# Vertex Cover Resists SDPs Tightened by Local Hypermetric Inequalities 

Konstantinos Georgiou*, Avner Magen^, and Iannis Tourlakis^<br>Department of Computer Science, University of Toronto<br>\{cgeorg, avner, iannis\}@cs.toronto.edu


#### Abstract

We consider the standard semidefinite programming (SDP) relaxation for vertex cover to which all hypermetric inequalities supported on at most $k$ vertices have been added. We show that the integrality gap for such SDPs remains $2-o(1)$ as long as $k=O(\sqrt{\log n / \log \log n})$. This extends successive results by Kleinberg-Goemans, Charikar and Hatami et al. which analyzed integrality gaps of the standard vertex cover SDP relaxation as well as for SDPs tightened using triangle and pentagonal inequalities. Our result is complementary but incomparable to a recent result by Georgiou et al. proving integrality gaps for VERTEX COVER SDPs in the Lovász-Schrijver hierarchy. One of our contributions is making explicit the difference between the SDPs considered by Georgiou et al. and those analyzed in the current paper. We do this by showing that VERTEX COVER SDPs in the Lovász-Schrijver hierarchy fail to satisfy any hypermetric constraints supported on independent sets of the input graph.


## 1 Introduction

A vertex cover for a graph is a subset of vertices that touches all edges in the graph. Determining the approximability of the minimum VERTEX COVER problem on graphs is one of the outstanding problems in theoretical computer science. While there exists a trivial 2-approximation algorithm, considerable efforts have failed to obtain an approximation ratio better than $2-o(1)$. On the other hand, the strongest PCPbased hardness result known [8] only shows that 1.36 -approximation of VERTEX COVER is NP-hard. Only by assuming Khot's Unique Game Conjecture [15] can it be shown that $2-o(1)$-approximation is NP-hard [16].

Several recent papers $[17,12,4,14,13,10]$ examine whether semidefinite programming (SDP) relaxations of VERTEX COVER might yield better approximations. Goemans and Williamson [11] introduced semidefinite programming relaxations as an algorithmic technique using it to obtain a 0.878 -approximation for MAX-CUT. Since then semidefinite programming has arguably become our most powerful tool for designing approximation algorithms. Indeed, for many NP-hard optimization problems the best approximation ratios are achieved using SDP-based algorithms.

Given a graph $G=(V, E)$, the standard SDP relaxation for VERTEX COVER is

$$
\begin{array}{ll}
\min & \sum_{i \in V}\left(1+\mathbf{v}_{0} \cdot \mathbf{v}_{i}\right) / 2 \\
\text { s.t. } & \left(\mathbf{v}_{0}-\mathbf{v}_{i}\right) \cdot\left(\mathbf{v}_{0}-\mathbf{v}_{j}\right)=0  \tag{1}\\
& \left\|\mathbf{v}_{i}\right\|=1
\end{array} \quad \forall i j \in E \quad \begin{cases} & \forall i \in\{0\} \cup V\end{cases}
$$

Halperin [12] employed this relaxation together with an appropriate rounding technique to obtain a (2$\Omega(\log \log \Delta / \log \Delta))$-approximation for VERTEX COVER for graphs with maximal degree $\Delta$. Unfortunately, Kleinberg and Goemans [17] showed that in general this relaxation has an integrality gap of $2-o(1)$.

One possible avenue for decreasing this integrality gap comes from the following simple observation: for any integral (or rather, one-dimensional) solution, $\left\|\mathbf{v}_{i}-\mathbf{v}_{j}\right\|^{2}$ is an $\ell_{1}$ metric. Therefore the addition of inequalities on the distances $\left\|\mathbf{v}_{i}-\mathbf{v}_{j}\right\|^{2}$ that are valid for $\ell_{1}$ metrics may yield a possible tightening of the SDP (note that the constraint $\left(\mathbf{v}_{0}-\mathbf{v}_{i}\right) \cdot\left(\mathbf{v}_{0}-\mathbf{v}_{j}\right)=0$ in SDP (1) is in fact the following distance constraint "in disguise": $\left.\left\|\mathbf{v}_{i}-\mathbf{v}_{0}\right\|^{2}+\left\|\mathbf{v}_{j}-\mathbf{v}_{0}\right\|^{2}=\left\|\mathbf{v}_{i}-\mathbf{v}_{j}\right\|^{2}\right)$.

[^0]For example, since $\ell_{1}$ metrics satisfy the triangle inequality, we could add the following constraint to SDP (1):

$$
\begin{equation*}
\left\|\mathbf{v}_{i}-\mathbf{v}_{j}\right\|^{2}+\left\|\mathbf{v}_{j}-\mathbf{v}_{k}\right\|^{2} \geq\left\|\mathbf{v}_{i}-\mathbf{v}_{k}\right\|^{2} \quad \forall i, j, k \in\{0\} \cup V \tag{2}
\end{equation*}
$$

This $\ell_{2}^{2}$ triangle inequality plays a crucial role in the breakthrough Arora-Rao-Vazirani SPARSEST CUT algorithm [2]. This suggests that the addition of inequalities satisfied by $\ell_{1}$ metrics may be exactly what is needed to get a $2-\Omega(1)$ approximation for VERTEX COVER.

Indeed, Hatami et al. [13] prove that if SDP (1) is strengthened by requiring that the distances $\left\|\mathbf{v}_{i}-\mathbf{v}_{j}\right\|^{2}$ satisfy all $\ell_{1}$ inequalities (i.e., the vectors $\mathbf{v}_{i}$ equipped with the $\ell_{2}^{2}$ norm $\|\cdot\|^{2}$ are $\ell_{1}$-embeddable), then the resulting relaxation has no integrality gap. Of course, the caveat here is that the resulting relaxation has exponentially many constraints and is hence intractable. To obtain a tractable relaxation (or at least one computable in subexponential time), our relaxation must use only a limited subset of $\ell_{1}$ inequalities.

One canonical subclass of $\ell_{1}$ inequalities is the discrete and easily-described class of hypermetric inequalities (see the Preliminaries for definitions). These include the triangle inequalities as well as the so-called pentagonal, heptagonal, etc., inequalities. That such inequalities might be useful for designing improved approximation algorithms is illustrated, for example, in a work by Avis and Umemoto [3]. Avis and Umemoto show that for dense graphs, linear programming relaxations of max cut based on the $k$-gonal inequalities have integrality gap at most $1+1 / k$. This, in a sense, gives rise to an LP-based PTAS for MAX CUT.

Unfortunately, for VERTEX COVER Charikar [4] showed that even with the addition of the triangle inequality (2) the integrality gap of $\operatorname{SDP}$ (1) remains $2-o(1)$. However, Karakostas [14] did show that adding the triangle inequality (as well as the "antipodal" triangle inequalities $\left.\left( \pm \mathbf{v}_{i}- \pm \mathbf{v}_{j}\right) \cdot\left( \pm \mathbf{v}_{i}- \pm \mathbf{v}_{k}\right) \geq 0\right)$ yields a $(2-\Omega(1 / \sqrt{\log n}))$-approximation for VERTEX COVER, currently the best ratio achievable by any algorithm. Hatami et al. [13] subsequently showed that Karakostas's SDP even with the addition of the pentagonal inequalities has integrality gap $2-o(\sqrt{\log \log n / \log n})$.

