Overview

e What is theameproving

e Some theameprovers
Industrial-size case studies
An introductory example
Design principles of Larch
Larch examples
Proof obligations
Term-rewriting
Some commands
Extended example
Larch vs PVS

268

Theorem Proving

Specify

- The system (at some suitable level of ab-
straction)

- A required property

- The assumptions

- Necessary background theories as formulas
in a single logic
Prove that

background + assumptions + system =

requirement
Variation

- Prove that an implementation is a refine-
ment of a specification

Classical commutative diagra or theory

interpretation

269

Example

Want to specify a phone book with the fol-
lowing properties:

e It should store phone numbers in a city

e Possible to retrieve a number given a name
e Possible to add and delete entries from a
phone book.

Will use functions FindPhone, AddPhone and
DeletePhone.

Also, will use putative theorems (" formal chal-
lenges”) to show that our spec are reasonable,
e.g. "if I add a name nm with phone number
pn to a phone book and look up the name nm,
I should get back the phone number pn.

270

Phone Book in Larch

- 2-tier specification
- Combines axiomatic and algebraic specifica-
tions

- Interface specification (great for checking
correctness of code vs spec). Has features of
prog. lang. (exceptions, etc.)

- Theorem-proving only works for traits (al-
gebraic specs)
Interface:

pkobook is data type based on B from PhoneBook
emptybook=proc() returns (b: phone_book)
ensures b’= emp \AND new(b)
FindPhone=proc(b: phone_book, nm: name)
returns(pn: pkonums)

requires isin(b, nm)
ensures ph’= find(b, nm)

AddPhone=proc (b: phone_book, nm: name, pn: phone_nums)
requires “isin(b, nm)
modifies (b)
ensures b’= add(b,nm,pn)

DeletePhone=proc(b: phone_book, nm:name)
requires isin(b, nm)
modifies(b)
ensures b’ = rem(b,nm)

end pkeohook

271

Phone Book (Cont’d)

PhoneBook: trait
introduces
emp: -> B
add: B,N,P -> B
rem: B,N -> B
find: B,N -> P
isin: B,N -> Bool

asserts
B generated by (emp,add)
B partitioned by (find, isin)
for all (b:B, n,nl1:N, p:P)
rem(add(b,n,p) ,n1) == if n=nl then b else
add(rem(b,nl1) ,n,p)
find(add(b,n,p),nl1) == if n=nl1 then p else
find(b,nl1)
isin(emp, n) == false
isin(add(b,n,p),n1) == (n=n1) \OR isin(b,nl)

implies
converts(rem,find,isin)
exempting (rem(emp),find(emp))

272

Phone Book in PVS - Error!

pkon: THEORY

BEGIN
N: TYPE % names
P: TYPE % phone numbers

B: TYPE = [N->P] 7% phone books

n0: P
emptybook: B
emptyax: AXIOM FORALL (nm: N):
emptybook(nm) = nO
FindPhone: [B, N -> P]
Findax: AXIOM FORALL (bk: B), (am: N):
FindPhone(bk, nm) = bk(nm)
AddPhone: [B, N, P -> B]
Addax: AXIOM FORALL (bk: B), (nm: N), (pn: P):
AddPhone(k, nm, pn) = bk WITH [(nm) := pnl
DelPhone: [B, N -> B]
Delax: AXIOM FORALL (bk: B), (nm: N):
DelPhone(k, nm) = bk WITH [(nm) := nO]

% and now our "check"
FindAdd: CONJECTURE FORALL (bk: B), (nm: N), (pn: P):
FindPhone (AddPhone (bk, nm, pn), nm) = pn
DelAdd: CONJECTURE FORALL (bk: B), (am: N), (pn: P):
DelPhone (AddPhone(k, nm, pn), nm) = bk
END pkon

273

Phone Book using Sets (PVS)

phone_3 : THEORY

BEGIN
N: TYPE % names
P: TYPE % phone numbers

B: TYPE = [N -> setof[P]] % phone books
nm, x: VAR N

pn: VAR P

bk: VAR B

emptybook(nm) : setof [P] = emptyset [P]

FindPhone(bk, nm): setof[P] = bk(nm)

AddPhone(bk, nm, pn): B = bk WITH [(am) :=
add(pn, bk(am))]

DelPhone(bk,nm): B = bk WITH [(nm) :=
emptyset [P]]

DelPhoneNum(bk,nm,pn): B = bk WITH [(am) :=
remove(pn, bk(nm))]

FindAdd: CONJECTURE member (pn,
FindPhone (AddPhone(bk, nm, pn), nm))
DelAdd: CONJECTURE DelPhoneNum(AddPhone (bk,

nm, pn), nm, pn) = DelPhoneNum(bk, nm, pn)

END phone_3

274

Techniques and Issues

How rich a logic?

- Easier to automate restricted logics (e.g.,
unquantified)

- But can make for awkward specifications
Interactive guidance vs. automation

- Really, need both; the issue is balance
Automation: decision procedures.

- Propositional calculus (NP complete at
least)

- Equality over uninterpreted function sym-
bols

- Linear arithmetic over rationals and inte-
gers

- Functional updates (arrays, stores), i.e.
f with [(z = y](2) ¢ if 2 = z then y else

f(2)

275

Techniques and Issues

Automation: Rewriting

- Provides decision procedures if rules are
finite terminating

- More often used heuristically

- Hard to tell when theorem is wrong rather
than we failed to find a proof
Automation: Heuristics

- First order: resolution (like in Prolog), etc.

- Induction can help in proofs over infinite
domains

- Difficult to interpret failure

276

Pros and Cons of Theorem
Proving

- Specialized methods can be very effective
on a limited domain (e.g., boolean equiva-
lence checking in CAD tools)
- General methods can state and prove any
true property given enough time, skill and pa-
tience
- Often require too much time, skill and pa-
tience
- Many theorem provers are poorly matched
to the requirements of formal methods
1) lack adequate automation
2) do not support civilized specification lan-
guage, nor theories needed for computer sci-
ence
3) do not fail gracefully
- false conjecture or inadequate heuristic?
- do not help pinpoint error

277

State of the Art Theorem Provers

User-guided automatic deduction tools

- Systems are guided by a sequence of lemmas and
definitions but each theorem is proved automatically
using builtin heuristics for induction, lemma-driven rewrit-
ing and simplification

ACL2 [Kaufmann and Moore 1995], Eves [Cragen et
al 1988], LP [Garland and Guttag 1988], Ngthm [Boyer
and Moore 1979], Reve [Lescanne 1983], RRL [Kapur
and Musser 1987]

- Ngthm was used to check a proof of Godel's first
incompleteness theorem

Proof checkers

- Used to formalize and verify hard problems in math-
ematics and in program verification

- Coq [Cornes et al. 1995], HOL [Gordon 1987],
LEGO [Luo and Pollack 1992], LCF [Gordon et al.
1979], Nuprl [Constable et al. 1986]

278

State of the Art Theorem Provers

Combination provers

- Analytica [Clarke and Zhao 1993] - combines theo-
rem proving with symbolic algebra system Mathemat-
ica. Proved some hard number-theoretic problems

- PVS and STep combine decision procedures and
model checking with interactive proof

- PVS was used to verify a number of hardware de-
signs and reactive, real-time and fault-tolerant algo-

rithms

279

Theorem Proving - Industrial Uses

SRT division algorithm (1995, Clarke, Ger-
man and Zhao)

- Used automatic theorem-proving techniques based
on symbolic algebraic manipulation to prove the cor-
rectness of an SRT division algorithm line the one in
the Pentium

- Verification method runs automatically and count
have detected the error in the Pentium, caused by a
faulty quotient digit selection table

- SRI's PVS was also used on this same example
(1996)

280

Theorem Proving - Uses (Cont'd)

Processor Designs

- Verity verification tool is widely used within IBM in
design of PowerPC and System /390

- Tool can handle entire processor designs contain-
ing millions of transistors (when applied in hierarchical
manner)

- Can model the functional behavior of a hardware
system as a boolean state transition function at regis-
ter transfer level, gate level, or transistor level

- Use BDDs to check the equivalence of the state
transition functions at different design levels

281

Theorem Proving - Examples
(Cont’'d)

Motorola 68020 (Boyer and Yu, 1991-95)

- Constructed an Ngthm specification of Motorola
68020 microprocessor

- Specification included 80 - Used specification to
prove correctness of many binary machine code pro-
grams produced by commercial compilers from Lisp,
C, Ada

- Verified MC68020 binary code produced by gcc com-
piler for 21 of 22 programs in the Berkeley string library

AAMPS5 (1993-95, Srivas, Stanford and Miller,
Rockwell)

- specified and verified Collins Commercial Avionics
AAMPS5 microprocessor

- used PVS to specify 108 of the 209 AAMPS5 instruc-
tions and verified the microcode for 11 representative

instructions

282

Theorem Proving - Examples
(Cont’d)

AMD5K86 (1995, Moore and Kaufmann of

Computational Logic, Inc. and Lynch of A-
vanced Micro Devices, Inc)

- Proved correctness of Lynch’s microcode for float-
ing point division on the AMDKS86

- Started from informal proof of correctness

- Formalized proof in the ACL2 logic and checked
with ACL2 mechanical theorem prover

- Erros were found in informal " proof’ but the mi-
crocode was correct

- Effort took nine weeks

283

For More Information on

Larch/LP
Theorem Proving - Examples 1. S.J. Garland, J. V. Guttag, A Guide to
(Cont’'d) LP, The Larch Prover, December 1991,

SRC report 82.
Motorola CAP (1992-96 Brock of Compu-

tational Logic, Inc.) 2. S. J. Garland, J. V. Guttag, Debugging
- Developed an ACL2 specification of the entire Mo- Larch Shared Language Spec|flcat|onS' July
torola Complex Arithmetic Processor (CAP) 1990, SRC report 60.

