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Closure Under Stuttering

Desired property of LTL formulas is closure under stuttering :
interpretation of the formula remains the same under state
sequences that differ only by repeated states [Abadi,Lamport91].

¢ Guaranteed [Lamport'94] for a subset of LTL without the o
operator

Examples:
= [Oais closed under stuttering

= oa s not closed under stuttering Legend:

Q . . . . Qaisfalse
O O . . . .aistrue

Notation: <<F>> - F is closed under stuttering
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Using LTL to Specify Production Cell
System

¢ Case study initiated by Forchrungszentrum Informatik (FZI)

¢ Aimed to show applicability of formal methods to real-world
examples

Example property:

The magnet of the crane may be deactivated only when the
magnet is above the feedbelt.

Resulting LTL formula:
O((activate Oo-activate) 0 o(head_ver = DOWN))

Is this formula closed under stuttering?!!
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Related Work

¢ Determining whether an arbitrary LTL formula is closed under
stutterung is PSPACE-complete [Peled, Wilke, Wolper96]

= Tableu-based, $$$ approach

¢ A computationally-feasible algorithm for determining closure
under stuttering for a subclass of formulas has been proposed
[Holzmann,Kupferman’96] but not implemented in SPIN

= Algorithm cannot be applied by hand
= How useful in practice?

Our goal:

= Want to have syntactical restrictions on LTL (like “no next
state”) that guarantee that the resulting formula is closed
under stuttering

= Want the approach to apply to real-life problems
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Edges

O((activate Oo-activate) 0 o(head_ver = DOWN))

an edge (a change of value)

Formally, if Ais an LTL formula, then
tA=-A00A -- uporrising edge
tA=A0Oo0-~A -- downorfaling edge
JA=tAD0O1A -- anyedge

Example: t0OA

Edges = events

(Logical) edges = signal edges

I
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Main Result

Observation:

stuttering does not add or delete edges (or change their
relative order)

©C @@ & @ @

Theorem:
<<A>> 0<<B>>0 << ¢ (-ATocACoB)>>

Proof: in [Paun99]
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Some Properties of Edges

¢ Edges are related: + Edges interact with each other:
t=A=1A LLA=1A
1=A=1A t1A=11A
1-A= A

¢ Edges interact with boolean operators:
t(AOB)=(tA0OoB)O(:BOoA)
¢ Edges interact with temporal operators
toA=01 A
(OA= false

1 QA= |ADoO-A
1(AUB)=-(A0B)0o (AUB)
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Some Properties of Closure Under
Stutterin

ais a variable or a constant 0 <<a>>
<<A>> = <<= A>>
<<A>><<B>> 0 <<A0OB>>

<<A>> 0O <<0OA>>

<<A>> 0 << QA>>
<<A>><<B>> 0 <<A UB>>
<<A>>0<<B>> 0 <<A *B>>,

where *D{ E1E1|:| 1|:| 1=}

Formulas of the form <<A>> 0O f (1 A): edges + and | can be
used interchangeably.

194




Closure Under Stuttering Properties

Property 1 (Existence)
<<A>>0<<B>>0<<C>> 0 << Q(tAD0OBOC)>>
with simplified versions:
<<A>>0<<B>> 0 << Q(tAOB)>>
<<A>>0<<B>> 0 << Q(1A0OB)>>

Property 2 (Universality)
<<A>>k<B>>0<C>> 0 << O(tAO (OBOC))>>
with simplified versions:
<<A>>0<<B>>0 << O(tA0O B)>>
<<A>>0<<B>> 0 << O(tA0O0OB)>>
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Closure Under Stuttering Properties
(Cont'd)

Property 3 (Until)
<<A>>0<<B>>0<<C>> O <<D>>O<<E>>0O<<F>>
0 << (-tApDoBOC)U(+DOOEOF)>>
with many simplified versions.

Examples:

The magnet of the crane may be deactivated only when the
magnet is above the feedbelt.

O(: activate 1 O(head_ver = DOWN))

Initially, no items should be dropped on the table before
the operator pushes and releases the GO button

-~ thold U 1 button
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Quick Summary

¢ We introduced the notion of edges for LTL

¢ We provided a set of theorems that enable syntax-based
analysis of a large class of formulas for closure under stuttering.

¢ Such theorems can be added to a theorem-prover for
mechanized checking.

I But the language of edges is not closed !!

Example: 1A

Are the properties that can be identified using our method
useful in practice?
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Application: Property Patterns

¢ Pattern-based approach [Dwyer,Avrunin,Corbett'98,'99]
= Presentation, codification and reuse of property
specifications
= Easy conversion between formalisms: CTL, LTL, QRE, GIL...

