Overview

@ Some more software architectures

@ Motivation for ADL
@ Basic Concepts of Darwin

@ Case study - Cruise Control system
@ Property verification and other ADL issues

Y

i - x \/

Acknowledgements: These slides were
adopted from the tutorial given at ICSE
by Jeff Kramer and Jeft Magee, Imperial

College, London and from a number of researchers at CMU.

What are software architectures?

Software Architectures

Programs

interactions among parts
structural properties
declarative

mostly static

system-level performance
outside component boundary

implementations of parts
computational properties
operational

mostly dynamic
algorithmic performance
inside component boundary

(from Garlan/Shaw)

Explicit architectural descriptions

“architecture” “system product”

Why tolerate a loss of explicit architectural information?

The architectural description should be specified explicitly
and precisely using a special purpose language - an
Architectural Description Language (ADL). An ADL
specification should be usable both for design analysis and
to generate and maintain the system.

What structures should software architectures describe?

There are many possible architectural models.

Selection is determined by
problem domain and

implementation] _
environment interconnections?
bindings?
components? connectors?
processes? RN R | 7
objects?

interactions?

control (invocation) ?
streams (data flow)?

Elements of Architecturd Descriptions

@ The architecture of a system includes
®Components: define the locus of computation
Examples: filters, databases, objects, ADTs
®Connectors: define the interactions between components
Examples: procedure call, pipes, event announce

@ An architectural style defines a family of architectures constrained by
® Component/connector vocabulary
®Topology
®Semantic constraints

Example: Alternating Characters

Produce alternating case of characters in a stream

main

/ / //

2 _X

config input/output

Architecturd Description

e

/ lower
split merge

upper

Components

A component has state, exhibits some
well-defined behaviour, and has a unique

identity. The identity of an

component distinguishes it

Marvin from all other components.

The behaviour of a component
represents its outwardly visible
and testable activity.

The state of a component
represents the cumulative
results of its behaviour.

A component/object is a member (instance) of a
type or class.

Issues Addressed by on
Architecturd Design

@ Gross decomposition of a system into interacting components
® typically
® often using common design
@ Emergent system properties
® performance, throughput, latencies
® reliability, security, fault tolerance, evolvability
@ Rationale
® relates requirements and implementations
@ Envelope of allowed change
® “load-bearing walls”
® design idioms and styles

Desirable Properties: Software development lifecycle

Spiral model for software

engineering....)
Analysis

The architectural

Requirements description should
not change
dramatically
between releases
of the same basic
system.

S::l?;:;li?;l Engineering

Desirable Properties: Consistency

For the architectural description to be useful, it is
essential that there is a means to check and preserve
consistency with the corresponding system(s).

11

Properties: Variations and families

Architectural descriptions should provide i
a generic structure from which various

Common Architecturd Idioms

@ Data flow systems
Batch/sequential Pipes and filters
@ Call-and-return systems
Main program & subroutines Object-oriented systems

Hierarchical layers

@ Independent components

Communicating processes Event systems
@ Virtual machines

Interpreters Rule-based systems
@ Data-centered systems (repositories)

Databases Blackboards
... and more ...

Architectural Description Languages (ADLSs)

@ More sound basis for describing and reasoning about software
architecture.

@ ADLs provide constructs for specifying architectural
abstractions in a descriptive notation.

@ Give mechanisms for decomposing a system into components
and connectors and specifying how these elements are
combined.

The State of Architectural Description

@ Emerging realization of ADL value

@ Proliferation of Architectural Description Languages
® Acme: Generic ADL to support interchange
® Aesop: style-specific environments
® UniCon: architectural compilation
® Wright: protocol analysis
® CHAM: rewrite rule semantics
® SADL: refinement patterns

= @ C-2: arch style using implicit invocation
® Darwin: distributed systems structure
® Meta-H: real-time, fault-tolerant avionics
® Rapide: event patterns, arch simulation

Darwin as an Architecture Description Language

@ Darwin describes structure.

@ Darwin architecture specification independent of
component behaviour and component interaction.