- Most complicated microprocessor yet formalized

- Three state pipeline, six independent memories,
3. HTML manual on LP, found at

http:/w"’-cs/ chechik/courses00/csc2108/LPdoc
LP scripts in 1) and 2) were created for
previous version of LP. Changes can be
found at

- Used ACL2 to verify binary microcode for several /1oca1/1ib/LP/html/neWS/ChangeS3 1 .html
_1.html.
digital signal processing algorithms

four multiplier-accumulators, over 250 programmer-visible
registers
- Instruction set allows simultaneous modification of

over 100 registers in a single instruction

4. LP on-line help. Can say 7, help, help 1p,
help topic, etc.

284 285

What is Larch

Two-tiered definitional approach to specifica-
tion.

- One language is designed for a specific
programming language (Larch interface lan-

guage)
- The other is independent of any progra
ming language (Larch Shared Language LSL).

- Larch interface languages exist for CLU, C
(LCL), etc.

- Specify information needed to use the inter-
face and to write programs that implement it
- Deal with what can be observed about the
behavior of components written in a particu-
lar programming language

- Incorporate programming language specific
notations or features such as side effects, ex-
ception handling, iterators, concurrency.

286

Interface Languages Examples

Example of LCL:

void f(int i, int a[l, const int *p) {
requires i >= 0 /\ i <= maxIndex(a);
modifies a;
ensures al[i]l’ = (xp)~ + 1;

Example in specification for CLU:

addWindow = proc (v: View, w: Window, c: Coord)
signals (duplicate)
modifies v

ensures v’ = addW(v, w, c)
except when w in v signals duplicate
ensures v’ = v~

Here we need to know the meaning of inter-
face language constructs (proc, signals, mod-
ifies) and the meaning of operators appearing
in expressions (addW, in).

287

Idea of Larch

- specify mathematical abstractions (abstract
data types) in LSL tier
- specify programming pragmatics in the in-
terface tier
- keep difficult parts in the LSL tier since
- LSL abstractions are likely to be reusable
- LSL has a simple underlying semantics, so

Example - Table trait

Table: trait

includes Positive (Card for P)

introduces
new: -> Tab
add: Tab, Ind, Val -> Tab
__\in __: Ind, Tab -> Bool
lookup: Tab, Ind -> Val
isEmpty: Tab -> Bool
size: Tab -> Card

asserts

difficult to make mistakes
- Easier to make and check claims about
semantic properties of LSL.

\forall i, i’: Ind, val: Val, t: Tab

lookup(add(t, i, val), i’) ==

if i = i’ then val else lookup(t, i’);

~ (i \in new);

i \in add(t, i’, val) == (i = i’) \/ (i \in t);
. . .o . size(new) == 0;
We are just concerned with specification and size(add(t, i, val)) ==
verification in this course. So, we will not if i \in t then size(t) else size(t) + 1;
cover interface languages. Tools like LCLint 1sEmpty(t) == (size(t) = 0);

use LCL to find errors in C programs.

288 289

A Look at Some LSL Constructs

- introduces declares a list of operators (f-
n identifiers) and their signatures (types, or
sorts, of their domain and range)

- Equations are of the form LHS == RHS.
Can be abbreviated.

So, ~(i \in new) is ~(i \in new) == true.

- Characters " " in an operator indicate that

the operator will be used in mixfix expression.
- asserts declares axioms of the datatype.

- includes allows adding theories associated
with other datatypes to the trait.

- Positive defines 4+, O, 1, etc.

- The datatype defined in Positive was called
P. Card for P renames occurrences of P by
Card.

- The theory associated with a trait is that
of the union of all of the introduces and asserts
clauses of trait body and included traits.

290

Example of Operators with
Renaming

Reflexive: trait

introduces __*__: T, T -> Bool
asserts \forall t : T
t *x t
Symmetric : trait
introduces __*__: T,T -> Bool
asserts \forall t, t’> : T
t * t’ ==t x t
Transitive: trait
introduces __*__: T, T -> Bool
asserts \forall t, t’, t’’ : T

(t*t’ /\ t’*t,’) =t *x t’?
Equivalencel: trait
includes Reflexive, Symmetric, Transitive

Equivalence: trait

includes (Reflexive, Symmetric, Transitive)

(@ for =*)

291

Some More LSL Constructs

- generated by: which operators serve as con-
structors, i.e., given a data structure, what
minimum set of operators can be used to con-
struct it?

Example: in a stack with operators Pop, Empty
and Push, Empty and Push are the constructors.
All natural numbers can be generated by 0 and

succ.

- partitioned by clause asserts that all dis-
tinct values of a sort can be distinguished by
a given list of operators. Terms that are not
distinguishable using any of the partitioning
operators of their sort are equal.

Example: sets are partitioned by €, because
sets that contain the same elements are equal.

292

Generateldly and Partitioned by,
Cont’'d

S0, our Table trait was generated by ...
partitioned by...

Adding an axiom

Tab generated by new, add

can be used to prove theorems by induction
over new and add, e.g.

Vt : Tab(isEmpty(t) V i : Ind(i € t))

Adding an axiom

Tab partitioned by \in, lookup

can be used to derive theorems that do not
follow from equations alone, e.g.

Vt : Tab, 1,4/ : Ind,v : Val(add(add(t,i,v),i/,v) =
add(add(t,/,v),1,v))

293

Another Example

Renaming may also change the signatures as-
sociated with some of the operators.

SparseArray: trait
includes Integer, Table(Arr for Tab, defined for \in,
assign for add, __[__] for lookup, Int for Ind)

This is the same as

Table: trait
includes Integer, Positive (Card for P)
introduces
new: -> Arr
assign: Arr, Ind, Val -> Arr
defined: Int, Arr -> Bool
__[__1: Arr, Int -> Val
isEmpty: Arr -> Bool
size: Arr -> Card
asserts \forall i, i’: Int, val: Val, t: Arr
assign(t, i, val)[i’] == if i = i’ then val else t[i’];
~“defined (i, new);
defined(i, assign(t, i’, val)) ==
(i =1i’) \/ defined(i, t);
size(new) == 0;
size(assign(t, i, val)) ==
if defined(i, t) then size(t) else size(t) + 1;
isEmpty(t) == (size(t) = 0);

294

Checks on LSL Specifications

- Consistency: traits whose theory contains
true == false are illegal

- Theory containment (using implies). Claims
like

implies \forall a: Arr, i : int

defined(i,a) => ~ isEmpty(a)

Enables specifiers to include information they
believe to be redundant to draw attention to
smth or as a check of their understanding.
Uses partitioned by and generated by clauses
and references to other traits.

- Completeness: using converts operator. Ex-
ample:

implies converts isEmpty
If the interpretations of all the other opera-
tors are fixed, there is a unique interpretation
of isEmpty satisfying the axioms.

295

Completeness, Cont’d

What happens if you do not want to specify
behavior of some operation completely, e.qg.,

lookup?

- Can say lookup(new, i) == errorVal. But

why?

- What can you say to make divisionmeo
plete?
- Instead, use exempting clause which specifies
terms that need not be defined:

implies converts isEmpty, lookup

exempting \forall i: Ind lookup(new, i)
- This means that if interpretations of the
other operators and of all terms matching
lookup(new, i) are fixed, there are unique in-
terpretations of isEmpty and lookup that sat-
isfy the trait’'s axioms. This is provable from
the spec.

296

Some more specifications -
Container Classes

Container class has common properties of data
structures that contain elements.

Container(E, C): trait
introduces
new: -> C
insert: E, C -> C
asserts C generated by new, insert

LinearContainer includes Container, constrains
new and insert and introduces operators. Can
be specialized to defined stacks, queues, etc.

LinearContainer(E, C): trait

includes Container

introduces
isEmpty: C -> Bool
next: C -> E
rest: C -> C

asserts
C partitioned by next, rest, isEmpty;
\forall c: C, e: E

isEmpty(new) ;
“isEmpty(insert(e, c));

next (insert(e, new)) == e;
rest(insert(e, new)) == new;

implies converts isEmpty;
297

Container Classes, Cont'd

PriorityQueue Specializes LinearContainer.

PriorityQueue(E, Q): trait
assumes TotalOrder (E)
includes LinearContainer(Q for C)
introduces __\in __: E, Q: -> Bool
asserts \forall e, e’: E, q: Q
next(insert(e, q)) ==
if q = new then e
else if next(q) < e then next(q) else e;
rest(insert(e, q)) ==
if q = new then new
else if next(q) < e then insert(e, rest(q)) else q;
~“(e \in new);
e \in insert(e’. q) == e = e’ \/ e \in q;
implies
\forall q: Q, e: E
e \in q => “(e < next(q));
converts next, rest, isEmpty, \in
exempting next(new), rest(new)

298

Constructing Data Types

Abstract data type's operators are catego-
rized as generators, observers and extensions
(sometimes in more than one way).

