Linear-Time ModelChecking

. LTL

. Basic principles

e Buchi Automata
e L TL — Buchi Automata
e Automata-theoretic model-checking

. SPIN/Promela

e expressing models
e partial-order reductions

. LTL 4 partial-order reductions

e closure under stuttering
e language expressiveness

138

Propositional Linear-Time
Temporal Logic

e If p is an atomic propositional formula, it is
a formula in LTL.

e If p and ¢ are LTL formulas, so are p A g,
pVgq, —=p, pUg, op (next), op (eventually), Op
(always).

Interpretation: over computations = @ w —
2Prop which assigns truth values to the ele-
ments of Prop at each time instant:

o m,i=p for p € Prop iff p € 7(4)

e milEogiff mi+ 10

o 7, i = ¢Uy iff for some j > 4, 7, j = 4 and
for all k, i < k < j, m k |= ¢ (strong until)

o m,il=0¢ iff for all j >4, m,j = ¢

o T, i=o0¢ iff exists j > i, m,j = ¢

7 satisfies a formula ¢ (7w = ¢) iff m,0 = ¢.

139

Reading EXxercises

Following are some temporal formulas ¢ and
what they say about a sequence o : sg, 81, -..

S.t.

o= e

p — oq — If p holds at sg, then ¢ holds at
s; for some j > 0.

O(p — ¢q) — Every p is followed by a q.

O¢q — The sequence o contains infinitely
many q’'s.

O¢qg — All but a finitely many states in ¢
satisfy q. Property ¢ eventually stabilizes.

140

LTL is good for expressing safety and liveness
properties:

e O(plq) - always p remains true at least until
g becomes true.

e —(o(pUq)) - never is there a point in the
execution s.t. p remains true at least until ¢
becomes true.

e ~(pU(O(qUr))) - it is not true that p is true
at least until the point s.t. for all paths q is
true at least until r is true.

141

Some Temporal Properties

op
Up
pWq
Up
op
pUq

True U p
—|<>—|p

Op Vv (pUq)

p N\ olp
pVoop

qV (p Ao(pUq))

— Eventually
— Henceforth
— Waiting-for, Unless, V

142

Comparison of LTL with CTL

Syntactically, LTL is simpler than CTL.
Semantically, the two are incomparable:

e The CTL formula EF p, stating the exis-
tence of a path leading to a p-state is inex-
pressible in LTL.

e The LTL formula ¢Op stating that every
computation eventually stabilizes at p is inex-
pressible in CTL. The following automaton:

satisfies oOp but does not satisfy the CTL
approximation AF AG p.

Most useful properties are specifiable by both.
Invariance can be specified by both Op and
AGp. Liveness (response) is specifiable by
both O(p — ¢q) and AG(p — AFq).

143

Crucial Connection: LTL = Buchi
Automata

Buchi Automata

If Ais an alphabet, let Ax denote the set of
finite words, and A% - the set of infinite words
(w-words) over A.

Example: A = {a,b} « = abaabaaab...

Can define languages L C A¥ on w-words and
automata that recognize such languages.

Example: A = {a,b,c¢} L1 C A¥ is a € Ly iff
after any occurrence of letter a there is some
occurrence of letter b in «.

Possible strings:

ababab... aaabaaab...
abbabbabb... accbaceb...

Automata for recognizing such languages are
called Buchi.

144

Buchi Automata

Definition: A Buchi automaton over the al-
phabet A is of the form A = (Q, qg, A, F') with
finite state set @, initial state gg € @, transi-
tion relation ACQ x Ax @, and aset FFCQ
of final states.

A run of A on an w-word a = a(0)a(1)... from
AY is a sequence § = (0)d6(1)... such that
0(0) = gg and(0(2), a(i),d(i+1)) € A fori > O;
the run is called successful if some state of F
occurs infinitely often in it.

e A accepts « if there is a successful run of A
on «

o L(A) ={a € A¥ | A accepts a} — w-language
recognizable by A.

e If L = L(A) for some Buchi automaton A,
L is said to be Buchi-recognizable.

145

Important Theoretical Results

1. The emptiness problem for Buchi automata
A Note on Notation is decidable (L(A) # 0) (logspace com-
plete for NLOGSPACE, i.e., solvable in

_ linear time [Vardi, Wolper])
Vardi, Wolper

Buchi automaton (X, S, p, so, F'). 2. Nonuniversality problem for Buchi auto-
mate (L(A) #= A¥) is decidable (logspace
complete for PSPACE [Sisla, Vardi, Wolper])

Thomas
Buchi automaton (Q, qg, A, F') over alpha- 3. Buchi automata are closed under comple-
bet A. mentation, i.e., from a Buchi automaton
recognizing L one can construct an au-
o W
Correspondences: tomata r.ecog.nlzmg A L.. Toh(e r)wmber
of states in this automaton is 20(1¢D states
A = ¥ alphabet I(;z::(;r;ormula representing language L - see
Q = set of states
go = so Initial states 4. Buchi automata are closed under inter-
A = p transition relation section [Chouka74]: given two Buchi au-
I = F accepting states tomata A (with S states) and B (with

S, states), one can construct an automa-
ton with 2|S| x |S1| states that accepts
L(A) N L(B)

146 147

Relationship between LTL
Formula and Buchi Automata

Theorem [Wolper, Vardi, Sisla 83]: Given an
LTL formula ¢, one can build a Buchi automa-
ton A, = (X, 5, p, s, F) where & = 2P™P (the
number of automatic propositions, variables,
etc. in ¢) and |S| < 20U¢D (|¢| - length of
the formula) s.t. L(Ay) is exactly the set of
computations satisfying the formula ¢.

Examples:
O(pUq)

Qop
Oo(pVq)

—~O¢(pVq)

—(O(pUq))
148

Sketch of the Algorithm

Compute the set of subformulas that must
hold in each reachable state and in each of
its successor states.

e Convert formula into normal form (nega-
tion for atomic propositions)

e Create initial state, marked with the for-
mula to be matched and a dummy incom-
ing edge

e Recursively
— take a subformula that remains to be
satisfied
— look at the leading temporal operator:
may split the current state into two,
each annotated with appropriate sub-
formula

e Make connections to accepting state

More info in Vardi and Wolper's proof.
149

Linear-Time TL Modelchecking Linear-Time ModelChecking

(Cont’d)
Given a finite-state program P = (W, sg, R, V)
(W — finite set of states, sg € W — initial state, So, build an automaton for L(Ap)NL(Ag) with
R C W?2 — total accessibility relation, V : W — W x 20(1¢1) states.

2Prop — assigns truth values to propositions in
Prop for each state in W), we can represent it
as a Buchi automaton Ap = (2P"P W, {sg}, p, W).

Thus:

e Program complexity of the verification prob-

Here, s/ € p(s,a) iff (s,s!) € R. lem is logspace complete for co-NLOGSPACE.

sg — the only starting state. All states are e The specification complexity of the veri-

accepting. a = V(S5). fication problem is logspace complete for
PSPACE.

So, want to know if all sequences accepted
by Ap are also accepted by A¢ (automaton

e Checking whether a formula ¢ is satis-
equivalent to property ¢):

fied by a finite-state program P can be

- done in time O(||P|| x 200¢D) or in space
e Compute complement of Ay (L(.A¢)) O((logHP” 4+ ||¢||)2)

e Intersect result with Ap i.e., checking is polynomial in the size of the
program and exponential in the size of the

e Check for emptiness . .
specification.

150 151

food for slide eater food for slide eater

152 153

