Concurrency Workbench and
Process Algebras

Process algebra CCS

Concurrency Workbench

p-calculus and its relationship with CTL

- Specify: a set of (communicating) concur-

rent processes (using CCS or SCCS)

- Use various verification methods to check

that the processes meet their specification.

Example: simple protocol - The system is designed to be easy to extend
(so CW in Manual # CW in Paper)

Verification approaches

Doing this in CWB

Other: plan for the rest of the semester; projects;
assignments

210 211

Overview of CCS

Processes are called agents, built from a set
of actions. Actions can be:

- Observable (or communication), marked
by letters a, b, etc., and

- Unobservable (or silent), marked by 7.

Observable actions:

- a, b, ... - input actions

- @, b, ... - output actions
Input action a and output action a are com-
plimentary, reflecting input and output on the
"port” a (used to represent synchronization).

212

Some standard operators

Nil - Terminated process

1 - Undefined process. Its behavior is un-
known ("don’t care”).

a.P - Process performs action a and then
acts exactly like P.

More on that:

4 - transition relation.

p = pr holds when p can evolve into ps by per-
forming action a. pr is called an a-derivative
of p.

a.p % p holds for any p.

213

Standard Operators (Cont’'d)

+ - Choice. p+q - either p or g will get per-
formed. p+ ¢ % pr if either p % pr or ¢ = pr.

| - Parallel composition. The agent p | g be-
haves like the "interleaving” of p and ¢ with
the possibility of complementary actions syn-
chronizing to produce a T action.
Example:

\L - Restriction on (finite) set L of actions.
p\L behaves like p with the exception that no
actions in L are allowed.

[f] - Relabeling of f, which maps actions
to actions. p[f] behaves like p with actions
renamed by function f.

214

CCS Operators - Formal

Semantics
Qa
ap—)p
pSp = ptqgSp
S q = q+q5q
a Qa
p—p = plg—pllg
Qa Qa
q—q = plg— pla/
pphqgq = plg= pllg
pSpha,agl = p\L-Sp\L
f(a)
p=p = p[f]l = pr(f]
pA£>p/ = A£>p/

Here p4 is the agent expression bound to iden-

tifier A.

215

Specification examples - Buffers Specification examples - Buffers

BUF, - a buffer of capacity n. CBUFn - a compositional buffer of capacity
n.
BUF, = BUFY
BUFY = in.BUF} CBUF, = (BUFq[z1/out] |
BUF: = in.BUF;T! 4 out BUFi-1 . | BUFy[a;/in, &i41/out] | ... BUF1 [z, _1/in])
fori =1, ..., n—1) i=1,..,n—2 ’
BUF? = oul.BUF?~1 {21, .., zp-1}
Transition graph for BUF,,. Transition graph for CBUF.

216 217

Notion of Observation

Transition graphs make a transition on every
time "tick” (even if it is just 7). If timing
is removed, we might be interested in just
observable transitions.

Definition:
-pSpriff p B

(transitive and reflexive closure of)
Sp 2 priff p S LS

(relational products of = and %)

Can compute observation graphs, which takes

O(n3), where n - number of nodes in the
graph.

218

Observation Graph for CBUF,
For clarity, e-loops - one self-looping edge from
each node - are omitted from the following

graph.

Figure 5, page 8

219

u-calculus

Specifications can be written in a modal logic
based on the propositional u-calculus.

Syntax of formulas:

o tt| ff1X

- | PVD | PADP | D= D
<a>® | [a]l® |[<.>D | []JP
B arg-list

vX.d | uX.®

X ranges over variables,

a - over actions,

B - over user-defined macro identifiers,
arg-list - over lists of actions and/or formulas
that B requires in order to produce a propo-
sition,

tt and ff hold on every node and no node,
respectively.

220

Semantics of p-calculus formulas

Constructors < a >, [a], < . > and [] - to
reason about edges leaving a node.

