Linear-Time ModelChecking

- 1. LTL
- 2. Basic principles
 - Buchi Automata
 - LTL Buchi Automata
 - Automata-theoretic model-checking
- 3. SPIN/Promela
 - expressing models
 - partial-order reductions
- 4. LTL + partial-order reductions
 - closure under stuttering
 - language expressiveness

Propositional Linear-Time Temporal Logic

- ullet If p is an atomic propositional formula, it is a formula in LTL.
- If p and q are LTL formulas, so are $p \land q$, $p \lor q$, $\neg p$, $p\mathcal{U}q$, $\circ p$ (next), $\diamond p$ (eventually), $\Box p$ (always).

Interpretation: over *computations* $\pi:\omega\to 2^{\text{Prop}}$ which assigns truth values to the elements of Prop at each time instant:

- $\pi, i \models p$ for $p \in \mathsf{Prop}$ iff $p \in \pi(i)$
- $\pi, i \models \circ \phi \text{ iff } \pi, i + 1 \models \emptyset$
- $\pi, i \models \phi \mathcal{U} \psi$ iff for some $j \geq i$, $\pi, j \models \psi$ and for all k, $i \leq k < j$, $\pi, k \models \phi$ (strong until)
- $\pi, i \models \Box \phi$ iff for all $j \geq i$, $\pi, j \models \phi$
- $\pi, i \models \diamond \phi$ iff exists j > i, $\pi, j \models \phi$

 π satisfies a formula ϕ ($\pi \models \phi$) iff π , $0 \models \phi$.

Reading Exercises

Following are some temporal formulas φ and what they say about a sequence $\sigma: s_0, s_1, ...$ s.t. $\sigma \models \varphi$:

- $p \rightarrow \diamond q$ If p holds at s_0 , then q holds at s_j for some $j \geq 0$.
- $\Box(p \to \diamond q)$ Every p is followed by a q.
- $\Box \diamond q$ The sequence σ contains infinitely many q's.
- $\Box \diamond q$ All but a finitely many states in σ satisfy q. Property q eventually stabilizes.

LTL is good for expressing safety and liveness properties:

- $\Box(p\mathcal{U}q)$ always p remains true at least until q becomes true.
- $\neg(\diamond(p\mathcal{U}q))$ never is there a point in the execution s.t. p remains true at least until q becomes true.
- $\neg(p\mathcal{U}(\Box(q\mathcal{U}r)))$ it is not true that p is true at least until the point s.t. for all paths q is true at least until r is true.

Some Temporal Properties

```
\begin{array}{rcl} \diamond p &=& \mathit{True} \; \cup \; \mathsf{p} & - \; \mathsf{Eventually} \\ \Box p &=& \neg \diamond \neg p & - \; \mathsf{Henceforth} \\ p \mathcal{W} q &=& \Box p \vee (p \mathcal{U} q) & - \; \mathsf{Waiting-for, \; Unless, \; V} \\ \Box p &=& p \wedge \diamond \Box p \\ \diamond p &=& p \vee \circ \diamond p \\ p \mathcal{U} q &=& q \vee (p \wedge \circ (p \mathcal{U} q)) \end{array}
```

Comparison of LTL with CTL

Syntactically, LTL is simpler than CTL.

Semantically, the two are incomparable:

- ullet The CTL formula EF p, stating the existence of a path leading to a p-state is inexpressible in LTL.
- The LTL formula $\diamond \Box p$ stating that every computation eventually stabilizes at p is inexpressible in CTL. The following automaton:

satisfies $\diamond \Box p$ but does not satisfy the CTL approximation AF AG p.

Most useful properties are specifiable by both. Invariance can be specified by both $\Box p$ and AGp. Liveness (response) is specifiable by both $\Box(p \to \diamond q)$ and $AG(p \to AFq)$.

Crucial Connection: LTL ≡ Buchi Automata

Buchi Automata

If A is an alphabet, let A* denote the set of finite words, and A^{ω} - the set of infinite words (ω -words) over A.

Example: $A = \{a, b\}$ $\alpha = abaabaaab...$

Can define languages $L \subseteq A^{\omega}$ on ω -words and automata that recognize such languages.

Example: $A = \{a, b, c\}$ $L_1 \subseteq A^{\omega}$ is $\alpha \in L_1$ iff after any occurrence of letter a there is some occurrence of letter b in α .

Possible strings:

ababab... aaabaaab... abbabbabb... accbaccb...

Automata for recognizing such languages are called Buchi.

Buchi Automata

Definition: A Buchi automaton over the alphabet A is of the form $\mathcal{A} = (Q, q_0, \Delta, F)$ with finite state set Q, initial state $q_0 \in Q$, transition relation $\Delta \subseteq Q \times A \times Q$, and a set $F \subseteq Q$ of final states.