= Goal: to enable novice users to express complex properties
effectively

= LTL properties are state-based

¢ Apply our theory to
= extend the pattern-system with events for LTL properties
= check closure-under-stuttering of resulting formulas
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Pattern Hierarchy

Fropesty Fatterns
Qccuewernce Qrede:
Absence / \ Eounded Frecedence Eesponse Chain Chain
Existernce Precedence Response

Wniversa line Exiztence

Absence A condition does not occur within a scope
Existence A condition must occur within a scope
Universality A condition occurs throughout a scope

Response A condition must always be followed by another
within a scope

¢ Precedence A condition must always be preceded by another
within a scope. 199
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Scopes

Scopes are regions of interest over which the condition is evaluated.

SFlodal

Befare R

arer g |

Detwean & and &

After o Ihatii . | —

SrareiEveatr g & g g 8 &
Sequence
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Example

LTL formulation of the property
Sprecedes P between Q and R
(Precedence pattern with “between Q and R” scope) is

O(QuOR) O (-P U(SOR)))

Note that S, P, Q, R are states.
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Extending the Pattern System

¢ Want to extend LTL patterns to reasoning about events
¢ “next” operator: are resulting properties closed under stuttering?

Assumptions:

= Multiple events can happen simultaneously
= Intervals are closed-left, open-right, as in original system

Q R
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Extending the Pattern System

¢ We have considered the following possibilities:

0. P, S-- states Q, R -- states
1. P, S--states Q, R-- up edges
2. P, S-- up edges Q, R -- states
3. P, S-- up edges Q, R -- up edges

Note: down edges can be substituted for up edges

¢ We extended Absence, Existence, Universality, Precedence, and
Response patterns.

¢ Some of properties from other patterns, e.g. Chain Precedence,
are not closed under stuttering [paun,chechik’99]
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A Note on Edges

Definition of an edge:
tA=-A00A
Thus, an edge is detected in a state before it occurs.

Example: P always becomes true after Q.

Formulations:
= O(Qo OP) if Q and P are states
= 0O(QO oOP) if P is a state and Q is an event
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Extension of Patterns - Existence
Pattern

¢ P Exists Before R

0. ORO -(-PUR)
1. O+RO (-tRUP)
2. ORD ﬂ(‘!TPUR)
3. OTRD ﬂ(‘!TPUTR)

& P Exists Between Q and R
0. O(QoORO -(-PUR)O-R)
1. 0(Qu¢iRO O(-tRUP)O-1R)
2. O(QoORDO -(-1PUR)O-R)
3. O(+tQouétRO =(-1PUtR)O-1R)
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Using the Pattern System: Example

Example property:
The robot must weigh the blank after pickup from the feedbelt,
but before depositing it on the press.

Variables:

(state) mgn - true when the magnet is on
(state) scl - the scale reports a successful weighing

This is the Existence pattern: weighing (state) must happen between
(events) pickup and deposit. Scope is Between R and Q.

Pattern Formula:
O(Qu¢tRO O(-1RUP)O-1R)
Resulting Formula:

O(rmgn 0Qimgn 0 O(~tmgn U scl) 0-1mgn)
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Proving Closure Under Stuttering

Can use properties of closure under stuttering, the algebra of
edges, and rules of logic to show

(<<P>>0<<Q>>0<<R>>)0O
<<O(tQo¢1RO O(-tRUP)O-1R)>>
in roughly 8 steps (see paper) completely syntactically.

We proved all new edge-based formulas for closure under
stuttering.

Users can use these without worrying
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Summary of the Problem

The “next” operator in LTL is required for reasoning about
events

" “next” is present => the result is not closed under stuttering”
Solution: introduce extra variables to simulate events:
= Clutter the model, make harder to analyze

[] Results of verification cannot be interpreted correctly,
without complete understanding of the modeling language
and LTL. So, novice users will be making mistakes!!!
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Summary of Solution

We introduced the notion of edges for LTL

We provided a set of theorems that enable syntax-based
analysis of a large class of formulas for closure under stuttering.

Such theorems can be added to a theorem-prover for
mechanized checking.

The language is not closed (unlike “next"-free LTL)

But it can express properties useful in practice:
= Properties of Production Cell [Paun,Chechik,Biechele98]
= Property patterns + events [Paun,Chechik99]

For more information:
http://ww. cs. toronto. edu/ ~chechi k/ edges. ht m
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