
1

The Darwin Language
Version 3d
Department of Computing, Imperial College of Science, Technology and Medicine,
180 Queen’s Gate, London SW7 2BZ, UK.

Last Revised: Monday, 15 September 1997

Contents
PRELIMINARIES ... 1

DARWIN DECLARATIONS... 2

COMPONENTDECLARATIONS.. 3

PORTAL DECLARATIONS.. 5

INTERFACEDECLARATIONS.. 6

INSTANCEDECLARATIONS.. 7

BINDING DECLARATIONS... 8

WHEN DECLARATIONS... 10

FORALL DECLARATIONS.. 10

CONSTANT DECLARATIONS... 11

ASSERTDECLARATIONS.. 11

TAG DECLARATIONS .. 12

EXTERNAL DECLARATIONS... 12

Preliminaries

Syntax

The syntax of Darwin is given in a variant of traditional BNF:-

• Non-terminal identifiers are shown without angles brackets. UPPERCASE letters are not
significant in non-terminal identifiers, but serve as commentary.

• Terminal identifiers are shown in bold e.g.inst.

• Syntactic comments follow a // and continue to the end of the line.

• The following conventions are used for repetitions:

[1 ...] one-of
[01 ...] zero or one occurrences of
[1+ ...] one or more occurrences of
[0+ ...] zero or more occurrences of

Lexical Conventions

Darwin follows the lexical conventions of IDL for tokens, comments and identifiers. Some additional

The Darwin Language Version 3

2 10/9/98 12:04 A10/P10

remarks follow:

Keywords

The following identifiers are reserved for use as keywords:

keyword =
assert | bind | component | dyn | export | forall | import |
inst | interface | portal | provide | require | spec | to | when |

int | double | string | boolean | true | false

Identifiers

In Darwin identifiers are used for defining and naming component types, interface types, parameters,
constants, portals, instances, forall iterators etc. Identifiers must be unique within the scope in which
they are defined:

• the scope of a forall identifier extends from its defining point to the end of its forall declaration
block.

• the scope of other identifers extends from their defining point to the end of the immediately
enclosing declaration block (i.e. enclosing { } pair).

id = identifier

No identifier may have the same spelling as a Darwin keyword. The case of letters is significant
within an identifier.

Expressions

Literals and expressions are the same as those found in IDL.

expression = IDL-const_exp // + function calls

Predefined Types & Constants

Darwin has a number of predefined types (int , double, string andboolean) and constants (true,
false) whose meaning is taken from similarly named types in IDL.

Function Calls

Darwin extends IDL expressions to support function calls. The types of parameters and function
calls is currently inferred.

Darwin Declarations

A Darwin declaration is a collection of component declarations, interface declarations, constant
declarations and external declarations.

Syntax

The Darwin Language Version 3

3 10/9/98 12:04 A10/P10

darwin-declaration =
[1+ component-declaration | interface-declaration | const-declaration |

external-declaration]

Component Declarations

Component declarations define a component type from which one or more component instances can
be created. Component types can either be defined explicitly (seecomponent-block below) or can
be fully or partially typed from an existing component type (see partial-component-declaration

below). The component type identifier is used to name the component type within instance
declarations, partial component type declarations and parameter lists that require a component type
parameter.

Examples
component alphaType (int A, string B) {}

component betaType (string x, <T>)
@ family (TV_SET)
@ draw (circle,x,y)

{
portal ...
inst ...
bind ...

}

component betaType2 = betaType ("hello", alphaType);
// note betaType2 is a component type, not a component instance.

Syntax

component-declaration =
component COMPONENT-id

[1 component-block | partial-component-declaration]

component-block =
[01 formal-parameter-list]

[0+ tag]
"{"

[0+ declaration ";"]
"}"

declaration =
assert-declaration |
bind-declaration |
component-declaration |
const-declaration |
external-declaration |
forall-declaration |
inst-declaration |
interface-declaration |
portal-declaration |
when-declaration

partial-component-declartion =
“=“ BASE-COMPONENT-type

[01 BASE-COMPONENT-TYPE-partial-argument-list]
[0+ tag]

";"

argument-list =
"(" expression [0+ "," expression] ")"

partial-argument-list =
"(" [01 expression] [0+ "," [01 expressio n]] ")"

// need to allow <T> syntax for some argument-lists.

The Darwin Language Version 3

4 10/9/98 12:04 A10/P10

Partial Component Declarations

Component types can be used to fully or partially evaluate other component types. Partial
component types can be defined by omitting one or more actual parameters. Actual parameters that
are supplied must correspond in order and type to the formal parameters of the component type.
Partial component types are considered sub-types of the base component type that they were defined
from.