In this work we rule out the possibility that adding local hypermetric constraints improves the integrality gap of vertex cover SDPs:

Theorem 1. The tightening of the standard SDP for VERTEX COVER with all hypermetrics that are supported on $O(\sqrt{\log n / \log \log n})$ points has integrality gap $2-o(1)$.

As mentioned above, Hatami et al. [13] show that adding the constraint that solutions to SDP (1) be $\ell_{1}$-embeddable results in an SDP with no integrality gap. Theorem 1 then immediately gives the following corollary about $\ell_{2}^{2}$ metrics:

Corollary 1. There exist $\ell_{2}^{2}$ metrics that are not isometrically embeddable into $\ell_{1}$, yet satisfy all hypermetric inequalities supported on $O(\sqrt{\log n / \log \log n})$ points.

It is interesting to compare Corollary 1 with recent results contrasting local and global phenomena in metric spaces. In $[1,5]$ the authors describe metric spaces that cannot be well-embedded into $\ell_{1}$ but locally every small subset embeds isometrically into $\ell_{1}$. In contrast, our corollary shows the existence of a metric that locally resembles $\ell_{1}$ (although not provably $\ell_{1}$ ) but globally does not embed isometrically into $\ell_{1}$. From this standpoint, this is far weaker than $[1,5]$. However, the metric we supply is also an $\ell_{2}^{2}$ metric. Finding $\ell_{2}^{2}$ metrics that are far from being $\ell_{1}$ proved to be a very challenging task (see Khot and Vishnoi's work [6] motivated by integrality gap instances for SPARSEST CUT). To the best of our knowledge, there are no known results that point to such metrics which further satisfy any local conditions beyond the obvious triangle inequality.

A result related to Theorem 1 was proved by Georgiou et al. in [10]. The main result of that paper showed that SDP relaxations obtained by tightening the standard linear programming relaxation for VERTEX COVER using $O(\sqrt{\log n / \log \log n})$ rounds of the $L S_{+}$"lift-and-project" method of Lovász and Schrijver [18] have integrality gap $2-o(1)$. The SDPs considered in [10] seem intimately related to those obtained by adding local $\ell_{1}$ or hypermetric constraints. Indeed, it is well known that relaxations from the LP Lovász-Schrijver hierarchy satisfy all valid local LP constraints. However, it is also known [10] that relaxations from the SDP Lovász-Schrijver hierarchy do not necessarily satisfy all valid local SDP constraints. In particular, the

VERTEX COVER SDP relaxation obtained after $k$ rounds of the $L S_{+}$method is not obviously comparable to the relaxation obtained by adding all order- $k$ hypermetric inequalities to SDP (1). In section 4 we show in a strong sense the incomparability of these relaxations: Fix any subset $S$ of vertices that is an independent set in the underlying graph. We then find a hypermetric inequality supported on all points of $S$ that is nevertheless not valid for any VERTEX COVER SDP in the Lovász Schrijver hierarchy. In particular, this shows that the integrality gaps proved in [10] do not preclude the possibility that adding such concrete constraints as, say, the "heptagonal" inequalities, may result in an improved SDP relaxation.

We briefly describe how we prove Theorem 1 . We use the same graph family as in $[17,4,13,10]$. The SDP solution can be thought of as an $\ell_{1}$ metric to which a small perturbation is applied. This perturbation is characterized by two "infinitesimal" parameters, $\gamma$ and $\epsilon$, relating to the graph and the integrality gap, respectively. We show that hypermetric inequalities that are supported on $k \geq 4$ points, one of which is $\mathbf{v}_{0}$, must have a slack component that depends on $k$ and on $\epsilon$ and $\gamma$, that will be maintained as long as $k \gamma=O(\epsilon)$. The case when $k=3$ (i.e., the triangle inequality) is covered by [4] and [13], and the case where $\mathbf{v}_{0}$ does not participate in the inequality is handled by the fact that the metric formed by the remaining vectors is an $\ell_{1}$ metric. Setting $\epsilon$ to an arbitrary small constant, and setting $\gamma$ to $\Theta(\sqrt{\log \log n / \log n})$ provides the bound in our theorem.

## 2 Preliminaries

Given two vectors $\mathbf{x}, \mathbf{y} \in\{-1,1\}^{n}$ their Hamming distance $d_{H}(\mathbf{x}, \mathbf{y})$ is $\left|\left\{i \in[n]: x_{i} \neq y_{i}\right\}\right|$. For two vectors $\mathbf{u} \in \mathbb{R}^{n}$ and $\mathbf{v} \in \mathbb{R}^{m}$ denote by $(\mathbf{u}, \mathbf{v}) \in \mathbb{R}^{n+m}$ the vector whose projection on the first $n$ coordinates is $\mathbf{u}$ and on the last $m$ coordinates is $\mathbf{v}$.

The tensor product $\mathbf{u} \otimes \mathbf{v}$ of vectors $\mathbf{u} \in \mathbb{R}^{n}$ and $\mathbf{v} \in \mathbb{R}^{m}$ is the vector in $\mathbb{R}^{n m}$ indexed by ordered pairs from $n \times m$ and that assumes the value $\mathbf{u}_{i} \mathbf{v}_{j}$ at coordinate $(i, j)$. Define $\mathbf{u}^{\otimes d}$ to be the vector in $\mathbb{R}^{n^{d}}$ obtained by tensoring $\mathbf{u}$ with itself $d$ times. Let $P(x)=c_{1} x^{t_{1}}+\ldots+c_{q} x^{t_{q}}$ be a polynomial with nonnegative coefficients. Then $T_{P}$ is the function that maps a vector $\mathbf{u}$ to the vector $T_{P}(\mathbf{u})=\left(\sqrt{c_{1}} u^{\otimes t_{1}}, \ldots, \sqrt{c_{q}} u^{\otimes t_{q}}\right)$.
Fact: For all vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{d}, T_{P}(\mathbf{u}) \cdot T_{P}(\mathbf{v})=P(\mathbf{u} \cdot \mathbf{v})$.
Metrics and $\ell_{1}$ Inequalities We quickly review the facts we need about $\ell_{1}$ inequalities. Deza and Laurent [7] is a good source for more information.