- Generators produce all the values of the sort
- Extensions are remaining operators whose
range is the sort

- Observers are the operators whose domain
is the sort and whose range is some other sort
- Abstract data type specification usually con-
verts the observers and the extensions

- The sort is usually partitioned by at least
one subset of the observers and extensions.

When do we stop generating equations?

- Write an equation defining the result of ap-
plying each observer or extension to each gen-
erator.

299

PriorityQueue as an Abstract
DataType

Q is the distinguished sort, new and insert form
a generator set, rest is an extension, next,
isEmpty and \in are the observers, and next,
rest and isEmpty form a partitioning set.

We have defined 4 out of 8 necessary equa-

tions in PriorityQueue, inherited two more from
LinearContainer. The remaining two, next (new)
and rest(new), are explicitly exempted.

300

Another Example

Given a binary operation *, PairwiseExtention
defines a new binary operator on containers,
@©, by applying * to each element.

PairwiseExtention(E, C): trait
assumes LinearContainer
introduces

__*%__: E,E -> E

__@e__: C,C->¢C
asserts \forall e, e’ : E, c, ¢’ : C
new @ new == new;
insert(e, c) @ insert(e’, c’) ==
insert(e * e’, ¢ @ c’);
implies converts @
exempting forall e: E, c: C
new @ insert(e, c),
insert(e, c) @ new;

Now we specialize PairwiseExtention by bind-
ing * to an operator, 4+, whose definition is
to be taken from the trait Integer.

PairwiseSum(C) : trait
assumes LinearContainer (Card for E)
includes Integer
PairwiseExtention(Card for E, + for *, + for @)1<
implies (Associative, Commutative)
(+.C for \circ, C for T)

301

Composing LSL Specifications

- includes and assumes. Do the same thing
but differ in the checking they entail
- PriorityQueue includes LinearContainer. Its
assumes clause indicates that its theory also
contains that of TotalOrder.
- use of assumes entails checking that the as-
sumptions must be discharged whenever
PriorityQueue iS incorporated into another trait.
So, if we check the trait
Nat PriorityQueue: trait

includes PriorityQueue(Nat, NatQ), NaturalNumber
we need to check that assertions in the traits
PriorityQueue, LinearContainer and NaturalNumber
together imply that of TotalOrder (Nat).

302

Example: PriorityQueue

NatPriorityQueue
Check assumption of TotalOrder (Nat) by
PriorityQueue
Use the assertions of all traits except
TotalOrder

PriorityQueue NaturalNumber
Check implications Check ...

Use assertions of PriorityQueue Use...

and theories of LinearContainer

and TotalOrder

LinearContainer TotalOrder
Check implications Check implications
Use local assertions Use local assertions

and theories of Container

Container
Check implications and local assertions

303

Operator Overloading vs Built-In
Operators

- Some of the operators, like if then else, =
#*, and Boolean operators are built in.

- Can always overload the operator by declar-
ing it in the introduces clause. Larch deduces
signatures from the context. For example:

OrderedString (E, Str): trait
assumes TotalOrder(E)
introduces
empty: -> Str
insert: E, Str -> Str
__<__: Str, Str -> Bool
asserts
Str generated by empty, insert
\forall e, e’ : E, s, 8’ : Str
empty < insert(e, s);
“(s < empty);
insert(e, s) < insert(e’, s’)
e<e’\/ (e=¢e” /\s<s

;);

But can disambiguate directly.
Example: a.S = b means that a is of sort S.
This also defines signatures of = and b.

304

Enumerations, Tuples and Unions

- Provide compact readable representations
for common kinds of theories.

- Temp enumeration of cold, warm, hot
means an enumerated type with successor re-
lation, s.t. succ(cold) == warm and succ(warm)
== hot

- Tuple is used to introduce fixed-length tu-
ples. So, C tuple of hd: E, tl: Sisashort-
hand for

introduces
[__,__1: E,s ->C
__.hd: C > E
__.tl: C > 8
set_hd: C, E -> C
set_tl: C, S -> C
asserts
C generated by [__, __1;
C partitioned by .hd, .tl;
\forall e, e’: E, s, s’: S

[e,s].hd == e;
[e,s].tl == s;
set_hd([e,s], e’) == [e’,s];
set_tl([e,s], s’) == [e,s’];

305

Unions

- Union of corresponds to tagged unions. For
example,

S union of atom: A, cell: C
is the same as

S_tag enumeration of atom, cell
introduces
atom: A -> S
cell: C -> S
__.atom: S -> A
__.cell: S -> C
tag: S -> S_tag
asserts
S generated by atom, cell
S partitioned by .atom, .cell, tag
\forall a: A, c: C

atom(a).atom == a;
cell(c). cell == c;
tag(atom(a)) == atom;
tag(cell(c)) == cell;

Each field name is incorporated in three dis-
tinct operators!

306

LSL Design Decisions

- Specifications will be constructed and checked
incrementally. So, adding axioms to a trait

never invalidates theorems.

- Sometimes algebraic datatypes are complete,
but sometimes they are not. generated by and

partitioned by allow specification of atheo
plete list of generators and partitioning sets
- There can be various styles of keywords,
allowing for pretty printing, etc. These are
specified in initialization files, 1slinit.1si.
- There are constructs allowing for checkable
redundancy. It helps prove that wrong spec-
ifications will be detectably illegal. But need
a theorem prover to fully check traits (later
this section)

307

LSL Design Decisions, Cont’d

- converts clauses allow specification of check-
able claims about completeness.

- No way to specify precedence of user-defined
operators!

- Reuse is done with includes, assumes and re-
naming.

- No constructs for specifying partial func-
tions, i.e., cannot restrict domains of oper-
ators.

- Traits are simple textual objects and their
associated theories are first-order.

308

Checking LSL Specifications

- Run LSL to check the syntax and static se-
mantics of Larch specifications and to gener-
ate LP proof obligations from their claims
- These are consistency, theory containment
and relative completeness
- Typing 1lsl <Trait-name>, checks the file
Trait-name.lsl for syntax and static seman-
tics
- Typing 1s1 -p ... pretty-prints the trait file
(Latex fonts are not available in distribution!)
- Typing 1s1 -1p <Trait-name> not only checks
the file but also generates several files with
proof obligations:

- Trait-name Axioms.lp

- Trait-name Theorems.lp

- Trait-name Checks.lp

309

LinearContainer Revisited

LinearContainer(E, C): trait
introduces
isEmpty: C -> Bool
next: C -> E
rest: C -> C
insert: C, E -> C
new: -> C
__\in __: E, C -> Bool
asserts
C generated by new, insert
C partitioned by next, rest, isEmpty
\forall c: C, e, e’: E
isEmpty(new) ;
“isEmpty(insert(c, e));
next (insert(new, e)) == e;
rest(insert(new, e)) == new;
~“(e \in new);
e \in insert(c, e’) == e = e’ \/ e \in c;
implies
forall c: C, e: E
isEmpty(c) => ~(e \in c)
converts isEmpty, \in

310

LP Axioms for LinearContainer

declare sorts
C, E

declare operators
isEmpty: C -> Bool
, next: C -> E
, rest: C -> C
, insert: C, E -> C
, new: -> C

\in : E, C => Bool

S —-= —_—

%% Assertions
declare variables

c: C
e: E
e’: E

% main trait: LinearContainer
set name LinearContainer
assert
sort C generated by new, insert
;sort C partitioned by next, rest, isEmpty
; (isEmpty (new))
; (7 isEmpty(insert(c, e)))
; (next (insert (new, e))) = (e)
; (rest(insert(new, e))) = (new)
; (7 (e \in new))
;(e \in insert(c, e’)) = (e = e’ \/ e \in ¢)

311

Theorems for LinearContainer

%%% Theorems from trait LinearContainer
execute LinearContainer_Axioms
declare variables

c: C

e: E

%% Theorems
% main trait: LinearContainer
set name LinearContainer
assert

(isEmpty(c) => ~ (e \in c))

Proof Obligations for

LinearContainer

set script LinearContainer
set log LinearContainer
%h% Proof Obligations for trait LinearContainer
execute LinearContainer_Axioms
%% Implications
declare variables
c: C
e: E

% main trait: LinearContainer
set name LinearContainerTheorem
prove

(isEmpty(c) => ~ (e \in c))

%% Conversions
freeze LinearContainer
%% converts isEmpty, \in
thaw LinearContainer
declare operators
isEmpty’: C -> Bool
\in’ __: E, C => Bool

% subtrait O: LinearContainer

% (isEmpty’: C -> Bool for isEmpty: C -> Bool, __
% \in’ __: E, C -> Bool for __ \in : E, C -> Bool)

312 313

Proof Obligations for
LinearContainer, Cont’'d

set name LinearContainer
assert
sort C partitioned by next, rest, isEmpty’
; (isEmpty’ (new))
; (7 isEmpty’ (insert(c, e)))
; (7 (e \in’ new))
; (e \in’ insert(c, e’)) = (e = e’ \/ e \in’ ¢)

declare variables

x1l :C
x1_: E
x2_: C

set name conversionChecks
prove (isEmpty(_x1_:C)) = (isEmpty’(_x1_:C))
qed
prove (_x1_:E \in _x2_)
qed
prove (_x1_:E \in _x2_)
qed

(_x1_:E \in’ _x2_)

(_x1_:E \in’ _x2_)

314

Proof Obligations
- There are no cycles in the trait hierarchy.