Example
component beta1 = betaType (“abc”); // 2nd parameter is omitted
component beta2 = betaTyp e (, alphaType); // 1st parameter is omitted

Generic Types

Generic types act as placeholders for predefined types, component types, or interface types and allow
the specification of generic component types and generic interface types. Generic type identifiers
are always enclosed within “<“ and “>“.

Generic type names occur:

• as formal and actual parameters for component types and interface types,

• as portal types in portal declarations and portal member declarations. Note: portal declarations
need not specify a portal type at all. In such cases an implicit and unique generic type is
assumed.

• as component types in instance declarations.

Examples
component A (int y, <T>) { ... }
interface B (int y, <T1>, <T2>) { ... }
portal p : <T>; // <T> can be omitted here
inst X : <T1> (12, <T2>);

Syntax

type - name =
id |
"<" TYPE-id ">" // generic-type

Namespaces

Constants, interface types and nested component types can be accessed within other component types
by prefixing the defining component type and the name resolution operator (“.”), e.g.
ComponentType.ConstantID.

Formal Parameters

Both component types and interface types can be parameterised. Such parameters can either be value
parameters or type parameters.

formal-parameter-list =
“(“

formal-parameter [0+ “,” formal-parameter]
“)”

formal-parameter =
value-parameter | type-parameter

The Darwin Language Version 3

5 10/9/98 12:04 A10/P10

value-parameter
PREDEFINED-TYPE-id

PARAMETER-id

type-parameter
“<“ GENERIC-TYPE-id “>“

Value Parameters

Value parameters take one of the predefined types (e.g. short, double, char, string) and can be used
within expressions, for example:

• to set the upper bound for a portal or instance array,

• within whendeclarations to describe variant configurations or for evaluating the base case for
recursive configurations,

• within forall declarations to iterate over a range of values,

• within instance declarations to index instances,

• within bind declarations to index instances and portals,

• within tagsto define tag arguments.

Type Parameters

Type parameters allow both generic component types and generic interface types to be defined in
Darwin.

Portal Declarations

Portal declarations define a set of component portals that can be bound internally to the portals of
encapsulated sub-components or externally to the portals of peer components.

Portal declarations consist of an optional direction (e.g.provide or require or import or export), an
optional type (e.g. fileIO) and a mandatory name (e.g. F):

provide portal F : fileIO;
require portal D : deviceIO ;

Portal types can be

• composite interface types defined in Darwin (see below) or

• generic portal parameter types or

• omitted, in which case, Darwin will generate an implicit generic type name for the portal type.

Examples
portal P;
provide portal S @port (int);
require f : FileIO (2);
require portal S : <T> @ tcp (192,12,43,43) @ entry (int,double);
export Y // implicit generic type assumed

The Darwin Language Version 3

6 10/9/98 12:04 A10/P10

Syntax

portal-declaration =
[01 provide | require | import | export] [01 portal]
PORTAL-id

[0+ array-subscript]
[01 interface-call]

[0+ tag]

interface-call =
“:” INTERFACE-type-name [01 INTERFACE-TYPE-argument-list]

array-subscript = "[" INT-expression "]"

Portal Arrays

Portal arrays can be declared by suffixing the portal name with one or more integer expressions that
specify the number of elements for each dimension of the array. Each bound must be >= 1. The lower
bound of a portal array is always zero.

Portal Directions

Four portal directions are available:

• Provide declarations declare portals that are being provided by the defining component to other
encapsulating components.

• Require declarations declare portals that are being provided by other encapsulating or external
components to the defining component.

• Export declarations declare portals that are being provided by the defining component to an
external nameserver/trader. Exported portals are similar to provided portals. One or more tags
are typically used to register exported portals into a nameserver. Exported portals can be bound
via import declarations.

• Import declarations declare portals that are being provided to the defining component by an
external nameserver/trader. Imported portals are similar to required portals. One or more tags
are typically used to locate and bind to portals registered with a nameserver or trader.

Interface Declarations

Interface declarations allow portals to be grouped together to form a composite portal type. Such
interface types can be used in portal declarations to declare a composite portal with several nested
portal members. Interface types can be parameterised and derived (by inheritance) from one or more
base interface types. The portal type for an interface member can be omitted, in which case Darwin
will generate an implicit generic portal type for the interface member.