A finite metric space is an $\ell_{1}$ metric if it can be embedded in $\ell_{1}$-normed space so that all distances remain unchanged. It is easy to see that the set $\mathcal{C}$ of all $\ell_{1}$ metrics on a fixed number of points is a convex cone. Let $X$ be a set of size $n$. A subset $S$ of $X$ is associated with a metric $\delta_{S}(x, y)$ that is called a cut metric and is defined as $\left|\chi_{S}(x)-\chi_{S}(y)\right|$, where $\chi_{S}(\cdot)$ is the characteristic function of $S$. These metrics are the extreme rays of $\mathcal{C}$; namely, every $\ell_{1}$ metric is a positive linear combination of cut metrics. This fact leads to a simple characterization of all inequalities that are valid for $\ell_{1}$ metrics as follows. Consider the polar cone of $\mathcal{C}$,

$$
\mathcal{C}^{*}=\left\{B \in \mathbb{R}^{n \times n} \mid B \cdot D \leq 0 \text { for all } D \in \mathcal{C}\right\}
$$

where by $B \cdot D$ we denote the matrix inner product of $B$ and $D$, that is $B \cdot D=\operatorname{trace}\left(B D^{t}\right)=\sum_{i, j} B_{i j} D_{i j}$. Notice that for $B$ to be in $\mathcal{C}^{*}$ it is enough to require that $B \cdot \delta_{S} \leq 0$ for all cuts $S$. By definition it is clear that any $B \in \mathcal{C}^{*}$ defines a valid inequality such that $\sum_{i, j} B_{i j} d_{i j} \leq 0$ whenever $d$ is an $\ell_{1}$ metric. Conversely, (strong) duality implies that if $d$ satisfies all inequalities of this type for every $B \in \mathcal{C}^{*}$ then $d$ is an $\ell_{1}$ metric.

A special canonical class of $\ell_{1}$ inequalities is the class of hypermetric inequalities. Let $\mathbf{b} \in \mathbb{Z}^{k}$, with $\sum_{i=1}^{k} b_{i}=1$. It can be easily verified that $B=\mathbf{b b}^{t}$ is in $\mathcal{C}^{*}$. The inequality $\sum_{i, j} b_{i} b_{j} d_{i j} \leq 0$ is called a hypermetric. If we further require $\mathbf{b} \in\{-1,1\}^{k}$, in which case the hypermetric is called pure, we obtain the $k$-gonal inequalities, e.g., the triangle inequality for $k=3$, pentagonal inequality for $k=5$, etc.

## 3 Construction and Proof

Fix arbitrarily small constants $\gamma, \epsilon>0$ such that $\epsilon>3 \gamma$, and let $m$ be a sufficiently large integer. The FranklRödl graph $G_{m}^{\gamma}$ is the graph with vertices $\{-1,1\}^{m}$ and where two vertices $i, j \in\{-1,1\}^{m}$ are adjacent if
$d_{H}(i, j)=(1-\gamma) m$. A classical result of Frankl and Rödl [9] implies that the size of a minimal vertex cover in $G_{m}^{\gamma}$ is $2^{m}(1-o(1))$ whenever $\gamma=\Omega(\sqrt{\log m / m})$. We denote the vertices $V$ of $G$ as vectors $\mathbf{w}_{i} \in\{-1,1\}^{m}$ (the association of index $i$ with a vector in the cube is arbitrary) and normalize these to get unit vectors $\mathbf{u}_{i}=\frac{1}{\sqrt{m}} \mathbf{w}_{i}$.

Consider the polynomial

$$
P(x)=\beta x(x+1)^{\frac{2 m}{\gamma}}+\alpha x^{\frac{1}{\gamma}}+(1-\alpha-2 \beta) x
$$

where the constants $\alpha, \beta>0$ will be defined below. Let $\mathbf{z}_{0}=(1,0 \ldots, 0), \mathbf{z}_{i}=\left(2 \epsilon, \sqrt{1-4 \epsilon^{2}} T_{P}\left(\mathbf{u}_{i}\right)\right)$, where $T_{P}(\mathbf{v})$ is the tensoring of $\mathbf{v}$ induced by the polynomial $P$. We fix the values of $\alpha$ and $\beta$ defining $P$ (and hence, defining the vectors $\mathbf{z}_{i}$ ) according to the following lemma implicit in [10]:

Lemma 1 ([10]). Suppose $\frac{2 m}{\gamma}$ and $\frac{1}{\gamma}$ are even and that $m$ is significantly larger than $1 / \gamma$. Suppose further that $\epsilon>3 \gamma$. Then there exist constants $\alpha, \beta>0$ satisfying

$$
\begin{aligned}
\alpha & <7.5 \gamma \\
2 \beta+\alpha & >\frac{4 \epsilon}{1+2 \epsilon}-4 \gamma
\end{aligned}
$$

such that the vectors $\mathbf{z}_{0}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{n}$ satisfy both the standard VERTEX COVER $S D P(1)$ and the triangle inequality 2.

A translated version of the vector set $\left\{\mathbf{z}_{0}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right\}$ lay at root of the $L S_{+}$lower bounds proved in [10]. Specifically, the Gram matrix of the vectors $\mathbf{v}_{i}=\frac{\mathbf{z}_{0}+\mathbf{z}_{i}}{2}$ was shown to be a solution for the VERTEX COVER SDP resulting from $O(\sqrt{\log n / \log \log n})$ rounds of $L S_{+}$lift-and-project.

The remainder of this section is devoted to proving the following theorem.
Theorem 2. The vectors $\mathbf{z}_{0}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{n}$ satisfy all hypermetric inequalities on $r$ points, $r \leq \frac{2}{45} \frac{\epsilon}{\gamma}$.
We claim that Theorem 1 follows immediately from Theorem 2. Indeed, note first that the value of SDP (1) on the vectors $\mathbf{z}_{0}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{n}$ is $(1+\epsilon) 2^{m-1}$. On the other hand, recall that the underlying graph $G_{m}^{\gamma}$ has minimal vertex cover size $(1-o(1)) 2^{m}$ whenever $\gamma=\Omega(\sqrt{\log m / m})$. Hence, Theorem 1 follows by taking $\epsilon>0$ to be any arbitrarily small constant and $\gamma=\Omega(\sqrt{\log m / m})$.

As an aside, we note that our vectors $\left\{\mathbf{z}_{i}\right\}$ also satisfy the "antipodal" triangle inequalities $\left( \pm \mathbf{z}_{i}-\right.$ $\left.\pm \mathbf{z}_{j}\right) \cdot\left( \pm \mathbf{z}_{i}- \pm \mathbf{z}_{k}\right) \geq 0$ for all $i, j, k \in\{0\} \cup V$. Recall that these inequalities define the SDP at root of Karakostas's [14] VERTEX COVER algorithm. That our vectors satisfy these inequalities can be seen as follows. Consider the subset $\left\{\mathbf{z}_{i}\right\}_{i \geq 1}$. For each coordinate, the vectors in this subset take on at most 2 different values, and hence this subset is $\ell_{1}$-embeddable. Moreover, this remains true even if we replace some (or all) of the $\mathbf{z}_{i}$ by $-\mathbf{z}_{i}$. Hence, it suffices to consider only the "antipodal" triangle inequalities involving $\mathbf{z}_{0}$. The validity of these inequalities then follows easily from the fact that the $\mathbf{z}_{i}$ satisfy the standard triangle inequalities (by Lemma 1) and the fact that the value of $\mathbf{z}_{i} \cdot \mathbf{z}_{0}$ does not depend on $i$.