@ Framework for describing component behaviour,
resource requirement, interaction type etc.

@ Darwin used for specification, construction and
management.

separation of concerns

Separate:

from component instances &
Interconnections

B Configuration ol
hierarchic structure of system

.

B Communication

component interaction O -— .

mechanisms

® Computation
component behaviour

S1;S2

multi-view

Structural View

0’

Y
Behavioural View

‘iﬂ‘_ﬂ B R g J
1_5 d

Analysis

Service View

[

Construction/

implementation
18

)

structural view - components & interfaces

A component in Darwin can
have one or more interfaces.

Qa:l £ b:1 O

component C {
portal a:l;
bil;

At this abstract level, an
interface is simply a set of
names:

interface I {

X;
Yy,
7

2

These will refer to actions in
a specification or functions in
an implementation.

structural view - composites & binding

Composite components

are constructed from

more primitive components
using inst - instantiation

& bind - binding.

Portal types are inferred
where they are not directly
specified.

COMP

:C :C
ap b(;}(Faq b b

component COMP {

portal a; b;
inst p:C;
q.C,
bind p.a--a;
gb--b;
p.b-q.a;

20

structural view - connectors

Darwin, in contrast to Wright & Unicon, does not
have additional syntax to denote connectors. A
connector is simply a type of component:

SYSTEM
PROD PIPE CONS

component PIPE {
portal put;
get,

21

service view - provide & require

The service view refines a portal into either a service provided by
a component or a service required by a component.

FILTER
services next\’ services
provided | P*Y required
output
component FILTER {

provide prev : IntStream;
require next : IntStream;
output : IntStream;

22

service view - towards implementation

In a distributed system, interfaces can be specified in Corba IDL and
primitive components implemented as CORBA objects:

CORBA IDL

FILTER

interface IntStream {
void put(in long x);

}

23

service view - binding patterns

many-to-one (e.g. client - server)

inst c1:C;
c2:C;
S;
bind
cl.r--S.p;
c2r--S.p;

For replicated services only:

24

replicators (forall) and guards (when)

PIPELIN

f]0] fln-1] |output
rev next(} - _.prev next()

input pout ut output

] T

component PIPELINE(int n) {
provide input: IntStream;
require output:IntStream,

. o foralli=0 to n-1 {
Dimensioning & inst f]i]:FILTER;
Variants bind fli] .output -- output;

when i <n-1
bind f]i].next -- fli+1];

¥
bind input -- f]0].prev;

} 25
recursion
()
PIPELINE

head (tail O“tp“t) component PIPELINE((int n) {

input | Prev_next input provide input;
P output output require output;

Y inst head:FILTER;

N /' bind

input -- head.prev;
head.output -- output;
when n>1 {
inst tail:PIPELINE(n-1);
bind
head.next -- tail.input;
tail.output -- output;
¥
H

26

generic components

component ELEM {
provide prev;
require next; output;

ELEM

prev next(D ;
output component PIPELINE(int n, <ELEM>) {
provide input;
require output;
foralli=0ton-1 ¢

inst f[i]:<ELEM>;

bind f[i].output -- output;

when i <n-1

bind f[i].next -- fli+1];

¥
bind input -- f[0].prev;
i

27

binding components

Darwin components may contain only bindings. This is used to
encapsulate complex interconnection patterns such as the perfect shuffle
pattern shown below

SHUFFLE)
component SHUFFLE(int n) {
input(0) FI? output(0) portal
input(1) O output(1) mligt[t?] ;]
. output[n];
input(2) Q output(2) forall k:0 to (n/2)-1 bind
input(3) 9 output(3) input[k] -- output[k*2];
input(4) P output(d) input[k+(n/2)] -- output[k*2 + 1];
input(5) Q output(s) ¥

input(6) Q O output(e)

input(7) Q O. output(7)

28

hierarchic bindings

A Darwin binding may result in many implementation bindings

Vs

~

J

Interfaces to composite components have no representation at
runtime and consequently no runtime overhead. Elaboration

of the Darwin program results in a flat structure of
interconnected primitive component instances

29

Darwin - summary

Main Constructs

component - declares a primitive or composite type.

interface

portal
provide
require
inst

bind

- declares an interface type

- declares an interface instance

- declares a service provided by a component.
- declares a service required by a component.