Let =1 be transitive closure of relation de-
fined by setting S C T iff T includes or as-
sumes S.

Let =1 be transitive closure of the relation
defined by setting S = T iff S implies T

LSL checks for the following conditions:

1. CT is a strict partial order

2. There are no traits S and T such that both
SctTand S=71T.

This means that traits can be checked sepa-
rately. (BTW, =71 is not a strict partial or-
der)

315

Proof Obligations, Cont’d

LSL extracts six sets of propositions from each
trait T

- The assertions of T consist of the propo-
sitions in the asserts clauses of T' and of all
traits (transitively) included in T.

- The assumptions of T' consist of all asser-
tions of all traits (transitively) assumed by T.
- The axioms of T' consist of its assertions and
its assumptions.

- The immediate consequences of T' consist of
the propositions in T's implies clause and the
axioms of all traits that 7' explicitly implies.

316

Proof Obligations, Cont’'d

- The explicit theory of T consists of its ax-
ioms, the propositions in its implies clause,
and the explicit theories of all traits S such
that S Ct T or T =1 S. Explicit theory is
not closed under logical conseguence.

- The lemmas available for checking T, when
Condition 2 is satisfied, consist of the explicit
theories of all traits S such that St T.

317

To check a hierarchy of traits.":

Need to prove that the axioms of each trait
T are consistent by discharging the following
proof obligations:

- T's immediate consequences must follow
from its axioms. If Condition 2 is satisfied,
it is sound to use the lemmas available for T
when performing this check.

- T's converts clauses must follow from its ex-
plicit theory. (The preceding proof obligation
ensures that T's explicit theory follows from
its axioms.)

- The assumptions of each trait explicitly in-
cluded in T' must follow from T"s axioms.

318

Translating LSL traits into LP

Logical system of LP consists of:

- a signature (given by declarations) and equa-
tions

- rewrite rules, operator theories

- induction rules and deduction rules

Can be presented to LP incrementally, rather
than all at once

Equations should be presented as rewrite rules,
which LP uses to reduce terms to normal
forms.

Rewriting relation should be terminating.

LP automatically converts axioms into rewrite
rules.

But rewriting theory is not as powerful as
equational theory (not everything provable can
be proven via rewrite rules)

319

Term-Rewriting

- A rewrite rule is an ordered pair {l,r) of
terms, usually written [— r, s.t.

- [is not a variable and

- every variable that occurs in r also

occurs in [.

- Rewrite rules have the same logical mean-
ing as equations but behave differently oper-
ationally

- An equational theory (ET) is a set of facts
axiomatized by a set of equations, i.e., every-
thing that follows from these equations.

- A rewriting theory (RT) is everything that
can be derived from a set of facts via rewriting
rules.

- The user supplies an equation I = r which
gets (automatically) transformed into a rewrite
rule.

320

Term-Rewriting - Example

Axioms:

nat.2: i+1 -> s(i)
nat.3: 0 + i > i
nat.4: s(j) + i -> s(i + j)
5: i < 0 -> false
6: i < s(i) -> true
7: s(i) <s(j) > 1i<j

nat.
nat.

nat.

Automatic proof that 1 < 1 4+ 1:

1<1+1 Conjecture

s(0) < s(0) + s(0) Apply nat.2 3 times
s(0) < s(0 + s(0)) Apply nat.4

0 <0 + s(0) Apply nat.7

0 < s(0) Apply nat.3

true Apply nat.6

Rewrite rules nat.3 and nat.7 can be applied
in either order.

321

Rewrite Rules - Formal Definition

- A substitution o is a mapping from variables
to terms s.t. o(w) is identical to v for all but
a finite number of variables
- A substitution o matches a term t1 to a term
t> if o(ty) is identical to t5.

- Rewriting system R defines a binary relation
g (rewrites or reduces directly to) on the
set of all terms

- Operationally, t — g u if there is some rewrite
rule I — r in R and some substitution ¢ that
matches [to a subterm of ¢t s.t. w is the result
of replacing that subterm by o(r).

- Relation —7% is the reflexive transitive clo-
sure of <»p. Thus, t —% u iff there are terms
t1... tn, S.t. t =11 =R .. =2pth =u.

- Relation <—>j2' is the transitive irreflective clo-
sure of —p.

322

Some Key Observations

- It is essential that R be terminating i.e. no
infinite sequence of reductions.

- But... it is undecidable whether a set of
rewrite rules is terminating.

- LP provides mechanisms to automatically
orient many sets of equations into terminating
rewrite systems (we will look at this later).

323

Some Key Observations (Cont’d)

- A term t is said to be irreducible if there is
no term u s.t. t — u.

- If t <* uw and w is irreducible, then wu is nor-
mal form of t. A term can have many different
normal forms. If there is only one, it is called
the canonical form of the term. A terminat-
ing rewriting systems in which all terms have
a canonical form is said to be convergent.

- For convergent systems, its rewriting theory
is the same as its equational theory, but in
general, this is not true!!!!l (and most sys-
tems in practice are not convergent)

- LP provides various ways to compensate for
that (various inference rules).

324

LP Operator Theories

LP provides special mechanisms for dealing
with associativity and commutativity. These
equations cannot be oriented into terminating
rewrite rules.

Two nonempty operator theories:
- associative-commutative theory

E.g. assert ac +
- commutative theory
So, term rewriting is done modulo these the-
ories - much slower than conventional term
rewriting

325

Problems when RT # EQ

Example:
groupl: (x * y) *x z => x *x (y * z)
group2: i(x) * x -> e
group.3: e * x => X
Have two terminal forms of term (i(y) * y)
* Z:

- i(y) * (y * z) (via group.1)

- e * z (via group.2),

reduces to z (via group.3)

Equivalent under equational theory of group
axioms but rewrite system cannot figure this
out!

Other bad behaviors:

- LP may fail to reduce v and v to the same
normal form even though u — v

- Behavior of LP may be non-monotonic, i.e.,
reduce v and v using rewriting system R but
not using RU{l — r}

326

Critical-Pair Command

- method of extending the rewriting theory
- syntax: critical-pairs group.1l with group.2
- This computes
i(y) * (y x z2) == e * z
then reduced by group.3 and oriented to give
group.4: i(y) * (y *x z) -> z
How is this done?
- via unification (like in Prolog or ML!)
-x *x yand i(w) * w can be unified by
o = {i(w) for z,w for y} or
ol = {i(e) for z, e for y, e for w}
- For ordinary unification, there is always the
most general unifier
- For some equational theories, there is no
mgu. For commutative and ac theories, there
are finite sets of minimal unifiers, i.e., unifiers
that are not substitution instances of other
unifiers.

327

Critical-Pairs (Cont’d)

- Let l{ —» r1 and I — ro be rewrite rules s.t.
lo can be unified with a nonvariable subterm
t1 of l1. 1 and Il overlap at t;1.
- Let o be mgu (or one of minimal unifiers)
of lIp and t1
- Critical-pair equation associated with this
overlap is

o(l1[t1 + r2]) == o(r1)
i.e., result of reducing o(l;) by each of the
two rewrite rules.
Example:
- critical-pairs * with * deduces

e * z == i(y) * (y * z) which reduces to

z == i(y) * (y * 2z)
- Another application of the same command gives

z == i(i(2)) * e
- Third gives e * i(e) == i(i(e)) * (e * i(e))
which reduces to i(e)

= e

328

Checking Consistency

Basically, we want to show that our system
does not contain any axioms of the form true
= false. The authors suggest running m€o

mand

complete
in order to complete the system. And if no
true = false iS generated, the system ime€o
plete.

But

- many equational theories cannot ben€o
ed at all
some cannot be completed in an accept-
~amount of time and space

329

Completion

- complete command causes computation of
fixpoint of critical-pairs * with *.
- If computation finishes with an empty set
of equations and a terminating set of rewrite
rules, then we have a decision procedure (us-
ing reduction to normal form) for the equa-
tional theory.
- Using LP, it is advised to not complete the
rewriting system because

- it may not exist

- may be too expensive to maintain or use

- may lead to hard to read canonical forms
- Use complete to check for inconsistencies
(and interrupt after a few iterations)
- critical-pairs and complete Stop when they
produce a consequence that results in proving
the current conjecture. So, useful for finishing
up proofs.

330

Forward Inference in LP

Produces consequences from a logical system.
4 methods of forward inference in LP:

- Automatic normalization produces new con-
sequences when a rewrite rule is added to a
system. LP keeps everything in normal form.
If an equation or rewrite rule normalizes to an
identity, it is discarded. Users can " immunize”
them to protect them from automatic normal-
ization. Can also "deactivate” rewrite rules
and deduction rules to prevent them from be-
ing automatically applied.

- Automatic application of deduction rules
(happens automatically or can be applied man-
ually to immune equations).