Before giving the proof of Theorem 2 we give some intuition. Note that the vector set $\left\{\mathbf{z}_{i}\right\}$ is the result of a perturbation applied to the following simple-minded $\ell_{1}$ metric: Let $D=\left\{\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be the metric obtained by taking $\mathbf{v}_{i}$ to be the (normalized version of) the vectors of the $m$-dimensional cube, and let $\mathbf{v}_{0}$ be a unit vector perpendicular to all $\mathbf{v}_{i}$. Notice that these vectors are precisely the vectors we would have obtained if we had used the polynomial $P(x)=x$ to define the tensored vectors $\mathbf{z}_{i}$ (corresponding to taking $\epsilon=\gamma=0$ ). The metric $D$ is easily seen to be an $\ell_{1}$ metric: take the Hamming cube and place the zeroth point at the origin to get an $\ell_{1}$ embedding that is an isometry. Since $D$ is $\ell_{1}$, every hypermetric inequality is valid for it. On the other hand, $D$ does not satisfy even the basic conditions of SDP (1) (e.g., the edge constraints) with respect to our graph of interest (i.e., $G_{m}^{\gamma}$ with $\gamma>0$ ) and any basic attempts to remedy that will violate even the triangle inequality: A subtle way of perturbing $D$ via the tensoring polynomial $P$ will be required. By focusing on the pure hypermetrics, we can give some intuition about why our construction works and why the critical value of $k$ is $O(\epsilon / \gamma)$ (for non-pure hypermetrics, this intuition is less accurate). Given any choice of $\alpha, \beta>0$ we get a set of tensored vectors $\mathbf{z}_{i}$ whose distances are a perturbation of $D$ by
an additive factor $D_{\Delta}$. As mentioned in the proof outline in the introduction and in light of Lemma 1, it suffices to restrict our attention only to inequalities supported on more than three points. Since any given pure hypermetric inequality defined by the $b_{i}$ 's must be satisfied by $D$, it is sufficient to prove that it is satisfied for the perturbed component of the metric, i.e., $D_{\Delta}$. Analyzing this inequality on $D_{\Delta}$ then shows that $\sum_{i, j} b_{i} b_{j} d_{i j} \leq-2 \epsilon+C \gamma k$, where $C$ is a universal constant and the $d_{i j}$ are the distances defined by $D_{\Delta}$. Consequently, as long as $k=O(\epsilon / \gamma)$, the inequality holds for $D_{\Delta}$. Hence it holds for $D+D_{\Delta}$, the metric resulting from the $\mathbf{z}_{i}$ 's as well.

Proof (of Theorem 2). By Lemma 1 we already know that the vectors satisfy all hypermetric inequalities on three points, namely, the triangle inequalities.

So we only need to show that the solution satisfies hypermetric inequalities on 4 or more points. This is an important point since the arguments we will use to handle hypermetric inequalities on at least 4 points cannot be applied to the triangle inequalities.

Consider the set of vectors $\left\{\mathbf{z}_{i}\right\}, i \geq 1$. For each coordinate, the vectors in this subset take on at most 2 different values, and hence this subset is $\ell_{1}$-embeddable. Therefore, any $\ell_{1}$ inequality (and in particular any hypermetric inequality) not involving $\mathbf{z}_{0}$ must be satisfied.

Now let $B=\mathbf{b} \mathbf{b}^{t} \in \mathcal{C}^{*}$, where $\mathbf{b} \in \mathbb{Z}^{k+1}$ and $\sum_{i=0}^{k} b_{i}=1$, be any hypermetric inequality supported on $r=k+1$ points. By the above discussion, it suffices to consider the case where $\mathbf{z}_{0}$ is one of the points, and we can assume that the points are $0,1, \ldots, k$. Our goal is to show that $\sum_{i<j \leq k} B_{i j}\left\|\mathbf{z}_{i}-\mathbf{z}_{j}\right\|^{2} \leq 0$. By definition, for $i, j \geq 1$,

$$
\left\|\mathbf{z}_{i}-\mathbf{z}_{j}\right\|^{2}=2-2\left(4 \epsilon^{2}+\left(1-4 \epsilon^{2}\right) P\left(u_{i} \cdot u_{j}\right)\right)=2\left(1-4 \epsilon^{2}\right)\left(1-P\left(u_{i} \cdot u_{j}\right)\right),
$$

and $\left\|\mathbf{z}_{i}-\mathbf{z}_{0}\right\|^{2}=2-4 \epsilon$. Hence,

$$
\sum_{0 \leq i<j \leq k} B_{i j}\left\|\mathbf{z}_{i}-\mathbf{z}_{j}\right\|^{2}=2(1-2 \epsilon) \sum_{i=1}^{k} B_{0 i}+2\left(1-4 \epsilon^{2}\right) \sum_{0<i<j \leq k} B_{i j}\left(1-P\left(u_{i} \cdot u_{j}\right)\right) .
$$

Therefore, we need to show

$$
\begin{equation*}
\sum_{i=1}^{k} B_{0 i}+(1+2 \epsilon) \sum_{0<i<j \leq k} B_{i j}\left(1-P\left(u_{i} \cdot u_{j}\right)\right) \leq 0 \tag{3}
\end{equation*}
$$

We will require the technical lemma below, but first some definitions. By homogeneity we may assume $b_{0}<0$ (and hence that $b_{0} \leq-1$ since $b_{0} \in \mathbb{Z}$ ). Let

$$
\begin{aligned}
& S=\left\{i \in[k]: b_{i}>0\right\} \\
& T=\left\{i \in[k]: b_{i}<0\right\}
\end{aligned}
$$

Next let $H_{i j}=\left(\mathbf{u}_{i} \cdot \mathbf{u}_{j}+1\right)\left(\mathbf{u}_{i} \cdot \mathbf{u}_{j}\right)^{\frac{2 m}{\gamma}}$ and $M_{i j}=\left(\mathbf{u}_{i} \cdot \mathbf{u}_{j}\right)^{\frac{1}{\gamma}}$, and let $\Delta_{i j}$ be the Hamming distance between $\mathbf{u}_{i}$ and $\mathbf{u}_{j}$. With these definitions we can then write $P\left(\mathbf{u}_{i} \cdot \mathbf{u}_{j}\right)=\beta H_{i j}+\alpha M_{i j}+(1-\alpha-2 \beta)\left(1-\frac{2}{m} \Delta_{i j}\right)$.
Lemma 2. Assume that $\gamma, \epsilon$ and $m$ satisfy the conditions in Lemma 1. Then,

1. $\sum_{0<i<j \leq k} B_{i j}=\frac{1}{2}\left(\left(1-b_{0}\right)^{2}-\sum_{i=1}^{k} b_{i}^{2}\right)$
2. $\sum_{0<i<j \leq k} B_{i j}\left(-\beta H_{i j}-\alpha M_{i j}\right) \leq 15 \gamma \sum_{i \in S, j \in T} b_{i}\left(-b_{j}\right)$
3. $\sum_{0<i<j \leq k} B_{i j} \Delta_{i j} \leq \frac{1}{4} m\left(1-b_{0}\right)^{2}$

Proof. The first equality is an immediate consequence of the fact that $\sum_{i=1}^{k} b_{i}=1-b_{0}$ and that $\left(\sum_{i=1}^{k} b_{i}\right)^{2}=$ $\sum_{i=1}^{k} b_{i}^{2}+2 \sum_{0<i<j \leq k} b_{i} b_{j}$.