Examples
interface ABCD {A; B; C; D;}

interface fileIO (int q) @ qos (q)
{

u : unix_fileIO @ proto (nfs, tcp);
m : mac_fileIO @ proto (appleshare, localtalk);

}

The Darwin Language Version 3

7 10/9/98 12:04 A10/P10

interface ExtFileIO (int q) : fileIO (q) {
p : PPP;

}

interface NestedFileIO (int q) {
myFileIO : ExtFileIO (q);

}

interface GenericFileIO (<FileIO>, int q) {
myFileIO : <FileIO> (q);

}

interface deviceio (int vector1, int vector2, <T>) {
k : keyboard @ interrupt (vector1);
m : <T> @ interrupt (vector2) @ assert (vector2#vector1);
error; // implicit generic type is assumed

}

Interface members are selected by suffixing the name of the portal with a dot and then the name of
the portal member.

If an interface type has parameters, corresponding actual parameters (arguments) must be specified.
Actual parameters must correspond in order and type to the formal parameters of the portal class.

Syntax

interface-declaration =
[1 interface] INTERFACE-TYPE-id

[01 formal-parameter-list]
[0+ tag]
[0+ BASE-INTERFACE-interface-call]

"{"
[1+ member-declaration ";"]

"}"

member-declaration =
MEMBER-id

[0+ array-subscript]
[01 interface-call]

[0+ tag]

Instance Declarations

Instance declarations are used to create component instances from component types.

Examples
inst f : fileman ("/nd") @ loc (64);
inst filter : <T>;

Syntax

instance-declaration =
inst

INSTANCE-id
[0+ array-subscript] // array

elements
“:” COMPONENT-type-name [01 COMPONENT-TYPE-argument-list]
[0+ tag]

The portals of a instance are selected by prefixing the name of the component instance and a dot
character.

The Darwin Language Version 3

8 10/9/98 12:04 A10/P10

If the component type has parameters, corresponding actual parameters (arguments) must be
specified. Actual parameters must correspond in order and type to the formal parameters of the
component type.

Instance Arrays

Array instance elements are declared by suffixing the name of the instance array with one or more
subscripts that define the specific instance array element. An instance array element may only be
instanstiated once, and each element of an instance array must have the same number of subscripts.
Unlike traditional arrays, Darwin instance arrays need not be explicitly bounded and can be sparse.

Examples
inst t [63] : transputer @ arrange (circle);
inst t [-31] : transputer @ arrange (circle);

Binding Declarations

Within a Darwin program, binding declarations are used to establish potential interactions between
instances. Import declarations can be used to bind portals across one or more Darwin programs and
also to bind portals to non-Darwin programs.

Examples
bind t.requirement -- s.provision @ qos (95.5);
bind x[2].tvsignals -- dyn window @ channels (1,10);

Syntax

bind-declaration =
bind

endpoint “--” endpoint
[0+ tag]

end-point =
portal-name | dyn COMPONENT-type-name

portal-name =
INSTANCE-OR-PORTAL-OR-MEMBER-id

[0+ array-subscript] // instance or portal arrays
[0+ "." portal-name] // nested members

Dynamic Instances and Binding

Bindings can also be made todyn components. Such bindings cause a new anonymous instance of
the component to be instantiated each time the component is “invoked” by a bound portal.
Parameters to the newly created instance are supplied from the invoking portal. The method for
dynamic component invocation is implementation-dependent.

Dyn Portal Types

Portals bound to adyn component have a special Darwin-generated and implementation-dependent
dyn portal type that defines the parameters of the dyn component type.

The Darwin Language Version 3

9 10/9/98 12:04 A10/P10

Directionality Constraints

In Darwin, only the directions in the table below are allowed for bindings. Note that required,
provided, exportedand importedare optional in the table.

Binding Binding Form Picture

Peer bind instance.requiredPortal -- instance.providedPortal []o -- •[]

Outward bind instance. requiredPortal -- requiredPortal []o -- o]

Import bind instance. requiredPortal -- importedPortal []o -- o

Inward bind providedPortal -- instance. providedPortal [• -- •[]

Export bind exportedPortal -- instance. providedPortal • -- •[]

Switch bind providedPortal -- requiredPortal [• -- o]

Dyn Component bind instance. requiredPortal --dyn componentType
bind providedPortal --dyn componentType

[]o -- [*]
[• -- [*]

Dyn Instance bind dyn componentType. requiredPortal - instance. providedPortal
bind dyn componentType. requiredPortal - requiredPortal

