Closure Under Stuttering

¢ D. Paun, M. Chechik, B. Biechelle, “Production Cell Revisited”, in
Proceedings of SPIN'98, November 1998.

¢ D. Paun, M. Chechik, “"Events in Linear-Time Properties”, in
Proceedings of International Symposium on Requirements
Engineering, June 1999.

¢ M. Chechik, D. Paun, “Events in Property Patterns”, in
Proceedings of SPIN'99, September 1999.

¢ D. Paun, “On Closure Under Stuttering”, M.S. Thesis, University
of Toronto, Department of Computer Science, May 1999.

187

Closure Under Stuttering

Desired property of LTL formulas is closure under stuttering :
interpretation of the formula remains the same under state
sequences that differ only by repeated states [Abadi,Lamport91].

¢ Guaranteed [Lamport'94] for a subset of LTL without the o
operator

Examples:
= [Oais closed under stuttering

= oa s not closed under stuttering Legend:

Q Qaisfalse
O Oaistrue

Notation: <<F>> - F is closed under stuttering
188

Using LTL to Specify Production Cell
System

¢ Case study initiated by Forchrungszentrum Informatik (FZI)

¢ Aimed to show applicability of formal methods to real-world
examples

Example property:

The magnet of the crane may be deactivated only when the
magnet is above the feedbelt.

Resulting LTL formula:
O((activate Oo-activate) 0 o(head_ver = DOWN))

Is this formula closed under stuttering?!!

189

Related Work

¢ Determining whether an arbitrary LTL formula is closed under
stutterung is PSPACE-complete [Peled, Wilke, Wolper96]

= Tableu-based, $$$ approach

¢ A computationally-feasible algorithm for determining closure
under stuttering for a subclass of formulas has been proposed
[Holzmann,Kupferman’96] but not implemented in SPIN

= Algorithm cannot be applied by hand
= How useful in practice?

Our goal:

= Want to have syntactical restrictions on LTL (like “no next
state”) that guarantee that the resulting formula is closed
under stuttering

= Want the approach to apply to real-life problems

190

Edges

O((activate Oo-activate) 0 o(head_ver = DOWN))

an edge (a change of value)

Formally, if Ais an LTL formula, then
tA=-A00A -- uporrising edge
tA=A0Oo0-~A -- downorfaling edge
JA=tAD0O1A -- anyedge

Example: t0OA

Edges = events

(Logical) edges = signal edges

I

191

Main Result

Observation:

stuttering does not add or delete edges (or change their
relative order)

©C @@ & @ @

Theorem:
<<A>> 0<>0 << ¢ (-ATocACoB)>>

Proof: in [Paun99]

192

Some Properties of Edges

¢ Edges are related: + Edges interact with each other:
t=A=1A LLA=1A
1=A=1A t1A=11A
1-A= A

¢ Edges interact with boolean operators:
t(AOB)=(tA0OoB)O(:BOoA)
¢ Edges interact with temporal operators
toA=01 A
(OA= false

1 QA= |ADoO-A
1(AUB)=-(A0B)0o (AUB)

193

Some Properties of Closure Under
Stutterin

ais a variable or a constant 0 <<a>>
<<A>> = <<= A>>
<<A>><> 0 <<A0OB>>

<<A>> 0O <<0OA>>

<<A>> 0 << QA>>
<<A>><> 0 <<A UB>>
<<A>>0<> 0 <<A *B>>,

where *D{ E1E1|:| 1|:| 1=}

Formulas of the form <<A>> 0O f (1 A): edges + and | can be
used interchangeably.

194

Closure Under Stuttering Properties

Property 1 (Existence)
<<A>>0<>0<<C>> 0 << Q(tAD0OBOC)>>
with simplified versions:
<<A>>0<> 0 << Q(tAOB)>>
<<A>>0<> 0 << Q(1A0OB)>>

Property 2 (Universality)
<<A>>k>0<C>> 0 << O(tAO (OBOC))>>
with simplified versions:
<<A>>0<>0 << O(tA0O B)>>
<<A>>0<> 0 << O(tA0O0OB)>>

195

Closure Under Stuttering Properties
(Cont'd)

Property 3 (Until)
<<A>>0<>0<<C>> O <<D>>O<<E>>0O<<F>>
0 << (-tApDoBOC)U(+DOOEOF)>>
with many simplified versions.

Examples:

The magnet of the crane may be deactivated only when the
magnet is above the feedbelt.

O(: activate 1 O(head_ver = DOWN))

Initially, no items should be dropped on the table before
the operator pushes and releases the GO button

-~ thold U 1 button

196

Quick Summary

¢ We introduced the notion of edges for LTL

¢ We provided a set of theorems that enable syntax-based
analysis of a large class of formulas for closure under stuttering.

¢ Such theorems can be added to a theorem-prover for
mechanized checking.