For the second inequality, note first that $\mathbf{u}_{i} \cdot \mathbf{u}_{j} \leq 1-1 / m$. Hence, $H_{i j}$ is negligible for all $i \neq j$. Moreover, since the $\mathbf{u}_{i}$ are unit vectors and $1 / \gamma$ is even, it follows that $0 \leq M_{i j} \leq 1$. Hence, by the bounds for $\alpha$ and $\beta$ given by Lemma 1 it follows that $\beta H_{i j}+\alpha M_{i j} \leq 15 \gamma$ and the second inequality follows.

For the last inequality notice that since $\Delta_{i j}$ is the sum of $m$ cut metrics (defined by the $m$ coordinates), it is enough to show that for every subset $I \subset\{0,1, \ldots, k\}$,

$$
\sum_{0<i<j \leq k} B_{i j} \delta_{I}(i, j) \leq \frac{1}{4}\left(1-b_{0}\right)^{2}
$$

Indeed, using the fact that $B$ is a hypermetric we have,

$$
\sum_{0<i<j \leq k} B_{i j} \delta_{I}(i, j)=\sum_{i \in I, j \notin I} b_{i} b_{j}=\left(\sum_{i \in I} b_{i}\right) \cdot\left(1-b_{0}-\sum_{i \in I} b_{i}\right) \leq\left(\frac{1-b_{0}}{2}\right)^{2}
$$

We can now bound the left-hand-side of (3). To begin with, we have,

$$
\begin{aligned}
& \sum_{i=1}^{k} B_{0 i}+(1+2 \epsilon) \sum_{0<i<j \leq k} B_{i j}\left(1-P\left(u_{i} \cdot u_{j}\right)\right) \\
= & \sum_{i=1}^{k} B_{0 i}+(1+2 \epsilon) \sum_{0<i<j \leq k} B_{i j}\left(1-\beta H_{i j}-\alpha M_{i j}-(1-\alpha-2 \beta)\left(1-\frac{2}{m} \Delta_{i j}\right)\right) \\
= & \sum_{i=1}^{k} B_{0 i}+(1+2 \epsilon) \sum_{0<i<j \leq k} B_{i j}\left(-\beta H_{i j}-\alpha M_{i j}+\alpha+2 \beta+(1-\alpha-2 \beta) \frac{2}{m} \Delta_{i j}\right) .
\end{aligned}
$$

Applying the inequalities from Lemma 2 it then follows that the above is upper-bounded by

$$
\begin{aligned}
& b_{0}\left(1-b_{0}\right)+(1+2 \epsilon)\left(15 \gamma \sum_{i \in S, j \in T} b_{i}\left(-b_{j}\right)+\frac{1}{2}(\alpha+2 \beta)\left[\left(1-b_{0}\right)^{2}-\sum_{i=1}^{k} b_{i}^{2}\right]+\frac{1}{2}(1-\alpha-2 \beta)\left(1-b_{0}\right)^{2}\right) \\
& =\frac{1}{2}\left(1-b_{0}^{2}\right)+2 \epsilon \frac{1}{2}\left(1-b_{0}\right)^{2}+(1+2 \epsilon)\left(15 \gamma \sum_{i \in S, j \in T} b_{i}\left(-b_{j}\right)-\frac{1}{2}(\alpha+2 \beta) \sum_{i=1}^{k} b_{i}^{2}\right) \\
& <\frac{1}{2}\left(1-b_{0}^{2}\right)+2 \epsilon \frac{1}{2}\left(1-b_{0}\right)^{2}+(1+2 \epsilon)\left(15 \gamma \sum_{i \in S, j \in T} b_{i}\left(-b_{j}\right)-\left[\frac{2 \epsilon}{1+2 \epsilon}-2 \gamma\right] \sum_{i=1}^{k} b_{i}^{2}\right) \\
& =\frac{1}{2}\left(1-b_{0}^{2}\right)+2 \epsilon \frac{1}{2}\left(1-b_{0}\right)^{2}-2 \epsilon \sum_{i=1}^{k} b_{i}^{2}+(1+2 \epsilon)\left(15 \gamma \sum_{i \in S, j \in T} b_{i}\left(-b_{j}\right)+2 \gamma \sum_{i=1}^{k} b_{i}^{2}\right) \\
& <\frac{1}{2}\left(1-b_{0}^{2}\right)-\epsilon\left(2 \sum_{i=1}^{k} b_{i}^{2}-\left(1-b_{0}\right)^{2}\right)+15 \gamma(1+2 \epsilon)\left(\sum_{i \in S, j \in T} b_{i}\left(-b_{j}\right)+\sum_{i=1}^{k} b_{i}^{2}\right) \\
& <\frac{1}{2}\left(1-b_{0}^{2}\right)-\epsilon\left(2 \sum_{i=1}^{k} b_{i}^{2}-\left(1-b_{0}\right)^{2}\right)+30 \gamma\left(\sum_{i \in S, j \in T} b_{i}\left(-b_{j}\right)+\sum_{i=1}^{k} b_{i}^{2}\right) .
\end{aligned}
$$

Note that since the hypermetric inequality we are considering is not a triangle inequality, it follows that we must have $\sum_{i>0} b_{i}^{2} \geq 3$. But then, the following technical lemma can be used to show that the above is bounded by 0 , completing the proof of the theorem.

Lemma 3. Let $k \leq \frac{2}{45} \frac{\epsilon}{\gamma}-1$ and let $0<\epsilon<\frac{1}{6}$ and $\gamma>0$. Assume $b_{0} \leq-1, \sum b_{i}^{2} \geq 3$ and that $b_{i} \neq 0$ for all $i$. Then

$$
\frac{1}{2}\left(1-b_{0}^{2}\right)-2 \epsilon\left(\sum_{i=1}^{k} b_{i}^{2}-\frac{1}{2}\left(1-b_{0}\right)^{2}\right)+30 \gamma\left(\sum_{i \in S, j \in T} b_{i}\left(-b_{j}\right)+\sum_{i=1}^{k} b_{i}^{2}\right)<0 .
$$

Proof. It is not hard to to check that since $\epsilon<\frac{1}{6}$ and $b_{0}$ is a (strictly) negative integer, we have

$$
\frac{1}{2}\left(1-b_{0}^{2}\right)-2 \epsilon\left(\sum_{i=1}^{k} b_{i}^{2}-\frac{1}{2}\left(1-b_{0}\right)^{2}\right) \leq-2 \epsilon\left(\sum_{i=1}^{k} b_{i}^{2}-2\right) \leq-\frac{2 \epsilon}{3} \sum_{i=1}^{k} b_{i}^{2}
$$

Note that it was critical to have $\sum_{i>0} b_{i}^{2} \geq 3$ here, as only then can we claim that $\sum_{i=1}^{k} b_{i}^{2}-2$ is a positive constant. Indeed, for the triangle inequality $\left(b_{0}=-1, b_{1}=b_{2}=1\right)$, i.e., the only hypermetric inequality for which this doesn't hold, we cannot expect any method bounding the slack of the inequality to work: the VERTEX COVER edge constraints force the triangle inequality to be tight for edges!