A node n satisfies:

- <a>dif it has an a-derivative satisfying ¢
- [a]® if all of its a-derivatives satisfy &

In the case that n has no a-derivatives, n triv-
ially satisfies [a]d

acts like a "wild-card” action in [.], <. >.
n satisfies:
- <. > @ if it satisfies < a > ® for some a
- [.]® if it satisfies [a]P for all a

221

Semantics of p-calculus formulas
(cont’d)

Formulas of type vX.® and uX.$ are recur-
sive formulas, representing the greatest- and
least-fixpoints, respectively.
- vX.® = A2 yP;, where

®g is tt and

®,41 = P[D;/X] (substitute ®; for all free oc-
currences of X in ®)
- pX.® = V2, P;, where

®q is ff and

D1 = P[D;/X]

Restriction: & should be such that any free
occurrences of X appear positively.

222

p-calculus and CTL

Formulas in general are unintuitive and dif-
ficult to understand. But using macros fa-
cility, they can be "coded up” into better-
understood operators like CTL (its logic is a
subset of p-calculus). For example,

AG® = vX.(DdA[]X)

AF® = puX(PV(<.>ttA[]X))
AU1DY = vX.(dV(VA[L]IX))
AU20V = puX(PV(VA.>ttA[]X))

You can do similar encoding for Assignment
3.

223

How is Model-Checking Done?

e Semantics of propositions
e Tableau-based checking:
— Notion of tableau
— Rules
— Example
e Implementation of model-checking
e Running times

224

Terminology

A - a set of atomic formulas A ...

VY (disjoint from A) - a set of propositional
variables X ...

Act - a set of actions a ...

Formulas are & ...

T - a set of states

e[< &d if [is a strict subformula of .

e environment - a mapping of variables to
sets of states as a means of interpreting free
propositional variables.

e ¢[X — S] - the environment e with X "up-
dated” to S.

e Use sequents of the form H F s € &, where
s is a state, & is a formula, and H is a set of
hypotheses of the form s/ : I, for s/ a state
and I a closed recursive formula.

225

Semantics of propositions

[Ale

[X]e
[-®]e
[PV Ps]e
[<a>®]e

[vX.d]e

V(A)

e(X)

T — [®]e

[P1]e uPo]e

mo([[®]e), where

7a(S) = {s/ | Is € S.s1 5 s}
U{S C T | S C [®]elX ~ ST}

226

Idea of tableau

e Theorem: H I s € ® has a successful tableau
if and only if H - s € =® has no successful
tableau.

e Idea: start with property (or negated prop-
erty), apply rules R1-R8 and DR1-DR3 (be-
low) in top-down fashion until all leaves are
successful. A leaf is successful if and only if
one of the following holds:

1. € Aand s e (V(P)).

2. & is —A for some A€ A and s ¢ V(A).
3. dis - <a> P for some a and P/,

4. & is vX.dr for some X and /.

5. Sequents of form H + s € Tru€ are suc-
cessful.

6. Leaves of the form H + s € [a]® are suc-
cessful.

Note: HFs € - <a> P is a leaf only when s
has no a-derivatives, while H+ s € vX.$ is a
leaf only when s : v X.® € H.

227

Rules Rules (Cont’d)

see Figure 3 on p. 730 of Acta Informatica see Figure 4 on p. 732 of Acta Informatica
paper paper

228 229

Example

See Figure 5 on p. 732 of Acta Informatica

Rules, Etc. paper

R7 and R8 require that in order to establish
that a state enjoys a (negated) recursive prop-
erty, it is sufficient to establish that it enjoys
the (negated) unrolling of the property, pro-
vided that the assumptions involving the for-
mulas having the recursive formula as a sub-
formula are removed or discharged from the
hypothesis list.

Other results:

1. (Finiteness) If models are finite, their tableaux
are finite.

2. (Soundness and completeness) H s € ®
has a successful tableau if and only if s €
[®]7.

230 231

Simple Implementation of
model-checking

fun checkl/(HF s € ®) =
case ® is
A€ A — return (s € V(A))
X €V — error
—=®/ — return not (checkl/(H + s € 1))
&1V Py — return (checkl/(HFE s € &)
or checkl1/(H + s € ®5))
< a>®Pr — for each s/ € {s/, s.t. s = s/} do
if check1/(H & st € ®1) then
return true;
else return false
vX.®r —let Hr={sr: T |d=<T}in
return (check1/(H U {s: ®}F
s € PID/X]))
end
fun checkl(s €) = check1/(l + s € ®)

232

Running times

e Algorithm has exponential running time even
for formulas having no recursive subformulas,
owing to the possibility of nested modal op-
erators.
e Possible optimization: store results of se-
qguents whose truth has already been deter-
mined
e Running time is O((|S| x |®|)id(®)+1):

— id(®P) — interconnection depth of &, mea-
sure of the degree of mutual recursion in ¢

— & — formula under verification

— S — number of states in transition system

233

Verification example

Want to prove that CBUF,, for a particular
n, iS deadlock free.

