How is Model-Checking Done?

e Semantics of propositions
e Tableau-based checking:
— Notion of tableau
— Rules
— Example
e Implementation of model-checking
e Running times

258

Terminology

- a set of atomic formulas A . .
V (disjoint from A) - a set of propOSIt/onal

variables X ...

Act - a set of actions a ...
Formulas are & ...

T - a set of states

e[< ® if I is a strict subformula of ®.
environment - a mapping of variables to sets
of states as a means of interpreting free propo-
sitional variables.

e ¢[X — S] - the environment e with X "up-
dated” to S.

e Use sequents of the form H I s € &, where
s is a state, & is a formula, and H is a set of
hypotheses of the form s/ : I', for s/ a state
and I a closed recursive formula.

259

Semantics of propositions

[Ale

[XTe
[—<®]Je
[®1V Psr]le
[<a>P]e

[vX.®Je

V(A)

e(X)

T - [®]e

[®i]e U [P2]e

wo([[P]e), where

7a(8) = {s/|Is € S.s1 % s}
U{S C T | S C [®]e[X = 5]}

260

Idea of tableau

e Theorem: H I s € ® has a successful tableau
if and only if H - s € =® has no successful
tableau.

e Idea: start with property (or negated prop-
erty), apply rules R1-R8 and DR1-DR3 (be-
low) in top-down fashion until all leaves are
successful. A leaf is successful if and only if
one of the following holds:

1. e Aand s e (V(P)).

2. & is —A for some A€ A and s € V(A).
3. dis - <a>Prfor some a and .

4., & is vX.Pr for some X and Pr.

5. Sequents of form H + s € True are suc-
cessful.

6. Leaves of the form H F s € [a]d are suc-
cessful.

Note: HFse - <a> d is a leaf only when s
has no a-derivatives, while H+ s € vX.® is a
leaf only when s: vX.® € H.

261

Rules Rules (Cont’'d)

see Figure 3 on p. 730 of Acta Informatica see Figure 4 on p. 732 of Acta Informatica
paper paper

262 263

Example

See Figure 5 on p. 732 of Acta Informatica

Rules, Etc. paper

R7 and R8 require that in order to establish
that a state enjoys a (negated) recursive prop-
erty, it is sufficient to establish that it enjoys
the (negated) unrolling of the property, pro-
vided that the assumptions involving the for-
mulas having the recursive formula as a sub-
formula are removed or discharged from the
hypothesis list.

Other results:

1. (Finiteness) If models are finite, their tableaux
are finite.

2. (Soundness and completeness) HF s € &

has a successful tableau if and only if s €
[P

264 265

Simple Implementation of
model-checking

fun checkl/(HF s € &) =
case @ is
A€ A — return (s € V(A))
X eV — error
—®r — return not (checkl/(H & s € ®r))
D1V Py — return (checkl/(H F s € dq)
or checkl/(H + s € ®5))
< a > P — for each st € {s/s it st} do
if check1/(H + st € ®r) then
return true;
else return false
vX.®Pr > let Hr={sr: I | d=<T}in
return (check1/(H U {s: &} I
s € d1P/X]))

Running times

e Algorithm has exponential running time even
for formulas having no recursive subformulas,
owing to the possibility of nested modal op-
erators.
e Possible optimization: store results of se-
quents whose truth has already been deter-
mined
e Running time is O((|S| x |®])¥d(®)+1):

— id(P) — interconnection depth of &, mea-
sure of the degree of mutual recursion in &

— & — formula under verification

— S — number of states in transition system

end
fun checkl(s € ®) = check1/(D+ s € P)

266 267