It now suffices to prove that

$$
\begin{equation*}
-\frac{2 \epsilon}{3} \sum_{i=1}^{k} b_{i}^{2}+30 \gamma\left(\sum_{i \in S, j \in T} b_{i}\left(-b_{j}\right)+\sum_{i=1}^{k} b_{i}^{2}\right)<0 \tag{4}
\end{equation*}
$$

Let $s, t$ be the cardinalities of $S, T$, respectively, and let $x=\sum_{i \in S} b_{i}$ and $y=\sum_{i \in T}\left(-b_{i}\right)$. Now, using the Cauchy-Schwartz inequality and the fact that $s, t \leq k$, we get

$$
\frac{\sum_{i \in S, j \in T} b_{i}\left(-b_{j}\right)+\sum_{i=1}^{k} b_{i}^{2}}{\sum_{i=1}^{k} b_{i}^{2}} \leq 1+\frac{x y}{s(x / s)^{2}+t(y / t)^{2}} \leq 1+k \frac{x y}{x^{2}+y^{2}} \leq 1+k / 2
$$

(Note that if $y=t=0$ the bound is trivial and we therefore ignored this case above.) Hence,

$$
-\frac{2 \epsilon}{3} \sum_{i=1}^{k} b_{i}^{2}+30 \gamma\left(\sum_{i \in S, j \in T} b_{i}\left(-b_{j}\right)+\sum_{i=1}^{k} b_{i}^{2}\right)<\left(-\frac{2 \epsilon}{3}+30 \gamma(1+k / 2)\right) \sum_{i=1}^{k} b_{i}^{2}
$$

and so (4) holds as long as $k \leq \frac{2}{45} \frac{\epsilon}{\gamma}-1$.
Theorem 2 now follows.

## 4 Hypermetric Inequalities vs. Lovász-Schrijver SDP Lift-and-Project

In this section we show that hypermetric inequalities need not be derived by Lovász and Schrijver's $L S_{+}$ lift-and-project system. Our plan of attack is as follows. After stating all necessary definitions, we will first show that no pure hypermetric inequalities are derived by $L S_{+}$for the convex cone defined by the inequalities $0 \leq x_{i} \leq x_{0}, i=1, \ldots, n$. We will then use this result to show the following for VERTEX COVER: Fix a graph $G$ and an independent set $S$ in $G$, and consider a VERTEX COVER SDP for $G$ derived using $L S_{+}$lift-and-project. Then the constraints defining this SDP do not imply any of the pure hypermetric constraints supported on $S$.

We begin by defining the Lovász-Schrijver $L S_{+}$lift-and-project system [18]. In what follows all vectors will be indexed starting at 0 . Recall that a set $C \subset \mathbb{R}^{n}$ is a convex cone if for every $\mathbf{y}, \mathbf{z} \in C$ and for every $\alpha, \beta \geq 0, \alpha \mathbf{y}+\beta \mathbf{z} \in C$. Given a convex cone $C \subset \mathbb{R}^{n+1}$ we denote its projection onto the hyperplane $x_{0}=1$ by $\left.C\right|_{x_{0}=1}$. Let $\mathbf{e}_{i}$ denote the vector with 1 in coordinate $i$ and 0 everywhere else. Let $Q_{n} \subset \mathbb{R}^{n+1}$ be the convex cone defined by the constraints $0 \leq x_{i} \leq x_{0}$ and fix a convex cone $C \subset Q_{n}$. The lifted cone $M_{+}(C) \subseteq \mathbb{R}^{(n+1) \times(n+1)}$ consists of all positive semidefinite matrices $(n+1) \times(n+1)$ matrices $Y$ such that,

Property I. For all $i=0,1, \ldots, n, Y_{0 i}=Y_{i i}$.
Property II. For all $i=0,1, \ldots, n, Y \mathbf{e}_{i}, Y \mathbf{e}_{0}-Y \mathbf{e}_{i} \in C$.
The cone $M_{+}(C)$ is the $L S_{+}$positive semidefinite tightening for $C$. This procedure can be iterated by projecting $M_{+}(C)$ back to $\mathbb{R}^{n+1}$ and then re-applying the $M_{+}$operator to the projection. In particular, let $N_{+}(C)=\left\{Y \mathbf{e}_{0}: Y \in M_{+}(C)\right\} \subseteq \mathbb{R}^{n+1}$. Define $N_{+}^{k}(C)$ inductively by setting $N_{+}^{0}(C)=C$ and $N_{+}^{k}(C)=$ $N_{+}\left(N_{+}^{k-1}(C)\right)$, and define $M_{+}^{k}(C)$ to be $M_{+}\left(N_{+}^{k-1}(C)\right)$. Lovász and Schrijver show that $N_{+}^{k+1}(C) \subseteq N_{+}^{k}(C)$ and $M_{+}^{k+1}(C) \subseteq M_{+}^{k}(C)$ and that moreover these containment are proper if and only if $\left.N_{+}^{k}(C)\right|_{x_{0}=1}$ is not the integral hull of $\left.C\right|_{x_{0}=1}$. Moreover, they show that $\left.N_{+}^{n}(C)\right|_{x_{0}=1}$ is equal to the integral hull of $\left.C\right|_{x_{0}=1}$. It is useful to note, that $Y \in M_{+}^{k}(C) \subseteq \mathbb{R}^{(n+1) \times(n+1)}$ if and only if $Y$ is PSD and satisfies both Property I and the following property:

Property $\mathrm{II}^{\prime}$. For all $i=0,1, \ldots, n, Y \mathbf{e}_{i}, Y \mathbf{e}_{0}-Y \mathbf{e}_{i} \in N_{+}^{k-1}(C)$.
With these definitions in hand, we can now begin by showing that $M_{+}\left(Q_{n}\right)$ does not satisfy any pure hypermetric constraint (recall that $Q_{n}$ is the cone satisfying $0 \leq x_{i} \leq x_{0}$ for all $i=1, \ldots, n$ ). As a warm up we examine the triangle inequality of SDP (1) for a three vertex graph with no edges. Note that this SDP has no edge constraints. Moreover, any vector solution $\mathbf{v}_{i}$ can be mapped using the affine transformation $\mathbf{v}_{i} \rightarrow\left(\mathbf{v}_{i}+\mathbf{v}_{0}\right) / 2$ to a set of vectors whose Gram matrix is in $M_{+}\left(Q_{3}\right)$, and vice versa. Now consider three vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ that correspond to the three vertices of the graph. Geometrically it is possible to place these vectors such that the Gram matrix of $\mathbf{v}_{0}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ satisfies Properties I and II above for an $L S_{+}$ tightening, yet $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ violate triangle inequality. We can accomplish this by making $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ almost coincide and placing $\mathbf{v}_{3}$ between them.

Our counterexample for hypermetrics will be a generalization of the following more subtle matrix in $M_{+}\left(Q_{3}\right)$ violating triangle inequality:

$$
Y=\left(\begin{array}{cccc}
1 & \epsilon & \epsilon & \epsilon \\
\epsilon & \epsilon & 0 & \beta \epsilon \\
\epsilon & 0 & \epsilon & \beta \epsilon \\
\epsilon & \beta \epsilon & \beta \epsilon & \epsilon
\end{array}\right)
$$

By having $\epsilon \in(0,1 / 2)$ and $\beta \in[0,1]$ we ensure $Y$ satisfies Properties I and II. One can show that by setting $\epsilon$ arbitrarily close to 0 and $\beta$ close to but bigger than $1 / 2$, we ensure that $Y$ is PSD, while ensuring that its Cholesky decomposition violates the triangle inequality. This matrix sacrifices some of the above geometric intuition to make our calculations easier.