- declares an instance of a component.

- declares a binding from a requirement to a provision

30

Darwin - summary

Additional Constructs

forall - replicates structure.

when - guards structure.

dyn - declares a set of dynamical created instances.
export - exports a service into a namespace.

import - imports a service from a namespace.

31

Car Cruise Control - Example

L\ N

® o ©

resume on off

@ An automobile cruise control system is controlled by the three
buttons depicted above

@ When the engine is running and on is pressed, the cruise control
system records the current speed and maintains the car at this
speed

@ When the accelerator, brake or off is pressed, the cruise control
system disengages but retains the speed setting

@ If resume is pressed, the system accelerates or deaccelerates the
car back to the previously recorded speed. .

Car Cruise Control - Example

Design: 1. the Design Model for the
cruise control system.

2. the State Chart to describe the main control
process for the cruise controller.

3. partition into concurrent interacting processes,
specified in Darwin.

1. specify the behaviour of each of the processes

Analysis: . . .
which comprise the cruise control system.

2. compose the processes and analyse the
{} behaviour of the system to check for validity.

H Will not do that yet - see later in the course! N

Cruise Control - Environment Context Diagram

buttons

0
0/0871_ esa

brake

Cruise Control
System

accelerator

engine

engin

wheel _-
revolution P throttle
sensor

34

Cruise Control - Behaviour Overview Diagram

Tr= Trigger Record Speed
Es= Enable Maintain Speed

monitor)
buttons S '1/¢,’7'bs ‘
S S, Ds = Disable Speed
brake monitor) Prake p,esS; mON Tc = Trigger Clear Speed
brake /= ===-_ d— cruise
d troller
, pressedy con
accelerator monitor acc, B
accelerato o“‘oﬂ, -y >~
°“§\‘:e' g / IEs ! |
engine <~ ('l I ps
engine \ \Tr l \Te
v _V \

maintain
wheel L=="
revolution

peed
clock

throttle
output
x_\
\ throttle

current desired |
speed speed

Cruise Control - Statechart

s X
cruise controller Tc = Trigger Clear Speed

engine on/Tc
inactive active
- engine off
_ J

Vs X X
cruise controller.active Tr = Trigger Record Speed

; Es = Enable Maintain Speed
Ds = Disable Speed

init

! on/Tr; Es
off,brake,acc./Ds

B
cruising L,__resume/Es standby

4 on/Tr;Es
—) 36

Cruise Control - Partitioning into processes

Sensor Scan Process

buttons monitor on,
buttons S Of .
<
. br,
brake monitor ake pra
Qrake =9 cruise
. acc. pres controller
accelerator monitor -
accelerator,
en
engine monitor Y~
engine %

wheel -
revolution
sensor

Cruise Control process

throttle process

throttle
output

3 . \
current % desired throttle

speed speed “
Input
Speed Control record clear
Process Speed speed speed
Process

Cruise Control - Structural View

interface
. sensors {engineOn;engineOff;
gensor (ﬂf{) g:;:::%"er on;off;resume;brake;acc})
can
engine {engineOn;engineOff}
) 0O
i prompts {tc;tr;es;ds}
I engine :{ prompts
S NS
d ttin
Input Spee Speed setting
speed OO Controi G— Throttle

38

Cruise Control - Process Architecture

Sensor
Scan

sensors

Cruise

Controller

Fan"

Cruise
Control
System

engine

I prompts

Speed

Control

setting
Throttle

component CruiseControlSystem § component SensorScan {
inst portal
SensorScan; sensors,
CruiseController; engine;
lsn%‘éhs S‘fmd’ol; component CruiseController {
ottle; portal
bind Sensors;
SensorScan.sensors -- CruiseController.sensors; prompts;
SensorScan.engine -- InputSpeed.engine; H
SpeedControl.throttle -- Throttle.setting;
CruiseController.prompts -- SpeedControl. prompts; | *******
InputSpeed.speed -- SpeedControl.speed; }

Beyond Architectural Structure

@ What can be represented?
® Behavior

computations of components

protocols of connectors

® Performance

timing, computational demands, latencies, etc.
® Reliability

@ How can it be represented?
® As associated properties

@ Architectural structure forms the skeleton: semantics forms
the flesh

® nMany possible notations 2

Analysis

We can check the system for deadlock and for different
properties. How do we know which properties to verify?
... what test cases to check for?