[*]o -- •[]
[*]o -- o]

Connectivity Constraints

The limits to the number of bindings that can be made to or from different categories of portal are
summarised in the following table:

No. of bindings
Allowed

Applicable Portals Picture

0 or 1

(LHS)

instance.requiredPortal []o
providedPortal [•
exportedPortal •
dyn componentType. requiredPortal [*]o

0 or more

(RHS)

instance. providedPortal •[]
requiredPortal o]
importedPortal o
dyn componentType [*]

Typing Constraints

Two portals can only be bound for the following cases:

LHS Portal type RHS Portal Type Allowed

T1 T2 if T1 is identical to T2 or T1 is a base type of T2

T1 [] T2 [] if T1 is identical to T2 or T1 is a base type of T2 and the
size of T1 is equal to the size of T2.

Two portal types T1 and T2 are identical if T1 and T2 both have the same type, and for interface
types if the members of the interface type are in the same order, have the same types and for interface
member arrays the arrays have identical subscripts.

If T1 and T2 are array types then the size of T1 must be equal to the size of T2.

A portal type T1 is a base type of portal type T2 if T2 inherits from T1 and corresponding portal

The Darwin Language Version 3

10 10/9/98 12:04 A10/P10

member arrays in T1 and T2 have identical subscripts

Type Inference Rules for Binding

...

When Declarations

When declarations are used to conditionally elaborate a component type.

Example
when row != n-1 {

bind processor [row].out -- processor [(row+1)%n].in;
}

Syntax

when-declaration =
when BOOLEAN-expression

[0+ tag]
"{"

[0+ declaration “;”]
"}"

Implementations may choose to limit the allowable set of declarations that can placed within a when
declaration block.

Forall Declarations

Forall declarations are used to iteratively elaborate a component type.

Example
forall row = 0 to n-1 {

forall col = 0 to m-1 {
inst t800 processor [row] ;
bind processor[row].out -- processor [(col+1)%m].in;

}
}

Syntax

forall-declaration =
forall FORALL-id “=” INTEGER-expression to INTEGER-expression

[0+ tag]
"{"

[0+ declaration “;”]
"}"

Implementations may choose to limit the allowable set of declarations that can be placed within a
forall-declaration block.

The scope of the forall identifier is restricted to its forall declaration block. Forall indentifiers are
typed asint .

The Darwin Language Version 3

11 10/9/98 12:04 A10/P10

Constant Declarations

Constant declarations are used to introduce names for constant values or expressions. Constants can
be of any of the pre-defined types,.

Examples
double pi = 3.14159 @ bits (64);
string alphabet = "abcdef" @ share (true)

Syntax

const-declaration =
[1 int | double | string | boolean]

CONSTANT-id
“=“ expression

[0+ tag]

Assert Declarations

Assert declarations are used to perform integrity checks during elaboration.

assert-declaration =
assert BOOLEAN-expression

[0+ tag]

If an assertion fails then a error is produced and elaboration of the Darwin component is aborted.

The Darwin Language Version 3

12 10/9/98 12:04 A10/P10

Tag Declarations

Darwin declarations can optionally have one or more tags. Tags consist of a identifier and a set of
expressions. Tags are a mechanism to attach non-structural information (e.g. resource specifications,
constraints) to a Darwin specification.

Examples
@ family (TV-set)
@ layout (circle,45, 12,"beta") @ family (TV-set)
@ trader ("trader.doc.ic.ac.uk", 6666);

Syntax

tag =
"@" TAG-id [01 TAG-argument-list]

In this document tag identifiers are shown in italics.

Tag Elaboration

Darwin implementations evaluate tag expressions and make them available them to Darwin plug-ins
(e.g. the Regis code generator, SAA, IDL-stub generators, Tracta). Darwin implementations allow
plug-ins to read and write tags and generate new ones during component elaboration. In addition,
Darwin compilers may provide some compiler information as tagged data (e.g. source-code tracking
data, component dependencies).

External Declarations

External declarations are used to introduce externally written definitions into Darwin (e.g. IDL and
Regis definitions). The handling of externally written definitions is implementation-defined.

Examples
spec IDL {

#include "SQLinterface.h"
interface myextension : SQLselect {

long alive (in long id);
}

}

spec REGIS {
typdef entry < int , int > OpenT;

}

spec LTS {
SEMA = (a -> b, b -> c) @ {a, b, c}.

}

Syntax

external-declaration =
spec EXTERNAL-id "{"

any-characters -excluding } // use \} for embedding }
"}"