331

Built-in Operators and Axioms

See Figure 6 on Page 17 of " A Guide to LP,

The Larch Prover”

Built-in Deduction Rules

lp_not_is_true: when
lp_not_is_false: when
lp_and_is_true: when
lp_or_is_false: when

lp_iff_is_true: when

not (p)
not(p) = false
Pp&q
p | q = false

p <=>gq

yield p = false

yield p

yield p, q

yield p = false,
q = false

yield p = q

Also, &, | and <=> are ac operators and = is
a commutative operator.

332

333

Forward Inference (Cont’'d)

- Computation of critical pairs and Knuth-
Bendix completion procedure. Completion -
closure of critical pairs.

- Explicit instantiation of variables. For ex-
ample, have a < (b + ¢) —-> true and (b + c)
< d -> true. If we instantiate deduction rule
when x<y = true, y<z = true yield x<z = true
with a for x, b4c for y, and d for z, get con-
clusion a < d -> true.

334

Instantiation

- Command instantiate variable by term ...
in names does simultaneous substitution of
specified terms for variables in named equa-
tions.
- Typical use with deduction rules. Example:
have a rule

when (forall e) e € x == e € y yield x ==
and a rewriterulee € (x U y) -> (e € x) V
(e € y). Instantiatey by x U y and get a con-
clusion x == x U y.
- Instantiation can be used as alternative to
computing critical-pair equations. Example:

instantiate x by i(y) in group.1
generates equation

(A(y) *x y) x z == i(y) * (y * z)
which reduces to

group.1.1, i(y) * (y * z) -> z
- Thisissame as rule group.4 by critical-pairs.

335

Backward Inference in LP

Produces lemmas whose proof will suffice to
establish a conjecture. 6 methods of back-
ward inference in LP (actually even more -
see manual):

- Normalization rewrites conjectures. If it
normalizes to an identity, it is a theorem. Oth-
erwise it becomes a subgoal to be proved.

- Proofs by induction

- Proofs by contradiction. If an inconsis-
tency follows from adding the negation of con-
jecture to LP’s logical system, then it is a
theorem

- Proofs by conjunctions. LP can be di-

rected to prove tq1, ... tn as subgoals of t1...&tn,.

Reduces the expense of term rewriting.

336

Induction Rules

- LP uses induction rules to generate subgoals
to be proved for the basic and induction steps
in proofs by induction.

- Can have multiple rules for induction.

declare sorts E, S
declare operators
{}: -> 8
{__}: E->S
—_ \cup __: S, 8 ->58
insert: S, E -> S

set name setInductionil

assert S generated by {}, insert

set name setInduction2

assert S generated by {}, {__}, \cup

Now we can use the appropriate rule when
attempting to prove an equation by induction:
prove z C (zUy) by induction on x

using setInduction2

In LSL, there is typically just one generated
by for a sort, but more might be useful.

337

Backward Inference in LP, Cont’d

- Proofs by cases can further rewrite a con-
jecture. When subdividing into cases tq...tn,
then one subgoal is to prove t1 | ... | tn. The
remaining are generated by substituting new
constants for the variables of ¢; in e to form e;/
and tries to prove e;. If conjecture is a the-
orem, this may prove it. Otherwise, it may
simplify the conjecture and make it easier to
understand where the proof failed.

- Proofs by implications is a simplified proof
by cases. For conjectures of type t1 = t5.
Proves the goal t»7 using the hypothesis t1/ —
true.

Checking LSL Traits Using LP

Proof obligations in LSL traits require to check:
- Theory containment, that is, that claims
follow from axioms
- Proving an equation
Proving a " partitioned by"
Proving a " generated by”
Proving a " converts”
- Consistency

Users can determine which methods are ap-
plied automatically and in what order.mco
mand
set proof-method &, =>, normalization
Default is normalization.

338 339

Proving an Equation - TotalOrder

Example
TotalOrder(E): trait
introduces
__< __: E, E -> Bool
_.> __: E, E -> Bool
asserts forall x, y, z: E
“(x < x);

(x<y) /\ (y <2)) => (x < 2);
<y VWV x=y) \/ (y <x);
x>y =y <X
implies
TotalOrder (E, > for <, < for >)
\forall x, y: E
“((x <y) /\ (y < x))

340

Axioms in TotalOrder Axioms.Ip

%%% Axioms for trait TotalOrder
%% Operator declarations
declare sorts

E

declare operators
< : E, E -> Bool

s, __ > __: E, E-> Bool
set automatic-ordering off
%% Assertions
declare variables

x: E

y: E

z: E

% main trait: TotalOrder

set name TotalOrder

assert
¢ (x <x))
;i (x <y /\Ny<z)=x<z2)
;x<y\V x=y\ y<x)
(x> y) = (y < x)

set automatic-ordering on

341

Theorems in
TotalOrder_Checks.Ip

set script TotalOrder

set log TotalOrder

%kt Proof Obligations for trait TotalOrder
execute TotalOrder_Axioms

%% Implications

declare variables

x: E
y: E
z: E

% main trait: TotalOrder
set name TotalOrderTheorem
prove

C (x<y/\Ny<x)

set name TotalOrderTheorem
prove

x> x)

proée

(x>y /\Ny>2)=>x>2)
pr;;e

>y\V x=y\/y>x
prove

(x<y) =G >x

342

Running LP. File TotalOrder.lplog

LP (the Larch Prover), Release 3.1a (95/04/27) logging to
¢/homes/ul/chechik/TotalOrder.lplog’ on 12 March 1997
LPO.1.5: execute TotalOrder_Axioms
LP0.1.5.3: declare sorts E
LP0.1.5.5: declare operators
< __: E, E -> Bool

> : E, E -> Bool

LP0.1.5.7: set automatic-ordering off
LP0.1.5.10: declare variables

N < M
[I o e

LP0.1.5.15: set name TotalOrder
The name-prefix is now ‘TotalOrder’.
LP0.1.5.17: assert
 (x < x))
;((x <y /\y<z)=>x<z)
;ix<y\V x=y\ y<x
(x> y) = (y < x)

Added 4 facts named TotalOrder.1, ..., TotalOrder.4 to
the system. The system now contains 4 formulas.
LP0.1.5.19: set automatic-ordering on

Automatic-ordering is now ‘on’.

The system now contains 4 rewrite rules. The rewriting
system is guaranteed to terminate.

A1l equations have been oriented into rewrite rules. The
rewriting system is guaranteed to terminate.

343

Running LP (Cont’'d)

LP0.1.8: declare variables

x: E
y: E
z: E

LP0.1.13: set name TotalOrderTheorem

The name-prefix is now ‘TotalOrderTheorem’.

LP0.1.15: prove (" (x <y /\ y < x))

Attempting to prove conjecture TotalOrderTheorem.1:
“"(x<y /\Ny<x

Suspending proof of conjecture TotalOrderTheorem.1

LP0.1.20: set name TotalOrderTheorem
The name-prefix is now ‘TotalOrderTheorem’.
LP0.1.22: prove (© (x > x))

Attempting to prove level 2 lemma TotalOrderTheorem.2:

“(x > x)
Level 2 lemma TotalOrderTheorem.2
[] Proved by normalization.

Attempting to prove conjecture TotalOrderTheorem.1
Deleted formula TotalOrderTheorem.2, which reduced to

Suspending proof of conjecture TotalOrderTheorem.1

LP0.1.23: prove ((x >y /\y > z) =>x > 2)

Attempting to prove level 2 lemma TotalOrderTheorem.3:

x>y /\Ny>z=>x>z
Level 2 lemma TotalOrderTheorem.3
[1 Proved by normalization.
Deleted formula TotalOrderTheorem.3, which reduced to

344

‘true’

‘true’

Running LP (Cont’'d)

LP0.1.24: prove (x >y \/ x=y \/ y > x)

Attempting to prove level 2 lemma TotalOrderTheorem.4:
x=y\Vx>y\/y>x

Level 2 lemma TotalOrderTheorem.4

[1 Proved by normalization.

Deleted formula TotalOrderTheorem.4, which reduced to ‘true’

LP0.1.25: prove (x < y) = (y > x)

Attempting to prove level 2 lemma TotalOrderTheorem.5:
x<y=y>x

Level 2 lemma TotalOrderTheorem.5

[1 Proved by normalization.

Attempting to prove conjecture TotalOrderTheorem.1

Deleted formula TotalOrderTheorem.5, which reduced to ‘true’
Suspending proof of conjecture TotalOrderTheorem.1

End of input from file ‘chechik/TotalOrder_Checks.lp’.

LP2: critical-pairs TotalOrder with TotalOrder
The following equations are critical pairs between rewrite
rules TotalOrder.1 and TotalOrder.2.

TotalOrderTheorem.6: “(z <y /\ y < 2z)
The system now contains 1 formula and 4 rewrite rules. The
rewriting system is guaranteed to terminate.
Critical pair computation abandoned because a theorem has
been proved.
Conjecture TotalOrderTheorem.1l: “(x <y /\ y < x)
[1 Proved by normalization.
The system now contains 5 rewrite rules. The rewriting
system is guaranteed to terminate.