Requirements specification may indicate desired and
undesired properties and scenarios.

Animation and experimentation may indicate indicate
problems and properties to be preserved.

41

A Cruise Control problem?

We can start by composing the cruise control system and testing for
deadlock (we will learn how to do this later in the course)

We can experiment by stepping through the system using different
test scenarios...

- does it enable the system after engineOn and on is pressed?
- does it disable the system when the brake is pressed?

- does it enable the system when resume is pressed?

- does it disable the system when the engine is switched off?

Safety:

If the cruise control system is in operation, then it is always
disabled if the brake or accelerator is pressed, or if it is switched off; or if
the engine is switched off. 42

....and implementation

Design analysis: This was the process of gaining confidence in the particular
Darwin structural architecture and component behaviour. Desired properties
verified and the system exercised to ensure that it provided the required
behaviour.

sensors

S \> Cruise Cruise

ensor

Scan Controller Control
'® System

I engine :I: prompts

speed settin
Input = S[EIE 25 throttie
Speed Control

Implementation: The Darwin structural architecture can now be refined to
provide the service view necessary for implementation and construction,
possibly as a distributed program with components allocated to machines as
desired. Primitive components would be provided with implementations,
possibly as CORBA objects.

43

Experience - ARES (EU project)

Architectural Reasoning for Embedded Systems

- architectures to support families of systems

Industrial partners University partners

Nokia Imperial College, London

Philips T.U. Vienna
ABB Polytechnic U. Madrid

Currently working closely with Nokia to restructure the software for
GSM mobile telephones, and with Philips on adapting Darwin for
design construction and evolution of software for televisions.

Architectural Languages....some other approaches

UniCon Components and connectors with a variety of

Wright

ROOM

Rapide

built-in types & roles; static structures.
Mary Shaw (CMU).

Formal specification of components and connectors
in CSP-like notation for interaction analysis.
David Garlan (CMU).

Actors, message ports and bindings for real-time OO
modelling; tool support for code generation.
Bran Selic (ObjecTime™)

Interconnected c omponents (interfaces) with behaviour
specified as event sets for simulation and prototyping.
David Luckham (Stanford)

AT&T use architectural validation (checklists and formal
reviews) to identify and resolve potential problems in the
component and interaction structures.

Joe Maranzano (AT&T).

Meta-H, C2, Polylith ... and others.....

45

What can we do today?
(In Research Prototypes)

@ Describe architectures precisely

® about a dozen Arch Description Languages (ADLs)

® ysually with supporting toolkits

® emphasis on describing structure

@ Analyze architectural descriptions

® instance-level analyses

® style-wide properties

@ Generate implementations

® for highly constrained domains

® ysually by providing the "glue" code and handling packaging

46

Analyzing Architectural Instances

@ Consistency
® Do the parts fit together?
@ Completeness
® Are parts missing?
@ System-wide behavior, performance, reliability, etc.

® What is the aggregate behavior of a system, given the
behaviors of the parts?

@ Refinement and verification

® Can one architecture be substituted for another?

® Does an implementation conform to the architecture?
@ Evaluating Design Choices

47

Summary

L 2 defines the essential structure of a
software system.

L 4 and other ADLs are used to specify a software
architecture in terms of components and connectors.

L 4 of components, behaviors, ... provides the means
for

@ Architectures should strive to provide the essential
description of system structure.

@ Architectures can remain with the actual system
structure by construction.

@ ADLs (and in particular, Darwin) are capable of supporting
multiple and

48

