Model-Checking

- Idea of model-checking: establish that the system is a model of a formula (doing a search).

- CTL Model Checking

- SMV input language and its semantics

- SMV examples

- Notion of fairness

- Binary Decision Diagrams.

- Symbolic model-checking and fixpoints.

- Abstractions

CTL Model checking

Assumptions:
1. finite number of processes, each having a finite number of finite-valued variables.
2. finite length of CTL formula

Problem:
Determine whether formula f_0 is true in the finite structure M.

Algorithm overview:
1. $f_0 = \text{TRANSLATE}(f_0)$ (in terms of AF, EU, EX, \land, \lor, \bot)
2. Label the states of M with the subformulas of f_0 that are satisfied there and working outwards towards f_0.

Ex: $\text{AF}(a \land \text{E}(b \lor c))$

3. If starting state s_0 is in the final set, then f_0 is holds on M, i.e.

\[(s_0 \in \{s \mid M, s \models f_0\}) \Rightarrow (M \models f_0) \]
Labeling Algorithm

Suppose ψ is a subformula of f and states satisfying all the immediate subformulas of ψ have already been labeled. We want to determine which states to label with ψ if ψ is:

- \bot: then no states are labeled with \bot.
- p (prop. formula): label s with p if $p \in I(s)$.
- $\psi_1 \land \psi_2$: label s with $\psi_1 \land \psi_2$ if s is already labeled both with ψ_1 and with ψ_2.
- $\neg \psi_1$: label s with $\neg \psi_1$ if s is not already labeled with ψ_1.
- EX ψ_1: label any state with EX ψ_1 if one of its successors is labeled with ψ_1.

Labeling Algorithm (Cont’d)

- AF ψ_1:
 - If any state s is labeled with ψ_1, label it with AF ψ_1.
 - Repeat: label any state with AF ψ_1 if all successor states are labeled with AF ψ_1, until there is no change.

Ex:
\[
\begin{array}{c}
\text{Initial State}
\end{array}
\Rightarrow
\begin{array}{c}
\text{Final State}
\end{array}
\]
Labeling Algorithm (Cont’d)

- E [ψ₁ U ψ₂]:
 - If any state s is labeled with ψ₂, label it with E[ψ₁ U ψ₂].
 - Repeat: label any state with E[ψ₁ U ψ₂] if it is labeled with ψ₁ and at least one of its successors is labeled with E[ψ₁ U ψ₂], until there is no change.

Ex:

\[\psi_1 \quad \Rightarrow \quad \psi_1 \]

Output states labeled with \(f \).

Complexity: \(O(|f| \times S \times (S + |R|)) \) (linear in the size of the formula and quadratic in the size of the model).

Handling EGψ₁ directly

- EG ψ₁:
 - Label all the states with EG ψ₁.
 - If any state s is not labeled with ψ₁, delete the label EG ψ₁.
 - Repeat: delete the label EG ψ₁ from any state if none of its successors is labeled with EG ψ₁; until there is no change.

This is a backward analysis.
Even Better Handling of EG

- restrict the graph to states satisfying ψ_1, i.e., delete all other states and their transitions;
- find the maximal strongly connected components (SCCs); these are maximal regions of the state space in which every state is linked with every other one in that region.
- use breadth-first searching on the restricted graph to find any state that can reach an SCC.

Example

Verifying $E[\neg c_2 U c_1]$ on the mutual exclusion example.

Complexity: $O(|f| \times (S + |R|))$ (linear in size of model and size of formula).
CTL Model-Checking

- Michael Browne, CMU, 1989.
- Usually for verifying concurrent *synchronous* systems (hardware, SCR specs...)
- Specify correctness criteria: safety, liveness...
- Instead of keeping track of labels for each state, keep track of a set of states in which a certain formula holds.

Example

Verifying $E[\neg c_2 \cup c_1]$ on the mutual exclusion example.
State Explosion

Imagine that you a Kripke structure of size n. What happens if we add another boolean variable to our model?

How to deal with this problem?

- Symbolic model checking with efficient data structures (BDDs). Don’t need to represent and manipulate the entire model. See Ch. 6 and later in the course. Model-checker SMV [McMillan, 1993].

- Abstraction: we abstract away variables in the model which are not relevant to the formula being checked (see later).

- Partial order reduction: for asynchronous systems, several interleavings of component traces may be equivalent as far as satisfaction of the formula to be checked is concerned.