345

How Hard Is It to Prove How does the Proof Go?
Equations?
Want to prove e € q => ~(e < next(q)). Go

Varying amounts of assistance. To check that by induction:

LinearContainer implies isEmpty(c) => ~(e € prove by induction on g

c), use a single LP command: LP generates two subgoals:

resume by induction on ¢ Basis subgoal:
Subgoal 1: e \in new => “(e < next(new))

When proving that PriorityQueue implies e' € Induction constant: qei
q => ~(e < next(q)), need a lot more guid- Induction hypothesis:
ance conversionChecksInductHyp.2: e \in qcl => “(e < next(qcl))

Induction subgoal:
Some theorems of PriorityQueue: Subgoal 2:

set na?e c:?veisiggghec%s £ Cxl Q) e \in insert(qcl, el) => “(e < next(insert(qcl, el)))
prove (next(_x1_: = (next’(_x1_:

d . .
giove (rest(_x1_:Q)) = (rest’ (_xl_:Q)) It is able to prove basis subgoal by normal-
qed ization. For subgoal 2, we ask to handle the
223ve (isEmpty(_x1_:Q)) = (isEmpty’(_x1_:Q)) case where qcl = new:
prove (_x1_:E \in _x2) = (_x1_:E \in’ _x2) resume by cases qcl = new
qed .
prove (_xi_:E \in _x2_) = (_x1_:E \in’ _x2_) This becomes
qed Case 1: ...
Case 2:

set name PriorityQueueTheorem
prove (e \in q => ~ (e < next(q)))
qed

(e = e1) \/ (e \in qgcl) => ~(e < (if el < mnext(qcl)
then el else next(qcl))

346 347

Proof (Cont’d) Proof Guidance

prove e \in q => “(e < next(q)) by induction on q

. R
So, we proceed with the next case: basis subgoal
[1 basis subgoal

resume by cases el < next(qcl) <> induction subgoal
and get

Case 1: (e
Case 2: (e

resume by case qc = new
<> case qc = new
[l case qc = new

. . <> case “(qc = new)
Now, for the first case, try setting e to el: resume by case next(qc) < el

resume by case e = el <> case next(qc) < elc
resume by case e = elc

<> case ec = elc

% Handle case e <> el complete

[1 case ec = elc

<> case ~(ec = elc)

For the second case, do the same thing: [1 case “(ec = elc)

[1 case next(qc) < elc

<> case “(next(qc) < elc)

% This case succeeds resume by case e = elc
<> = el

% Handle case e <> el case ec = e.c

[1 case ec = elc

critical-pairs *CaseHyp with *InductHyp <> case “(ec = elc)

complete

[1 case ~(ec

e1) \/ (e \in qc1) => “(e < el)
e1) \/ (e \in qc1) => (e < next(qc))

% This case succeeds

complete

resume by case e = el

qed

elc)

348 349

Proving a Partitioned By

Contrary to "Debugging LSL Specs”, nothing
is checked. Instead, partitioned by results in
a universal-existential axicexpressed as a
deduction rule:
declare sorts E, S
declare operator €: E, S -> Bool
declare variables e: E, x, y: S Using Generated By
assert when (V e), e € x ==e €y
yield x ==y
This defines a deduction rule, which can also generated by becomes basis for induction. For
be expressed as assert S partitioned by €. LinearContainer, we get

Equivalent to axiom .
Induction rules:

(Vz,y: S)[(Ve: E)(ecz=ecy) =z =1y] LinearContainer.1:
LP can deduce that equation e € £ == e € sort C generated by new, insert
(zUz) is the same as x ==z U x.

For example,

LinearContainer.2:

when next(q) = next(ql),
rest(q) = rest(ql),
isEmpty(q) <=> isEmpty(ql)
yield q = ql

350 351

Proving a converts

- Need to show that the axioms of the trait de-
fine the operators in the set relative to other
operators in the trait.

- For LinearContainer, make two copies of
LinearContainer Axioms, where the second copy
replaces all occurrences of isEmpty and \in by

isEmpty’ and \in’. Then can prove that
prove (isEmpty(x1) = (isEmpty’(x1)))

qed

prove (x2 \in x3) = (x2 \in’ x3)

qed

User gives instruction to proceed by induction.
- Exemptions are treated by specifically declar-
ing that the behavior is the same for these
cases. For example, for PriorityQueue, we

have

assert next’(new) = next(new)
assert rest’ (new) rest (new)
prove next’(q) = next(q)

qed

prove rest’(q) = rest(q)

qed

352

Extended

declare sorts Elem, Set

Example

declare variables e, e’: Elem

declare variables x, y, z:
declare operators

empty: ->
singleton: Elem ->
__\union __: Set, Set ->
__\in __: Elem, Set ->
insert: Elem, Set ->

set name set

assert ac \union

assert sort Set generated

assert
(e \in singleton(e’))
; (e \in (x \union y)) =
;insert(e, x) = ((single
;7 (e \in empty)

set name extent

assert sort Set partitione

display extent

set name thm

prove x = (x \union x)
instantiate s by x, s1 b
qed

Set

Set
Set
Set
Bool
Set

by empty, singleton, \union

(e = ¢’)
((e \in x) \/ (e \in y))

ton(e) \union x))

d by \in

y (x \union x) in extent

set proof-methods =>, normalization

prove e \in x => insert(e,
resume by cases ec \in x
critical-pairs thmCase
critical-pairs thmCase

qed

x) = x by induction
c, ec \in xci1
Hyp with thmInductHyp
Hyp with thmInductHyp

353

LP session

Welcome to LP (the Larch Prover), Release 3.1a (95/04/27).
Copyright (C) 1994, S. J. Garland and J. V. Guttag

LPO.1: execute sample

LP0O.1.1: declare sorts Elem, Set

LP0.1.2: declare variables e, e’: Elem

LPO.1.3: declare variables x, y, z: Set

LPO.1.4: declare operators

empty: -> Set

singleton: Elem -> Set

__\union __: Set, Set -> Set

__\in __: Elem, Set -> Bool

insert: Elem, Set -> Set
LPO.1.5:

LP0.1.6: set name set
The name-prefix is now ‘set’.
LP0.1.7: assert ac \union
Added 1 fact named set.l1 to the system.
LP0.1.8: assert sort Set generated by empty,singleton,\unior
Added 1 fact named set.2 to the system.
LP0.1.9: assert
(e \in singleton(e’)) = (e = e’)
; (e \in (x \union y)) = ((e \in x) \/ (e \in y))
;insert(e, x) = ((singleton(e) \union x))
;7 (e \in empty)

Added 4 facts named set.3, ..., set.6 to the system.
The system now contains 4 rewrite rules. The rewriting
system is NOT guaranteed to terminate.

LP0.1.10:

354

LP Session (Cont'd)

LPO.1.11: set name extent

The name-prefix is now ‘extent’.

LP0.1.12: assert sort Set partitioned by \in

Added 1 fact named extent.l to the system.

LP0.1.13: display extent

Deduction rules:

extent.1: when \A e (e \in s <=> e \in s1) yield s = si

LPO.1.14:

LP0.1.15: set name thm

The name-prefix is now ‘thm’.

LP0.1.16: prove x = (x \union x)

Attempting to prove conjecture thm.1: x = x \union x

Suspending proof of conjecture thm.1

LPO.1.17: instantiate s by x, sl by (x \union x) in extent

Deduction rule extent.l was instantiated to deduction rule

extent.1.1, when \A e (e \in x <=> e \in (x \union x))
yield x = x \union x

Deduction rule extent.1.1 was normalized to formula

extent.1.1.1, x = x \union x

Conjecture thm.1

[1 Proved by normalization.

LPO.1.18: qed

A1l conjectures have been proved.

LP0.1.19:

LP0.1.20: set proof-methods =>, normalization

The proof-methods are now ‘=>-method, normalization’.

355

LP Session (Cont’'d)

LP0.1.21: prove e \in x => insert(e, x) = x by induction
Attempting to prove thm.2: e \in x => insert(e, x) = x
Creating subgoals for proof by structural induction on ‘x’
Basis subgoals:

Subgoal 1: e \in empty => insert(e, empty) = empty

Subgoal 2: e \in singleton(el) =>

insert(e, singleton(el)) = singleton(el)

Induction constants: xc, xcl
Induction hypotheses:

thmInductHyp.1: e \in xc => insert(e, xc) = xc

thmInductHyp.2: e \in xcl => insert(e, xcl) = xcil
Induction subgoal:

Subgoal 3: e \in (xc \union xcl) =>

insert(e, xc \union xcl1) = xc \union xcl

Attempting to prove level 2 subgoal 1 (basis step) for
proof by induction on x
Creating subgoals for proof of =>
New constant: ec
Hypothesis:

thmImpliesHyp.1: ec \in empty
Subgoal:

insert(ec, empty) = empty
Attempting to prove level 3 subgoal for proof of =>
Added hypothesis thmImpliesHyp.1l to the system.
Formula thmImpliesHyp.1l, false, is inconsistent.
Level 3 subgoal for proof of =>
[1 Proved by inconsistent hypothesis.
Level 2 subgoal 1 (basis step) for proof by induction on x
[1 Proved =>.

356

LP Session (Cont’'d)

Attempting to prove level 2 subgoal 2 (basis step) for
proof by induction on x
Creating subgoals for proof of =>
New constants: ec, elc
Hypothesis:
thmImpliesHyp.1: ec \in singleton(elc)
Subgoal:
insert(ec, singleton(elc)) = singleton(elc)

Attempting to prove level 3 subgoal for proof of =>

Added hypothesis thmImpliesHyp.1 to the system.