This construction can be extended to show that $M_{+}\left(Q_{n}\right)$ does not satisfy any inequality $\sum b_{i} b_{j} d_{i j} \leq 0$ where $b$ is a vector of length $n=2 k+1, \sum b_{i}=1$, and for all $i,\left|b_{i}\right|=1$. Indeed, consider an inequality on $2 k+1$ points defined by the vector $\left(0, b_{1}, b_{2}, \ldots, b_{2 k+1}\right) \in \mathbb{Z}_{+}^{2 k+2}$ (note that $b_{0}=0$ ) where $b_{i}=1$ for $i=1, \ldots, k+1$ and $b_{i}=-1$ for $i=k+2, \ldots, 2 k+2$. In this way we naturally split the points into two clusters of size $k+1$ and $k$ points. The associated inequality requires that the sum of distances across the clusters dominates the sum of distances within the clusters. Define the distance within the clusters as $2 \epsilon$, and the distance across the clusters as $2 \epsilon(1-\beta)$. We have $k(k+1)$ cross pairs and $\binom{k}{2}+\binom{k+1}{2}=k^{2}$ inner pairs. Therefore in order to violate the inequality, we should have $2 \epsilon(1-\beta) k(k+1)<2 \epsilon k^{2}$. In other words it suffices for $\beta$ to be slightly bigger than $\frac{1}{k+1}$ (this will be crucial later).

Define the matrix

$$
Y^{(s, t)}=\left(\begin{array}{ccc}
1 & \epsilon J_{1, s} & \epsilon J_{1, t} \\
\epsilon J_{s, 1} & \epsilon I_{s} & \epsilon \beta J_{s, t} \\
\epsilon J_{t, 1} & \epsilon \beta J_{t, s} & \epsilon I_{t}
\end{array}\right)
$$

where $J_{m, n}$ is the $m \times n$ all- 1 matrix, and $I_{n}$ is the $n \times n$ identity matrix (note that $s=2, t=1$ gives $Y$ above). The configuration described above can be realized by the matrix $Y^{(k+1, k)}$ of order $(2 k+2)$. Similarly as in the case of the triangle inequality, $Y^{(s, t)}$ satisfies Properties I and II as long as $\epsilon \in(0,1 / 2)$ and $b \in[0,1]$.

Hence, $Y^{(k+1, k)}$ is in $M_{+}\left(Q_{n}\right)$ provided we can show that it is PSD. This is implied by the following technical lemma.

Lemma 4. For all $s, t$, such that $s+t=2 k+1$ there exist $\epsilon \in(0,1 / 2)$ and $\beta>\frac{1}{k+1}$ such that the matrix $Y^{(s, t)} \in \mathbb{R}^{(2 k+2) \times(2 k+2)}$ is PSD.

Proof. To simplify notation, we will denote $\frac{1}{\epsilon} Y^{(s, t, \epsilon, \beta)}$ by $Y^{(s, t)}$.
We begin by computing all principal minors of $Y^{(s, t)}$. Subtracting the third row from the second in $Y^{(s, t)}$, we get $\operatorname{det}\left(Y^{(s, t)}\right)=\operatorname{det}\left(Y^{(s-1, t)}\right)+\operatorname{det}\left(L^{(s-1, t)}\right)$, where $L^{(s, t)}$ is the same matrix as $Y^{(s, t)}$ except that $L_{22}^{(s, t)}=0($ instead of 1$)$.

The same operation on rows shows that $\operatorname{det}\left(L^{(s, t)}\right)=\operatorname{det}\left(L^{(1, t)}\right)$. Next denote by $K^{(1, t)}$ the same matrix as $L^{(1, t)}$ except that $K_{33}^{(1, t)}=0$ (instead of 1). Subtracting the fourth row from the third in $L^{(1, t)}$ we get $\operatorname{det}\left(L^{(1, t)}\right)=\operatorname{det}\left(L^{(1, t-1)}\right)+\operatorname{det}\left(K^{(1, t-1)}\right)$ where again $\operatorname{det}\left(K^{(1, t)}\right)=\operatorname{det}\left(K^{(1,1)}\right)$. Finally let $M^{(1, t)}$ be the same matrix as $Y^{(1, t)}$ except that $M_{33}^{(1, t)}=0$ (instead of 1). Again, the same row operation in $Y^{(1, t)}$ gives $\operatorname{det}\left(Y^{(1, t)}\right)=\operatorname{det}\left(Y^{(1, t-1)}\right)+\operatorname{det}\left(M^{(1, t-1)}\right)$ with $\operatorname{det}\left(M^{(1, t)}\right)=\operatorname{det}\left(M^{(1,1)}\right)$.

For simplicity denote $Y^{(1,1)}, L^{(1,1)}, M^{(1,1)}, K^{(1,1)}$ by $Y, L, M, K$ respectively. Then for these base matrices

$$
Y=\left(\begin{array}{ccc}
1 / \epsilon & 1 & 1 \\
1 & 1 & \beta \\
1 & \beta & 1
\end{array}\right) L=\left(\begin{array}{ccc}
1 / \epsilon & 1 & 1 \\
1 & 0 & \beta \\
1 & \beta & 1
\end{array}\right) M=\left(\begin{array}{ccc}
1 / \epsilon & 1 & 1 \\
1 & 1 & \beta \\
1 & \beta & 0
\end{array}\right) K=\left(\begin{array}{ccc}
1 / \epsilon & 1 & 1 \\
1 & 0 & \beta \\
1 & \beta & 0
\end{array}\right)
$$

we have

$$
\begin{aligned}
\operatorname{det}(Y) & =\frac{1}{\epsilon}\left(1-\beta^{2}+2 \beta \epsilon-2 \epsilon\right) \\
\operatorname{det}(L) & =\operatorname{det}(M)=\frac{1}{\epsilon}\left(-\beta^{2}+2 \beta \epsilon-\epsilon\right) \\
\operatorname{det}(K) & =\frac{\beta}{\epsilon}\left(-\beta^{2}+2 \epsilon\right) .
\end{aligned}
$$

Using these values, we have

$$
\begin{aligned}
\operatorname{det}\left(Y^{(s, t)}\right) & =\operatorname{det}\left(Y^{(1, t)}\right)+(s-1)(\operatorname{det}(L)+(t-1) \operatorname{det}(K)) \\
& =\operatorname{det}(Y)+(t-1) \operatorname{det}(M)+(s-1)(\operatorname{det}(L)+(t-1) \operatorname{det}(K)) \\
& =\frac{1}{\epsilon}\left(1-s t \beta^{2}+\epsilon(-t-s+2 s t \beta)\right)
\end{aligned}
$$

Recall that we required $\beta>\frac{1}{k+1}$ and so we can take $\beta$ arbitrarily close to that bound. But then

$$
s t \beta^{2} \leq\left(\frac{2 k+1}{2}\right)^{2} \frac{1}{(k+1)^{2}}=\left(\frac{2 k+1}{2 k+2}\right)^{2}<1
$$

making $\operatorname{det}\left(Y^{(s, t)}\right)$ strictly positive for sufficient small $\epsilon$.