A run of $\mathcal A$ on an ω -word $\alpha=\alpha(0)\alpha(1)...$ from A^ω is a sequence $\delta=\delta(0)\delta(1)...$ such that $\delta(0)=q_0$ and $(\delta(i),\alpha(i),\delta(i+1))\in\Delta$ for $i\geq 0$; the run is called $\operatorname{successful}$ if some state of F occurs infinitely often in it.

- \bullet ${\mathcal A}$ accepts α if there is a successful run of ${\mathcal A}$ on α
- $L(A) = \{ \alpha \in A^{\omega} \mid A \text{ accepts } \alpha \} \omega$ -language recognizable by A.
- If L = L(A) for some Buchi automaton A, L is said to be Buchi-recognizable.

A Note on Notation

Vardi, Wolper

Buchi automaton $(\Sigma, S, \rho, s_o, F)$.

Thomas

Buchi automaton (Q, q_0, Δ, F) over alphabet A.

Correspondences:

 $A \equiv \Sigma$ alphabet

 $Q \equiv S$ set of states

 $q_0 \equiv s_0$ initial states

 $\Delta \equiv \rho$ transition relation

 $F \equiv F$ accepting states

Important Theoretical Results

- 1. The emptiness problem for Buchi automata is decidable $(L(A) \neq \emptyset)$ (logspace complete for NLOGSPACE, i.e., solvable in linear time [Vardi, Wolper])
- 2. Nonuniversality problem for Buchi automate $(L(A) \neq A^{\omega})$ is decidable (logspace complete for PSPACE [Sisla, Vardi, Wolper])
- 3. Buchi automata are closed under complementation, i.e., from a Buchi automaton recognizing L one can construct an automata recognizing $A^{\omega}-L$. The number of states in this automaton is $2^{O(|\phi|)}$ states $(\phi$ formula representing language L see later)
- 4. Buchi automata are closed under intersection [Chouka74]: given two Buchi automata A (with S states) and B (with S_1 states), one can construct an automaton with $2|S| \times |S_1|$ states that accepts $L(A) \cap L(B)$

Relationship between LTL Formula and Buchi Automata

Theorem [Wolper, Vardi, Sisla 83]: Given an LTL formula ϕ , one can build a Buchi automaton $\mathcal{A}_{\phi} = (\Sigma, S, \rho, s_0, F)$ where $\Sigma = 2^{\text{Prop}}$ (the number of automatic propositions, variables, etc. in ϕ) and $|S| \leq 2^{O(|\phi|)}$ ($|\phi|$ - length of the formula) s.t. $L(\mathcal{A}_{\phi})$ is exactly the set of computations satisfying the formula ϕ .

Examples:

 $\Box(p\mathcal{U}q)$

 $\Box \diamond p$

 $\Box \diamond (p \lor q)$

 $\neg \Box \diamond (p \lor q)$

 $\neg(\Box(p\mathcal{U}q))$

Sketch of the Algorithm

Compute the set of subformulas that must hold in each reachable state and in each of its successor states.

- Convert formula into normal form (negation for atomic propositions)
- Create initial state, marked with the formula to be matched and a dummy incoming edge
- Recursively
 - take a subformula that remains to be satisfied
 - look at the leading temporal operator: may split the current state into two, each annotated with appropriate subformula
- Make connections to accepting state

More info in Vardi and Wolper's proof.

Linear-Time TL Modelchecking

Given a finite-state program $P = (W, s_0, R, V)$ $(W - \text{finite set of states}, s_0 \in W - \text{initial state},$ $R \subseteq W^2 - \text{total accessibility relation}, V : W \to$ $2^{\text{Prop}} - \text{assigns truth values to propositions in}$ Prop for each state in W), we can represent it as a Buchi automaton $\mathcal{A}_P = (2^{\text{Prop}}, W, \{s_0\}, \rho, W)$.

Here, $s' \in \rho(s, a)$ iff $(s, s') \in R$.

 s_0 – the only starting state. All states are accepting. a=V(S).

So, want to know if all sequences accepted by A_P are also accepted by A_{ϕ} (automaton equivalent to property ϕ):

- Compute complement of \mathcal{A}_{ϕ} $(\overline{L(\mathcal{A}_{\phi})})$
- Intersect result with A_p
- Check for emptiness

Linear-Time ModelChecking (Cont'd)

So, build an automaton for $L(A_p) \cap \overline{L(A_\phi)}$ with $|W| \times 2^{O(|\phi|)}$ states.

Thus:

- Program complexity of the verification problem is logspace complete for co-NLOGSPACE.
- The specification complexity of the verification problem is logspace complete for PSPACE.
- Checking whether a formula ϕ is satisfied by a finite-state program P can be done in time $O(||P|| \times 2^{O(|\phi|)})$ or in space $O((log||P|| + ||\phi||)^2)$.

i.e., checking is polynomial in the size of the program and exponential in the size of the specification.

food for slide eater

food for slide eater

152