- Define a macro Deadlock = —. < . > tt (true
in states that cannot perform any actions)

- Using model-checker, check AG—Deadlock

Want to prove liveness property - buffer will

eventually get engaged in an in or an out
- Check (AG((AF < in > tt)V(AF < oul > tt))

234

Edquivalence Checking

Idea - node matchig. Two transition graphs
are equivalent if their nodes can be matched
such that
1. two matched nodes have compatible infor-
mation fields
2. if two nodes are matched and one has
an a-derivative, then the other must have a
matching a-derivative
3. the root nodes of two transition graphs are
matched.

235

Edquivalence Checking - formal
definition

Let G1 and G5 be transition graphs with node
sets N1 and N», respectively. Let N = N{UN>,
and let C C N x N be an equivalence relation
reflecting a notion of " compatibility” between
information fields. A C-bisimulation on G and
Go is a relation R C N x N such that < m,n >¢€
R implies that:

1. if m % ms then 3nr:n % nr and < mr,nt >¢€
R, and

2. ifn % nsthen Imr:m S mrand < mr,nt >€
R, and

3. <m,n>eC

If root nodes can be related by C-bisimulation,
then two transition graphs are C-equivalent.

236

Equivalence Checking - Cont’d

Many equivalences are instances of C-equivalence
combined with graph transformations. For
example, observation equivalence corresponds
to equivalence on observation graphs where C

is replaced by U = N x N.

Similarly, can define testing equivalence for
acceptance graphs (see paper).

BUF, and CBUF,, are observationally equiva-
lent for each n. Notation:

BUF, ~ CBUF;,Vn

237

Preorder Checking

A process A is "more defined than” a pro-
cess B if A has the same behavior as B ex-
cept for the holes in B. The preorder algo-
rithm determines if a process is more defined
than its specification. One transition graph is
less than another if the states of first can be
matched to the second such that:

1. the information field of the "lesser” node
must be "less” than the " greater”.

2. if the " greater” node has " valid” a-transitions,
then each a-transition of the " lesser” must be
matched by some a-transitions of the " greater” .
3. ifthe " lesser” node has ”viable” a-transitions,
then each transition of the " greater” must be
matched by some a-transition of the " lesser” .
4. start state of the " lesser” and the " greater”
must be matched.

238

Preorder Checking

Weak divergence preorder, 5, is obtained from
the observation graph where

- "viable” holds for all nodes

- "valid” stands for {n | n | a}. n | a holds
if n is not globally divergent and cannot be
triggered by means of an a-action to reach a
globally divergent state.

This interpretation is based upon regarding
divergent states as being underspecified. So,
1 allows any process as a correct implemen-
tation. Preorder = coincides with ~ for com-
plete specifications.

Actually, when left-hand side process is com-
pletely specified, then so is the right-hand side
process.

Other preorders can be defined similarly (see
paper).

239

A Simple Protocol

Service specification of the protocol requires
that any message sent must be received be-
fore a second message may be sent:

SRV = s.7.SRV
Graph:

Protocol specification - two processes, a sender
and a receiver, and a medium connecting them.

240

Protocol Design

Create the following (logical) design:

Define:

SND = s.from.acki,.SND

MDM = from.to.MDM + ack f.om-@Kto. M DM
RCV = to.r.ackrom-RCV

PROT = SND|MDM | RCV

\{ from,to, ack ¢,.om: ackio}
Restriction operator means that these actions

are internal.

- Can show PROT ~ SRV.

241

Another Protocol Design

Produce a partial definition, reflecting the fact
that there may be different implementations
for the medium still leading to a correct over-
all implementation of the service specifica-
tion.
PM = from.(%.PM-I—ack'from-J-)‘i‘
ack trom-(TKG pAr L from. 1)
PP = SND|PM | RCV
\{from, to, ack tom, ackio}
Now define an implementation, consisting of
two one-piece buffers, running in parallel: one
for messages, one for acknowledgments.

