var(max) <« i
b.low(max) «+ 1
b.high(max) < h
insert(H,1,l,h, max)
return max

0N RWNH
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Build

Build: Maps a Boolean expression t into an Build Example

ROBDD. (z1 fi' T,1)
function Build(t) (0 & z2,2) (16 22)
1: H «+ emptytable; max < 1 P

3: return b

function build'(t, i) R
if i > n then (z2) (z5)

if ¢ is false then return 0O
else return 1 E

1

2

3

4: else [ < build’(t[0/z;],1 + 1)

5: h « build’(t[1/z;],i + 1)

6 return makenode(H, max, b,i,l,h)
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Boolean Operations on ROBDDs
Ordering: z1 < -+- < xp,

(z; = l1,10) op (x; — h1,hg) =
z; — (11 op h1), (lo op hg)

op

(as) (a)
A A
() On () Om

(z:)
g ey
(O Onm 6O Om
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Boolean Operations on
ROBDDs(Cont’'d)

If ¢; <
(z; = l1,l0) op (zj — h1,hg) =
z; — (I3 op (x; — h1,hg)),
(lo op (z; = h1,hg))
op

(&) (ay)

AN
6O Ounl On

(z:)
ggop@\ glop@\
() Omun( Cm
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Function Apply

Used to perform operations on two ROBDDs.

Example:

Can be either recursive or using dynamic pro-
gramming.
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Other Operations on ROBDDs

Restrict — blv/z]"”

given a truth assignment for x, compute ROBDD

for b

Size — size(b) = |{p | blp] = 1}|
"number of valid truth assignments”

Anysat — anysat(b) = p, for some p with b[p] =1
"give a satisfying assignment”

Compose — compose(b,z,b') = b[z/V']
"substitute ¥’ for all free occurrences of z”

Existential quantification — Jz.b = b[x/0] V
bz /1]

Using dynamic hash-table implementation, can
get amortized cost for operations to be O(1).
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Representing Boolean Functions

Representation of

boolean functions compact? satisf'ty validity
Prop. formulas often hard hard
Formulas in DNF sometimes easy hard
Formulas in CNF sometimes hard easy
Ordered truth tables | never hard hard
Reduced OBDDs often easy easy
Representation of
boolean functions A \Y, =
Prop. formulas easy easy easy
Formulas in DNF hard easy hard
Formulas in CNF easy hard hard
Ordered truth tables hard hard hard
Reduced OBDDs medium medium easy
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Uses of ROBDDs

Symbolic reasoning about:
e Combinatorial circuits
e Sequential circuits
e Automata
e Program analysis (theorem-proving)

and

e Temporal logic model checking
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