I But the language of edges is not closed !!

Example: 1A

Are the properties that can be identified using our method
useful in practice?

197

Application: Property Patterns

¢ Pattern-based approach [Dwyer,Avrunin,Corbett'98,'99]
= Presentation, codification and reuse of property
specifications
= Easy conversion between formalisms: CTL, LTL, QRE, GIL...

= Goal: to enable novice users to express complex properties
effectively

= LTL properties are state-based

¢ Apply our theory to
= extend the pattern-system with events for LTL properties
= check closure-under-stuttering of resulting formulas

198

Pattern Hierarchy

Fropesty Fatterns
Qccuewernce Qrede:
Absence / \ Eounded Frecedence Eesponse Chain Chain
Existernce Precedence Response

Wniversa line Exiztence

Absence A condition does not occur within a scope
Existence A condition must occur within a scope
Universality A condition occurs throughout a scope

Response A condition must always be followed by another
within a scope

¢ Precedence A condition must always be preceded by another
within a scope. 199

L K R N 4

Scopes

Scopes are regions of interest over which the condition is evaluated.

SFlodal

Befare R

arer g |

Detwean & and &

After o Ihatii . | —

SrareiEveatr g & g g 8 &
Sequence

200

Example

LTL formulation of the property
Sprecedes P between Q and R
(Precedence pattern with “between Q and R” scope) is

O(QuOR) O (-P U(SOR)))

Note that S, P, Q, R are states.

201

Extending the Pattern System

¢ Want to extend LTL patterns to reasoning about events
¢ “next” operator: are resulting properties closed under stuttering?

Assumptions:

= Multiple events can happen simultaneously
= Intervals are closed-left, open-right, as in original system

Q R

202

Extending the Pattern System

¢ We have considered the following possibilities:

0. P, S-- states Q, R -- states
1. P, S--states Q, R-- up edges
2. P, S-- up edges Q, R -- states
3. P, S-- up edges Q, R -- up edges

Note: down edges can be substituted for up edges

¢ We extended Absence, Existence, Universality, Precedence, and
Response patterns.

¢ Some of properties from other patterns, e.g. Chain Precedence,
are not closed under stuttering [paun,chechik’99]

203

A Note on Edges

Definition of an edge:
tA=-A00A
Thus, an edge is detected in a state before it occurs.

Example: P always becomes true after Q.

Formulations:
= O(Qo OP) if Q and P are states
= 0O(QO oOP) if P is a state and Q is an event

204

Extension of Patterns - Existence
Pattern

¢ P Exists Before R

0. ORO -(-PUR)
1. O+RO (-tRUP)
2. ORD ﬂ(‘!TPUR)
3. OTRD ﬂ(‘!TPUTR)

& P Exists Between Q and R
0. O(QoORO -(-PUR)O-R)
1. 0(Qu¢iRO O(-tRUP)O-1R)
2. O(QoORDO -(-1PUR)O-R)
3. O(+tQouétRO =(-1PUtR)O-1R)

205

Using the Pattern System: Example

Example property:
The robot must weigh the blank after pickup from the feedbelt,
but before depositing it on the press.

Variables:

(state) mgn - true when the magnet is on
(state) scl - the scale reports a successful weighing

This is the Existence pattern: weighing (state) must happen between
(events) pickup and deposit. Scope is Between R and Q.

Pattern Formula:
O(Qu¢tRO O(-1RUP)O-1R)
Resulting Formula:

O(rmgn 0Qimgn 0 O(~tmgn U scl) 0-1mgn)

206

10

Proving Closure Under Stuttering

Can use properties of closure under stuttering, the algebra of
edges, and rules of logic to show

(<<P>>0<<Q>>0<<R>>)0O
<<O(tQo¢1RO O(-tRUP)O-1R)>>
in roughly 8 steps (see paper) completely syntactically.

We proved all new edge-based formulas for closure under
stuttering.

Users can use these without worrying

207

Summary of the Problem

The “next” operator in LTL is required for reasoning about
events

" “next” is present => the result is not closed under stuttering”
Solution: introduce extra variables to simulate events:
= Clutter the model, make harder to analyze

[] Results of verification cannot be interpreted correctly,
without complete understanding of the modeling language
and LTL. So, novice users will be making mistakes!!!

208

11

Summary of Solution

We introduced the notion of edges for LTL

We provided a set of theorems that enable syntax-based
analysis of a large class of formulas for closure under stuttering.

Such theorems can be added to a theorem-prover for
mechanized checking.

The language is not closed (unlike “next"-free LTL)

But it can express properties useful in practice:
= Properties of Production Cell [Paun,Chechik,Biechele98]
= Property patterns + events [Paun,Chechik99]

For more information:
http://ww. cs. toronto. edu/ ~chechi k/ edges. ht m

209

12