NM = MB|AB

MB = from.to.MB
AB = ackppom-acki.AB
N PROT = SND|NM | RCV

\{from, to, G'Ckfroma ackio}

242

Verification for this Example

- Can show that N_PROT =~ SRV

- PP~ SRV

- PMSNM

- PP never reaches an underspecified state
(via model-checking)
Therefore, N_PROT =~ PP and hence
N_PROT =~ SRV

243

Model-checking

Define the following macros: Working with CWB
AGO = vX.(dA[]X)
Cand = puX.(X.<d>tt |<7>X) To run CWB:
Cant® = —-Can®
Now, check: From command line using
- 51 = AG((Can s) | (Canr)) cwb
either a s or a ¥ can always happen or from emacs (see man cwb for installation in-
- So = AG([s](Can 7)&[r](Can s)) structions).
after a s, a process can 7 and vice versa
- S3 = AG([s](Can’t s)&[r](Can’t 7)) Examples of CWB specifications:
two consecutive s's or ¥'s cannot happen /local/share/cwb/examples/ccs
- Sa=Cans

s must eventually be possible

244 245

CWB Syntax

Identifiers - (A-Z)(A-Z, a-z, 0-9, 7, !, _, 7,
‘,) #)*
Actions - [’](a—z)(A—Z, a-z, 0-9, 7, ', _, ?,
" T #)*
- Action T is represented as tau
- Inverse actions like a are represented as ’a
- Constant O is represented as 0
- Constant e represents agent L (divergence)

The rest is identical to CCS. Operations in-

clude action prefixing, summation, parallel com-
position, restriction, relabelig.

246

Concurrency Workbench - Design

Design of CW - 3 layers

- First layer manages interaction with the user
and contains the basic definition of process se-
mantics in terms of labeled transition graphs
- Second layer provides transformations that
may be applied to transition graphs (so we
can change the semantic model of processes
under consideration)

- Third layer includes basic algorithms to es-
tablish whether the process meets its specifi-
cation. Depending on the verification method
used, a specification may either be another
process (describing the desired behavior) or a
formula in @ modal logic expressing a relevant
property.

247

Example Session

eddiey, cwb

Edinburgh Concurrency Workbench, version 7.0,

Fri QOct

Command :
Command:
Command :
Command :
Command :
Command:
Command :
Command:
Command:

Command:

true

Command :

eddie’

6 11:36:58 BST 1995
agent Cell = a.’b.Cell;

Environments

- CWB has several separate environments.
- All bindings are dynamic:
agent Cell &.’b.Cell;
agent Cell’ =.Cell;
agent Cell = c.’b.Cell;
- Environments are: agents, action sets, and
propositions.

agent CO = Celll[c/b]l;
agent C1 = Celll[c/a,d/b];
agent C2 = Cell[d/al;

agent Buff3 = (CO | C1 | C2)\{c,d};

agent Spec = a.Spec’;

- Identifiers do not clash between environ-
ments.
set Cell = {c, d};

agent Spec’ = ’b.Spec + a.Spec’’;

agent Spec’’ = ’b.Spec’
save "specl";
eq (Buff3, Spec);

quit

agent Buff3 = (CO | C1 | €2)\Cell;
+ a.’b.Spec’’; .
print;

**% Agents **
agent Cell =.’b.Cell

¥*x Action Sets **

set Cell = {c, d}

248 249

Another Example Session

eddie’ cwb

Edinburgh Concurrency Workbench, version 7.0,
Fri Oct 6 11:36:58 BST 1995
Command: input "junk";

Command: sort Buff3;

{a,’b}

Command: size Buff3;

Buff3 has 12 states.

Command: min (Buff3Min, Buff3);
Resetting tables...

Buff3Min has 4 states.

Command: vs (3, Buff3Min);

=== g3 a a ===
=== g3 a ’b ===>
=== g ’b a ===>

Command: random (16, Buff3Min);

a,a,a,’b,a,’b,a,’b,’b,’b,a,a,a,’b,’b,’b

250

Formatting p-calculus formulae.
Modal Operators

If P is a proposition, aq,...an, are actions, and
L is a set identifier, then the following are
propositions:

- [a1,...an]P and [L]P - strong necessity
Agent A satisfies [K]P if every K-derivative of A satis-
fies P; that is, there is an a € K such that A % Ars and
Al satisfies P.

