How is Model-Checking Done?

- Semantics of propositions
- Tableau-based checking:
 - Notion of tableau
 - Rules
 - Example
- Implementation of model-checking
- Running times

Terminology

\mathcal{A} - a set of atomic formulas \mathcal{A}.
\forall (disjoint from \mathcal{A}) - a set of propositional variables X.
Act - a set of actions a.
Formulas are Φ...
T - a set of states

- $\Gamma \prec \Phi$ if Γ is a strict subformula of Φ.
- environment - a mapping of variables to sets of states as a means of interpreting free propositional variables.
- $e[X \mapsto S]$ - the environment e with X "updated" to S.
- Use sequents of the form $H \vdash s \in \Phi$, where s is a state, Φ is a formula, and H is a set of hypotheses of the form $\forall \cdot \Gamma$, for s a state and Γ a closed recursive formula.
Semantics of propositions

\[[A]e = V(A) \]
\[[X]e = e(X) \]
\[[-\Phi]e = \top \quad [\Phi]e \]
\[[\Phi_1 \lor \Phi_2]e = [\Phi_1]e \cup [\Phi_2]e \]
\[[<a>\Phi]e = \pi_a([\Phi]e), \text{ where} \]
\[\pi_a(S) = \{ s' \mid \exists s \in S, s \approx a s' \} \]
\[[\nu X.\Phi]e = \bigcup \{ S \subseteq \mathcal{T} \mid S \subseteq [\Phi]e[X \mapsto S] \} \]

Idea of tableau

- Theorem: \(H \vdash s \in \Phi \) has a successful tableau if and only if \(H \vdash s \in -\Phi \) has no successful tableau.
- Idea: start with property (or negated property), apply rules R1-R8 and DR1-DR3 (below) in top-down fashion until all leaves are successful. A leaf is successful if and only if one of the following holds:

1. \(\Phi \in \mathcal{A} \) and \(s \in V(\Phi) \).
2. \(\Phi \) is \(-A\) for some \(A \in \mathcal{A} \) and \(s \notin V(A) \).
3. \(\Phi \) is \(-<a>\Phi\) for some \(a \) and \(\Phi\).
4. \(\Phi \) is \(\nu X.\Phi\) for some \(X \) and \(\Phi\).
5. Sequents of form \(H \vdash s \in T_{true} \) are successful.
6. Leaves of the form \(H \vdash s \in [a]\Phi \) are successful.

Note: \(H \vdash s \in -<a>\Phi \) is a leaf only when \(s \) has no \(a \)-derivatives, while \(H \vdash s \in \nu X.\Phi \) is a leaf only when \(s : \nu X.\Phi \in H \).
Rules

see Figure 3 on p. 730 of Acta Informatica paper

Rules (Cont’d)

see Figure 4 on p. 732 of Acta Informatica paper
Rules, Etc.

R7 and R8 require that in order to establish that a state enjoys a (negated) recursive property, it is sufficient to establish that it enjoys the (negated) unrolling of the property, provided that the assumptions involving the formulas having the recursive formula as a subformula are removed or discharged from the hypothesis list.

Other results:
1. (Finiteness) If models are finite, their tableaux are finite.
2. (Soundness and completeness) \(H \vdash s \in \Phi \) has a successful tableau if and only if \(s \in \llbracket \Phi \rrbracket^H \).

Example

See Figure 5 on p. 732 of Acta Informatica paper
Simple Implementation of model-checking

fun check1v(H ⊨ s ∈ Φ) =
 case Φ is
 A ∈ A → return (s ∈ V(A))
 X ∈ V → error
 ¬Φ1 → return not (check1v(H ⊨ s ∈ Φ1))
 Φ1 ∨ Φ2 → return (check1v(H ⊨ s ∈ Φ1)
 or check1v(H ⊨ s ∈ Φ2))
 < a > Φ1 → for each s1 ∈ {s2 ⊢ s1} do
 if check1v(H ⊨ s1 ∈ Φ1) then
 return true;
 else return false
 νX.Φ1 → let H1 = {s1 : Γ | Φ1 ⊨ s1} in
 return (check1v(H1 ⊨ s : Φ1 ⊨ s ∈ Φ1[Φ/X]))
end
fun check1(s ∈ Φ) = check1v(∅ ⊨ s ∈ Φ)

Running times

- Algorithm has exponential running time even for formulas having no recursive subformulas, owing to the possibility of nested modal operators.
- Possible optimization: store results of sequents whose truth has already been determined
- Running time is $O((|S| \times |Φ|)^{id(Φ)+1})$:
 - $id(Φ)$ = interconnection depth of $Φ$, measure of the degree of mutual recursion in $Φ$
 - $Φ$ = formula under verification
 - S = number of states in transition system