We are ready now to show that VERTEX COVER SDPs in the $L S_{+}$hierarchy violate pure hypermetrics on any independent set. Fix an $n$-vertex graph $G=(V, E)$ and consider the convex cone $C \subset Q_{n}$ consisting of all vectors $x \in \mathbb{R}^{n+1}$ such that $x_{i}+x_{j} \geq x_{0}$. Then $L S_{+}$lifting yields the following sequence of SDPs for $G$ : $M_{+}(C), M_{+}^{2}(C), \ldots$ We will show that for all $k$, every independent set $S$ in $G$, and all pure hypermetrics $B$ supported on $S$, there exists $Y \in M_{+}^{k}(C)$ such that $Y$ does not satisfy $B$.

To that end, fix $k$ and $S$, and let $s=|S|$ be odd. Without loss of generality, assume that $S=\{1,2, \ldots, s\}$. Fix a pure hypermetric $B$ defined on the set $S$. By the discussion above we know that there exists $Y^{\prime} \in$ $M_{+}\left(Q_{s}\right)$ that violates the pure hypermetric $B$. Let $\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{s}$ be the Cholesky decomposition for $Y^{\prime}$. Now let $Y \in \mathbb{R}^{(n+1) \times(n+1)}$ be the matrix with Cholesky decomposition $\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{s}, \mathbf{v}_{s+1}^{\prime}, \ldots, \mathbf{v}_{n}^{\prime}$ where $\mathbf{v}_{j}^{\prime}=\mathbf{v}_{0}$ for all $j \geq s+1$. By construction $Y$ is PSD, satisfies Property I, and does not satisfy $B$ on $S$. So it suffices to verify Property $\mathrm{II}^{\prime}$ in order to show that $Y \in M_{+}^{k}(C)$. Note that $Y \mathbf{e}_{i}$ is the all-1 vector for all $i \geq s+1$
and hence Property $\mathrm{II}^{\prime}$ holds for all $i \geq s+1$ since the all- 1 vector is in the integral hull and hence in $N_{+}^{k}(C)$ for all $k$. Now consider a vector $Y \mathbf{e}_{i}$ where $1 \leq i \leq s$. Note that $Y_{00}=Y_{0 j}$ for all $j \geq s+1$. But then, since $S$ is independent, it follows that the projection of $Y \mathbf{e}_{i}$ onto the hyperplane $x_{0}=1$ is also in the integral hull and hence in $N_{+}^{k}(C)$. Similarly, it follows that $Y\left(\mathbf{e}_{0}-\mathbf{e}_{i}\right)$ is also in $N_{+}^{k}(C)$ whenever $1 \leq i \leq s$. So Property II' holds for all $i$, and $Y \in M_{+}^{k}(C)$.

We end this section by remarking that the above arguments can be combined with those from [10] to show that there is a graph $G$ for which $O(\sqrt{\log n / \log \log n})$ rounds of $L S_{+}$produce an SDP which (a) does not satisfy the triangle inequality and (b) has integrality gap $2-o(1)$. The argument, which we do not have room to go into here, considers the Frankl-Rödl graph $G_{m}^{\gamma}$ to which we append three isolated vertices. The idea is to not satisfy the triangle inequality on the isolated vertices while the remaining vertices will essentially employ the SDP solutions from [10].

## 5 Acknowledgements

We thank Toniann Pitassi for many helpful discussions. The first author would also like to thank Periklis Papakonstantinou for his help on some technical aspects of this work.

## References

1. Sanjeev Arora, László Lovász, Ilan Newman, Yuval Rabani, Yuri Rabinovich, and Santosh Vempala. Local versus global properties of metric spaces. In SODA, pages 41-50. ACM Press, 2006.
2. Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings and graph partitioning. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pages 222-231 (electronic), New York, 2004. ACM.
3. David Avis and Jun Umemoto. Stronger linear programming relaxations of max-cut. Mathematical Programming, 97(3):451-469, 2003.
4. Moses Charikar. On semidefinite programming relaxations for graph coloring and vertex cover. In SODA '02: Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms, pages 616-620, Philadelphia, PA, USA, 2002. Society for Industrial and Applied Mathematics.
5. Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Local global tradeoffs in metric embeddings. In Proceedings of the Forty-Eighth Annual IEEE Symposium on Foundations of Computer Science, pages 713-723. IEEE, 2007.
6. Nikhil R. Devanur, Subhash A. Khot, Rishi Saket, and Nisheeth K. Vishnoi. Integrality gaps for sparsest cut and minimum linear arrangement problems. In STOC'06: Proceedings of the 38 th Annual ACM Symposium on Theory of Computing, pages 537-546, New York, 2006. ACM.
7. M. Deza and M. Laurent. Geometry of cuts and metrics, volume 15 of Algorithms and Combinatorics. Springer-Verlag, Berlin-Heidelberg-New York-Barcelona-Budapest-Hong Kong-London-Mailand-ParisSanta Clara-Singapur-Tokyo, 1997.
8. Irit Dinur and Shmuel Safra. On the hardness of approximating minimum vertex-cover. Annals of Mathematics, 162(1):439-486, 2005.
9. Peter Frankl and Vojtech Rödl. Forbidden intersections. Trans. Amer. Math. Soc., 300(1):259-286, 1987.
10. Konstantinos Georgiou, Avner Magen, Toniann Pitassi, and Iannis Tourlakis. Integrality gaps of $2-o(1)$ for vertex cover SDPs in the Lovász-Schrijver hierarchy. In Proceedings of the Forty-Eighth Annual IEEE Symposium on Foundations of Computer Science, pages 702-712. IEEE, 2007.
11. Michel X. Goemans and David P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach., 42(6):1115-1145, 1995.
12. Eran Halperin. Improved approximation algorithms for the vertex cover problem in graphs and hypergraphs. SIAM J. Comput., 31(5):1608-1623 (electronic), 2002.
13. Hamed Hatami, Avner Magen, and Evangelos Markakis. Integrality gaps of semidefinite programs for vertex cover and relations to 1 embeddability of negative type metrics. In $A P P R O X-R A N D O M$, pages 164-179, 2007.
14. George Karakostas. A better approximation ratio for the vertex cover problem. In Automata, languages and programming, volume 3580 of Lecture Notes in Comput. Sci., pages 1043-1050. Springer, Berlin, 2005.
15. S. Khot. On the power of unique 2-prover 1-round games. In Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, pages 767-775 (electronic), New York, 2002. ACM.
16. Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within $2-\epsilon$. In Proceedings of the 18th IEEE Conference on Computational Complexity, pages 379-386, 2003.
17. Jon Kleinberg and Michel X. Goemans. The Lovász theta function and a semidefinite programming relaxation of vertex cover. SIAM J. Discrete Math., 11(2):196-204 (electronic), 1998.
18. Lászlo Lovász and Alexander Schrijver. Cones of matrices and set-functions and 0-1 optimization. SIAM Journal on Optimization, 1(2):166-190, May 1991.

[^0]:    * Funded in part by NSERC