- [[a1,...an]]P and [[L]]P - weak necessity
Agent A satisfies [K]P if every K-observation deriva-
tive of A satisfies P; that is, there is an a € K such
that A = Ar and Ar satisfies P.

-<aiy,...an >P and <L>P - strong necessity
Agent A satisfies [K]P if it has a K-derivative of A sat-
isfies P; that is, there is an a € K such that 4 = Ar
and A/ satisfies P.

- << a1, ...an, >>P and <<L>>P - weak ne-
cessity

251

Formatting p-calculus formulae
(Cont’'d)

- - indicates any transition (e.g. [-1). In u-
calculus, use [.].

- For strong modalities, the action sets must
not include the empty action eps. For weak
modalities, they must not include the unob-
servable action tau.

- Propositional Connectives: if P and Q are
propositions, then so are T(true), F(false), P
(negation), P&Q (conjunction), P|Q (disjunc-
tion) and P=>Q (implication).

- Fixed Point Operators: dreatest fixpoint

vX.P ismax(X.P); least fixpoint uX.P ismin(X.P).

To check a property, use command
checkprop (A, P);

252

Macros for Conversion between
p-calculus and CTL

/local/share/cwb/examples/ccs/tl.macro:

* "Bx" is the "Box" ("always") operator. AG.
prop Bx(P) = max(Z.P & [-12);
* "Poss" is the "possibility" operator. EF.
prop Poss(P) = min(Z.P | <->Z);
* "Ev" is the "eventuality" operator. AF and
* future states exist.
prop Ev(P) = min(Z.P | ([-]1Z & <->T));
prop StrongUntil(P,Q) =

min(Z.Q | (P & [-1Z & <->T));
prop WeakUntil(P,Q) = max(Z. Q | (P & [-1Z));

253

Some Useful CWB Commands

- help, quit

- agent, set, relabel, prop, print, clear

- input "file", output "file" - send CWB out-
put to a file rather than terminal, save "file"

- sim - simulate behavior of an agent using interactive
simulation (see manual)

- checkprop

- transitions - list single-step transitions of an agent,
min, init - observable actions that agent can per-
form immediately, vs - visible sequences of length n,
random, sort, size, states - list the state-space of
finite-state agent, deadlocks - find deadlocks and list
traces leading to them

- eq - two agents are observationally equivalent, pre
two agents are related by the weak divergence (bisim-

ulation) preorder.

254

For More Information...

- See man pages for CWB

See CWB Manual (Version 7)

See examplesin /local/share/cwb/examples/ccs
- See R. Milner, Communication and Con-
currency, Prentice Hall International, 1989.

- See D. Kozen, "Results on the Proposi-
tional u-Calculus”, Theoretical Computer Sci-
ence 27, p. 333-354, 1983.

255

What Other (Timed) Process
What Other (Untimed) Process Algebras Are Out There?
Algebras Are Out There?

- CSR (Communicating Shared Resources) -

- CCS (Calculus of Communicating Systems) R. Gerber, Ph.D. Thesis, University of Penn-
- Milner sylvania, 1991.

- CSP (Communicating Sequential Processes) - ACSR (Asynchronous CSR) - P. Bremond-
- C.A.R. Hoare, Commmunicating Sequential Gregoire, J.Y. Choi and 1. Lee, " The Sound-
Processes, Prentice Hall, 1985. ness and Completeness of ACSR”, Technical
- ASP (Algebra of Communicating Processes) Report MS-CIS-93-59, Univ. of Pennsylvania,
- J. Begstra and J. Klop. "Algebra of Com- June 1993.

municating Processes with Abstraction”. Jour- - Timed CSP - G. Reed and A. Roscoe. " Met-
nal of Theoretical Computer Science, 37:77- ric Spaces as Models for Real-Time Concur-
121, 1985. rency”, in Proceedings of Mathematical Foun-
- SCCS (Synchronous CCS) - used in CWB. dations of Computer Science, LNCS, vol-
Reference? ume 298, Springer-Verlag, 1987.

- and many others.

256 257