- Composition: break the verification problem down into several simpler verification problems.

SMV

Symbolic model verifier – a program that uses symbolic model checking algorithm. The language for describing the model is a simple parallel assignment.

- Can have synchronous or asynchronous parallelism.
- Model environment non-deterministically.
- Also use non-determinism for systems which are not fully implemented or are abstract models of complex systems.
First SMV Example

MODULE main
VAR
 request : boolean;
 state : {ready, busy};
ASSIGN
 init(state) := ready;
 next(state) := case
 request : busy;
 1: {ready, busy}
 esac;
SPEC
 AG(request \rightarrow AF state = busy)

Note that request never receives an assignment – this models input.
More About the Language

- Program may consist of several modules, but one has to be called main.
- Each variable is a state machine, described by init and next.
- Variables are passed into modules by reference.
- Comment — anything starting with -- and ending with a newline.
- No loops.
- Datatypes: boolean, enumerated types, user-defined modules, arrays, integer subranges.

VAR
 state : {on, off};
 state1 : array 2..5 of {on, off};
 state2 : computeState(1);
 state3 : compute;
 state4 : array 2..5 of state; <- error
 state5 : array on..off of boolean; <- error

Another Example

MODULE main
VAR
 bit0 : counter_cell(1);
 bit1 : counter_cell(bit0.carry_out);
 bit2 : counter_cell(bit1.carry_out);
SPEC
 AG AF bit2.carry_out
SPEC AG(!bit2.carry_out)

MODULE counter_cell(carry_in)
VAR
 value : boolean;
ASSIGN
 init(value) := 0;
 next(value) := (value + carry_in) mod 2;
DEFINE
 carry_out := value & carry_in;

- \textit{a}.\textit{b} — component \textit{b} of module \textit{a}.
- \textit{DEFINE} — same as \textit{ASSIGN} but
 - cannot be given values non-deterministically
 - are dynamically typed
 - do not increase the size of state space.
Models of Concurrency

Maximum parallelism – "simultaneous execution of atomic actions in all system modules capable of performing an operation."

Interleaving – "concurrent execution of modules is represented by interleaving of their atomic actions".

Example:

```
MP: AD  INT: A  COMB: AD
    BE  D    AE
    CD  B    BD
    BD  C    ...
    AD  E
    BA  ...
```

Modeling Interleaving

Keyword process for modeling interleaving. The program executes a step by non-deterministically choosing a process, then executing all of its assignment statements in parallel.

```java
MODULE main
VAR
    gate1 : process inverter(gate3.output);
    gate2 : process inverter(gate1.output);
    gate3 : process inverter(gate2.output);
SPEC
    (AG AF gate1.output) & (AG AF !gate1.output)

MODULE inverter(input)
VAR
    output : boolean;
ASSIGN
    init(output) := 0;
    next(output) := !input;
```
Output of Running SMV

-- specification AG AF gate1.output & ... is false
-- as demonstrated by the following execution sequence
-- loop starts here --
state 1.1:
gate1.output = 0
gate2.output = 0
gate3.output = 0
[stuttering]

state 1.2:
[stuttering]

resources used:
user time: 0.11 s, system time: 0.16 s
BDD nodes allocated: 303
Bytes allocated: 1245184
BDD nodes representing transition relation: 32 + 1

What went wrong? We never specified that each process has to execute infinitely often — a fairness constraint.

Fixing the Example

MODULE main
VAR
gate1 : process inverter(gate3.output);
gate2 : process inverter(gate1.output);
gate3 : process inverter(gate2.output);
SPEC
(AG AF gate1.output) & (AG AF !gate1.output)

MODULE inverter(input)
VAR
output : boolean;
ASSIGN
init(output) := 0;
next(output) := !input;
FAIRNESS
running
-- specification AG AF gate1.output .. is true

resources used:
user time: 0.08 s, system time: 0.23 s
BDD nodes allocated: 288
Bytes allocated: 1245184
BDD nodes representing transition relation: 32 + 1
Advantages of Interleaving Model

• Allows for a particularly efficient representation of the transition relation:

 The set of states reachable by one step of the program is the union of the sets reachable by each individual process. So, do not need reachability graph.

• But sometimes have increased complexity in representing the set of states reachable in \(n \) steps (can have up to \(s^n \) possibilities).