Level 3 subgoal for proof of =>

[1 Proved by normalization.

Level 2 subgoal 2 (basis step) for proof by induction on x
[1 Proved =>.

Attempting to prove level 2 subgoal 3 (induction step) for
proof by induction on x
Added hypotheses thmInductHyp.l, thmInductHyp.2 to the syste
Creating subgoals for proof of =>
New constant: ec
Hypothesis:

thmImpliesHyp.1: ec \in (xc \union xc1)
Subgoal:

insert(ec, xc \union xcl) = xc \union xcil

Attempting to prove level 3 subgoal for proof of =>

Added hypothesis thmImpliesHyp.1 to the system.

Suspending proof of level 3 subgoal for proof of =>
357

LP Session (Cont’d)

LP0.1.22: resume by cases ec \in xc, ec \in xcl
Creating subgoals for proof by cases
Case justification subgoal:
ec \in xc \/ ec \in xc1
Case hypotheses:
thmCaseHyp.1.1: ec \in xc
thmCaseHyp.1.2: ec \in xcl
Same subgoal for all cases:
singleton(ec) \union xcl \union xc = xc \union xc1l

Attempting to prove level 4 subgoal to justify proof by case

Level 4 subgoal to justify proof by cases

[1 Proved by normalization.

Attempting to prove level 4 subgoal for case 1 (out of 2)
Added hypothesis thmCaseHyp.1.1 to the system.

Deleted formula thmImpliesHyp.1, which reduced to ‘true’.
Suspending proof of level 4 subgoal for case 1 (out of 2)

LPO0.1.23: critical-pairs thmCaseHyp with thmInductHyp
The following equations are critical pairs between rewrite
rules thmCaseHyp.1.1 and thmInductHyp.1.
thm.3: singleton(ec) \union xc = xc
Critical pair computation abandoned because a theorem
has been proved.
Level 4 subgoal for case 1 (out of 2)
[1 Proved by normalization.

Attempting to prove level 4 subgoal for case 2 (out of 2)
Added hypothesis thmCaseHyp.1.2 to the system.
Deleted formula thmImpliesHyp.1, which reduced to ‘true’.

358

LP Session (Cont’'d)

LP0.1.24: critical-pairs thmCaseHyp with thmInductHyp
The following equations are critical pairs between rewrite
rules thmCaseHyp.1.2 and thmInductHyp.2.

thm.3: singleton(ec) \union xcl = xcl
Critical pair computation abandoned because a theorem has
been proved.
Level 4 subgoal for case 2 (out of 2):

singleton(ec) \union xcl \union xc = xc \union xc1l
[1 Proved by normalization.
Level 3 subgoal for proof of =>:

insert(ec, xc \union xcl) = xc \union xci
[1 Proved by cases ec \in xc, ec \in xcl.
Level 2 subgoal 3 (induction step) for proof by
induction on x:

e \in (xc \union xcl) =>

insert(e, xc \union xcl1) = xc \union xcl

[1 Proved =>.
Conjecture thm.2: e \in x => insert(e, x) = x
[1 Proved by structural induction on ‘x’.

LP0.1.25: qed
A1l conjectures have been proved.

359

Annotated LP Script

Results from set script filename. Then file-
name.lpscr contains the script.

set script sample
%% execute sample
declare sorts Elem, Set

BLAH BLAH (same as original)

prove x = (x \union x)
instantiate s by x, sl by (x \union x) in extensionality
[1 conjecture

qed

set proof-methods =>, normalization
prove e \in x => insert(e, x) = x by induction
<> basis subgoal
<> => subgoal
[1 => subgoal
[1 basis subgoal
<> basis subgoal
<> => subgoal
[1 => subgoal
[1 basis subgoal
<> induction subgoal
<> => subgoal

360

Annotated LP Script (Cont’d)

resume by cases ec \in xc, ec \in xcl
<> case justification
[l case justification

<> case ec \in

critical-pairs

[l case ec \in

<> case ec \in

critical-pairs

[l case ec \in
[1 => subgoal

Xc
thmCaseHyp with thmInductHyp
xc
xcl
thmCaseHyp with thmInductHyp
xcl

[] induction subgoal

[1 conjecture
qed

361

Orienting Equations into Rewrite
Rules

- LP automatically orients equations into rewrite rules.
- Command set automatic-ordering off causes LP to
not do it.

- 3 types of ordering mechanisms for orienting equa-

tions into rewrite-rules. Command set ordering method.

- Two registered orderings (dsmpos and noeq-dsmpos),
based on LP-suggested partial orderings of operators,
guarantee termination of sets of rewrite rules when no
commutative Or ac operators are present.

- A polynomial ordering, based on user-supplied poly-
nomial interpretation of operators, guarantees termina-
tion even when commutative Or ac operators are present.
But difficult to use.

- Three brute-force ordering procedures which give
users complete control over whether equations are ori-
ented from left to right or right to left. But provide
no guarantee about termination.

- Default is noeq-dsmpos.

362

Registered Orderings

- These use information in a registry to orient
equations - height and status.

- Height relates pairs of operators. If an op-
erator f has greater height than another op-
erator g, LP orients equations by so that an
occurrence of f is replaced by one or more
occurrences of g. For example,

g(g(x)) = f(x) becomes
f(z) = g(g(x))

- Status information assigns relative weights
to the arguments of operators with arity > 1.
If operator h has left-to-right(right-to-left)
status, more weight is assigned to h's left-
most(rightmost) arguments.

363

Registered Orderings

For example, if A has left-to right status,
h(f(x),z) = h(x, f(x)) becomes
h(f(z),z) — h(z, f(z)).
If h has right-to-left status, then it becomes
h(z, f(z)) — h(f(z),z)
- If an operator has multiset status, its ar-
guments are given equal weight. So, for our
example, if h is multiset, the equation cannot
be oriented.
- LP automatically assigns multiset status to
ac and commutative operators.

364

Specification and Meaning of
Registered Orderings

| Command | Effect on Ordering
register height £ > g | rewrite f to g
register height f = g give them equal height
register height f >= rule out g > f
register bottom f rewrite any non-bottom

operator to f

register top f

rewrite f to any non-top
operator

register status
right-to-left f

assign more weight to right
arguments of f

register status
left-to-right £

assign more weight to left
arguments of f

register status
multiset f

assign equal weight to all
arguments of f

- Can combine height information into a sin-

gle command:

register height => > (&, |) > true = false
- LP rejects commands that are not consis-
tent additions to the registry, e.g., f > g and

g>f.

365

What If This is Not Enough?

- LP generates minimal sets of extensions to
registry, suggestions, that would permit equa-
tions to be oriented.

- These will not violate user-entered rewrite
rules.

- noeq-dsmpos ordering does not generate sug-
gestions assigning equal heights to two oper-
ators.

- dsmpos does.

- noeq-dsmpos is faster but less powerful. -
Usually, suggestions are added automatically,

but can be overridden by set automatic-registry

off. Then LP asks user to choose a sugges-
tion.

366

Suggestions (Cont'd)

Example:

Want to orient f(a,b) = f(b,a) with an empty
registry.

LP presents the following suggestions:

Direction Suggestions

D wWw N
A
1

but if user entered f(a,b) — f(b,a), only the
first two suggestions would have been pre-
sented.

unregister command allows to delete the en-
tire registry, or to remove operators from the
bottom or top, but not remove height or sta-
tus information in the registry.

367

Polynomial Orderings (Cont’d)
Polynomial Orderings
- Command set ordering polynomial /ength sets
ordering to the one based on sequences con-
taining length polynomials. If not specified,
length is assumed to be 1.
- Command register polynomial f p assigns
the sequence of p’'s as the polynomial interpre-
tation of f. LP understands operator prece-
dence.
- Example.

set ordering polynomial

- Requires considerable user input (i.e., do not
use it in Assignment 4)

- Used to experiment with termination proofs
of small sets of rewrite rules.

- polynomial ordering is based on user-supplied
interpretations of operators by sequences of
polynomials. A variable is interpreted by a
sequence of identity polynomials, and an€o

pound term - by the interpretation of its root register polynomial 0 2

operator applied to the interpretations of its register polynomial s x + 2
register polynomial + x * y

arguments. register polynomial < x * y

- One term is less than another if its interpre-
tation is lexicographically less than that of the
second term. (One polynomial is less than an-
other if its value is less than that of the other
for all sufficiently large values of its variables.)

- LP will orient s(i) +j = s(i+3) from left to
right, since polynomial interpretation (i42)x*j
dominates the interpretation i4+j5+42 for 5 > 1.
- noeq-dsmpos ordering produces the same set
of rewrite rules but does not guarantee termi-
nation since 4 is ac.

368 369

Brute-force Orderings

- manual ordering causes LP to ask the user
how to orient each equation. User is allowed
to choose either orientation, provided it re-
sults in a valid rewrite rule.

- left-to-right causes LP to orient equations
into rewrite rules from left to right provided
that results are valid rewrite rules.

- either-way behaves like left-to-right except
that it orients an equation into a rewrite rule
from right to left if that is possible and left
to right if not.

370

Interacting with Ordering
Procedures

When automatic-ordering and automatic-registry

are off, LP prompts users to confirm any ex-
tensions to the registry or select an action for
an equation LP is unable to orient.

The following sets of suggestions will allow the
equation to be ordered:

Direction Suggestions
1. - a>b
2. <- b >a

What do you want to do with the equation?

User can type 7 to see a menu:

Enter one of the following or type <ret> to exit.

accept[1..2] kill postpone
divide left-to-right right-to-left
interrupt ordering suggestions

Meaning of options:

- accept confirms selected extension. If this
option is missing from menu - no extension
will orient the equation.

371

Interacting with Ordering
Procedures (Cont’d)

- divide - LP adds two new equations that
imply the original. Useful for cases like z/z = y/y.
LP asks the user to supply a name for a new operator,
e.d., e, and will then declare the operator and assert
two equations, z/x = e and y/y =e

- interrupt - interrupts ordering process and
returns LP to command level.

- kill - deletes this equation from the system.
- left-to-right - orients the equation without
extending the registry. Removes any guaran-
tee of termination. Same as right-to-left.

- ordering - displays the current registry.

- postpone - defers the attempt to orient this
equation.

- suggestions - redisplays the LP-generated
suggestions.

372

Activity and Immunity

- LP provides features for not using facts for
normalization and deduction.

- To deactivate use command make passive
names. Used for rules known to be inapplica-
ble or expensive to apply.

- display command indicates passive facts by
letter P after their name.

- Can activate again using make active names.
- Can "immunize" equations, rewrite rules,
and deduction rules from automatic normal-
ization or deduction. Commands make immune
names and make nonimmune names. display in-
dicates immune facts by letter 1I.

- Can set global settings, set activity (de-
fault is on) and set immunity (default is off).

373

Activity and Immunity (Cont’d)

- Intermediate degree of immunity.

- Commands set immunity ancestor and make
ancestor-immune names prevent facts from be-
ing reduced by rules that are ancestors of the
fact. Rule a.1 is ancestor of rule a.1.2

- Provides way to preserve instantiations of

Managing Proofs

- "Prove as you would program. Design your
proofs. Modularize them. Think about their
computational complexity.”

- Always set scripting and logging on at the
start of an LP session. If too late, usen€o

mand history all.

rewrite rules.

- display indicates ancestor-immune facts by

letter i.

- Can do rule application by hand, usingh€o

Mmands normalize factNames with ruleNames and

rewrite factNames with ruleNames
- Commands normalize conjecture with rule-

Names and rewrite conjecture with ruleNames

apply named rules to the current conjecture.
- For deduction rules, command is apply ru-
leNames to factNames.

374

- Be careful to not let variables disappear too
quickly in a proof. Once they are gone, you
cannot do a proof by induction. Start with
induction before =>, cases or if.

- Splitting a conjecture into separate conjuncts
(using the & proof method) early in a proof
often leads to repeating work on multiple con-
juncts.

- To keep lemmas and theorems from dis-
appearing (because they normalize to iden-
tities), make them immune.

375

When a proof gets stuck

- Be skeptical. Maybe your conjecture is not
a theorem after all.

- In conjecture is a conditional, conjunction
or implication, try the corresponding proof
method.

- Try computing critical pairs between hy-
potheses and other rewrite rules.

- Use proof by cases on the test in an if in a
rewrite rule.

- Display hypotheses to see if any are missing
or are not ordered the way you expected.

- Look for a useful lemma to prove. But if
not fruitful, use command cancel t0o remove
this conjecture.

- LP automatically normalizes facts. Usa€o

mand show normal-form E to see what hap-
pened to your fact E. Set trace level up to 6
to see which rewrite rules are applied in the
normalization.

376

Getting Lost in the Proof

- display, resume and history can help find a
place in the subgoal tree.

- display *hyp - to find your place in nested
case analyses

- display proof-status displays the entire proof
stack

- display conjectures names- the named con-
jectures

- resume Sshows just the current conjecture
(normalized if the proof-methods include nor-
malization)

- history number displays indented history, in-
cluding LP-generated box and diamond lines.

377

Making Proofs Go Faster

Use statistics command to find out what is
consuming a lot of time.
- If rewriting is costly,

- immunize facts that you know are irre-
ducible

- deactivate rewrite rules needed only occa-
sionally

- make definitions passive and apply them
manually

- avoid big terms, especially with ac opera-
tors - If ordering is costly, put ordering con-
straints in the registry.
- If unification or critical pairing is costly, try
to use smaller rule lists as arguments to
critical-pair commands. Avoid computing
critical pairs between rules that contain sub-
terms such as t1&tr&...&t, with multiple oc-
currences of the same ac operator.

378

Example - Simple Windowing
System

- These are preliminary versions of traits that
would be expanded as specifications (includ-

ing interface parts) are developed.
Coordinate: trait
introduces
origin: -> Coord
__—__: Coord, Coord -> Coord
asserts \forall cd: Coord
cd - cd == origin
Region(R): trait
assumes Coordinate
introduces
__\in __: Coord, R -> Bool
% cd \in r is true if point cd is in region r

% Nothing assumed about shape or contiguity of regions

Displayable(T): trait
assumes Coordinate
includes Region(T)
introduces
__[__1: T, Coord -> Color

% tlcd] represents appearance of object t at point cd

Proof obligations are easily discharged.

379

Example (Cont’d) Example (Cont’d)

Define a window as an object composed of Define a view as an object composed of win-
content and clipping regions, foreground and dows at locations.
. . ‘e View: trait
b.ackgrour?d colors and window identifier. assumes Coordinate
Window: trait includes Window, Displayable(V)
assumes Coordinate

introduces
includes Region, Displayable(W) emptyV: -> V
asserts addW: V, Coord, W -> V
W tuple of cont, clip: R, fore, back: Color, id: WId \in . W. V => Bool
\forall w: W, cd: Coord inW: V, WId, Coord -> Bool
cd \in w == cd \in w.clip asserts
wlcd] == if cd \in w.cont then w.fore else w.back

V generated by emptyV, addW
forall cd, cd’: Coord, v: V, w, w’: W, wid: WId
“(cd \in emptyV)

implies converts __[__], \in: Coord, W -> Bool

There are three proof obligations. Assump- cd \in addW(v, cd’, w) == ((cd - cd’) \in w)
tions of Coordinate in Region and Displayable L V (ed \in v)
i)) (w \in emptyV)
are syntactically discharged using Window's as- w \in addW(v, cd’, w’) == (w.id = w’.id) \/ (¥ \in v)
sumption. The converts clause is discharged addW(v, cd’, w)led] == if (ed - cd’) \in w then
. . . wled - cd’] else v[cdl]

by LP without user assistance. Consistency - % In view only if in a window, offset by origin

run completion procedure to search for incon- “inW(emptyV, wid, cd)

) i inW(addW(v, cd, w), wid, cd’) == (w.id = wid
sistency. Proves nothing. /\ (cd - cd’) \in w) \/ inW(v, wid, cd’)

380 381

Example(Cont’d)

implies
\forall cd, cd’: Coord, v, v’: V, w: W
% Adding a new window does not affect the appearance
% of parts of the view lying outside the window
~“inW(addW(v, cd, w), w.id, cd’) =>
addW(v, cd, w)[cd’] = v[cd’]
% Appearance within a newly added window is
% independent of the view to which it is added
inW(addW(v,cd’,w), w.id, cd) =>
addW(v, cd’, w)[cd] = addW(v’, cd’, w)[cdl]
converts inW, \in: Coord, V -> Bool, \in: W, V -> Bool,
__[__1: Vv, Coord -> Color
exempting \forall cd: Coord
emptyV[cd]

Trying to prove explicit equations in implies

clause of View.. LP reduces the conjecture to
if (cdc’ - cdec) \in wc.clip
then if (cdc’ - cdc) \in wc.cont
then wc.fore else wc.back
else vclecdc’]
== vycl[ecd’]

and reduces the assumed hypothesis of impli-

cation to
“((cdc - cdc’) \in wc.clip)

382

Example (Cont’'d)

Discover that we have written cd - cd’ in sec-
ond equation for inW in View. Change that to
inW(addW(v, cd’, w), wid, cd) == (w.id = wid
/\ (cd - cd’) \in w) \/ inW(v, wid, cd)
and everything works fine. The second con-
jecture reduces to

if (cdc - cdc’) \in wc.clip
then if (cdc - cdc’) \in wc.cont
then wc.fore else wc.back
else v[cdc]

if (cdc - cdc’) \in wc.clip
then if (cdc -cdc’) \in wc.cont
then wc.fore else wc.back
else v’ [cdc]

We reduce this to vclecdc] == v’[cdc]. v’ is
a variable, vc is a constant... Hmm... Turns
out, we assumed that no view should contain
two windows with the same id but our spec
does not guarantee it!

383

Example (Cont’'d)

So, try to add numW to View spec:
numW: V, WId -> Nat
numW (emptyV, wid) ==
numW (addW(v, cd’, w), wid) ==
numW(v, wid) + (if w.id = wid then 1 else 0)

numW (v, wid) <= 1 9% New invariant

But now, when we run LP completion proce-
dure, we get an inconsistency.

Etc.: until we are done.

384

food for slide eater

385

food for slide eater food for slide eater

386 387

