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Abstract. We consider the standard semidefinite programming (SDP) relaxation for vertex cover

to which all hypermetric inequalities supported on at most k vertices have been added. We show that
the integrality gap for such SDPs remains 2 − o(1) as long as k = O(

p

log n/ log log n). This extends
successive results by Kleinberg-Goemans, Charikar and Hatami et al. which analyzed integrality gaps of
the standard vertex cover SDP relaxation as well as for SDPs tightened using triangle and pentagonal
inequalities.
Our result is complementary but incomparable to a recent result by Georgiou et al. proving integrality
gaps for vertex cover SDPs in the Lovász-Schrijver hierarchy. One of our contributions is making
explicit the difference between the SDPs considered by Georgiou et al. and those analyzed in the current
paper. We do this by showing that vertex cover SDPs in the Lovász-Schrijver hierarchy fail to satisfy
any hypermetric constraints supported on independent sets of the input graph.

1 Introduction

A vertex cover for a graph is a subset of vertices that touches all edges in the graph. Determining the
approximability of the minimum vertex cover problem on graphs is one of the outstanding problems in
theoretical computer science. While there exists a trivial 2-approximation algorithm, considerable efforts
have failed to obtain an approximation ratio better than 2 − o(1). On the other hand, the strongest PCP-
based hardness result known [8] only shows that 1.36-approximation of vertex cover is NP-hard. Only by
assuming Khot’s Unique Game Conjecture [15] can it be shown that 2− o(1)-approximation is NP-hard [16].

Several recent papers [17, 12, 4, 14, 13, 10] examine whether semidefinite programming (SDP) relaxations
of vertex cover might yield better approximations. Goemans and Williamson [11] introduced semidefinite
programming relaxations as an algorithmic technique using it to obtain a 0.878-approximation for max-cut.
Since then semidefinite programming has arguably become our most powerful tool for designing approxima-
tion algorithms. Indeed, for many NP-hard optimization problems the best approximation ratios are achieved
using SDP-based algorithms.

Given a graph G = (V, E), the standard SDP relaxation for vertex cover is

min
∑

i∈V (1 + v0 · vi)/2
s.t. (v0 − vi) · (v0 − vj) = 0 ∀ij ∈ E

‖vi‖ = 1 ∀i ∈ {0} ∪ V
(1)

Halperin [12] employed this relaxation together with an appropriate rounding technique to obtain a (2 −
Ω(log log ∆/ log∆))-approximation for vertex cover for graphs with maximal degree ∆. Unfortunately,
Kleinberg and Goemans [17] showed that in general this relaxation has an integrality gap of 2 − o(1).

One possible avenue for decreasing this integrality gap comes from the following simple observation: for
any integral (or rather, one-dimensional) solution, ‖vi − vj‖2 is an ℓ1 metric. Therefore the addition of
inequalities on the distances ‖vi − vj‖2 that are valid for ℓ1 metrics may yield a possible tightening of the
SDP (note that the constraint (v0 −vi) · (v0 −vj) = 0 in SDP (1) is in fact the following distance constraint
“in disguise”: ‖vi − v0‖2 + ‖vj − v0‖2 = ‖vi − vj‖2).
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For example, since ℓ1 metrics satisfy the triangle inequality, we could add the following constraint to
SDP (1):

‖vi − vj‖2 + ‖vj − vk‖2 ≥ ‖vi − vk‖2 ∀i, j, k ∈ {0} ∪ V . (2)

This ℓ2
2 triangle inequality plays a crucial role in the breakthrough Arora-Rao-Vazirani sparsest cut al-

gorithm [2]. This suggests that the addition of inequalities satisfied by ℓ1 metrics may be exactly what is
needed to get a 2 − Ω(1) approximation for vertex cover.

Indeed, Hatami et al. [13] prove that if SDP (1) is strengthened by requiring that the distances ‖vi−vj‖2

satisfy all ℓ1 inequalities (i.e., the vectors vi equipped with the ℓ2
2 norm ‖ · ‖2 are ℓ1-embeddable), then the

resulting relaxation has no integrality gap. Of course, the caveat here is that the resulting relaxation has
exponentially many constraints and is hence intractable. To obtain a tractable relaxation (or at least one
computable in subexponential time), our relaxation must use only a limited subset of ℓ1 inequalities.

One canonical subclass of ℓ1 inequalities is the discrete and easily-described class of hypermetric inequal-
ities (see the Preliminaries for definitions). These include the triangle inequalities as well as the so-called
pentagonal, heptagonal, etc., inequalities. That such inequalities might be useful for designing improved ap-
proximation algorithms is illustrated, for example, in a work by Avis and Umemoto [3]. Avis and Umemoto
show that for dense graphs, linear programming relaxations of max cut based on the k-gonal inequalities
have integrality gap at most 1 + 1/k. This, in a sense, gives rise to an LP-based PTAS for max cut.

Unfortunately, for vertex cover Charikar [4] showed that even with the addition of the triangle in-
equality (2) the integrality gap of SDP (1) remains 2− o(1). However, Karakostas [14] did show that adding
the triangle inequality (as well as the “antipodal” triangle inequalities (±vi−±vj)·(±vi−±vk) ≥ 0) yields a
(2 − Ω(1/

√
log n))-approximation for vertex cover, currently the best ratio achievable by any algorithm.

Hatami et al. [13] subsequently showed that Karakostas’s SDP even with the addition of the pentagonal
inequalities has integrality gap 2 − o(

√

log log n/ logn).
In this work we rule out the possibility that adding local hypermetric constraints improves the integrality

gap of vertex cover SDPs:

Theorem 1. The tightening of the standard SDP for vertex cover with all hypermetrics that are supported
on O(

√

log n/ log log n) points has integrality gap 2 − o(1).

As mentioned above, Hatami et al. [13] show that adding the constraint that solutions to SDP (1) be
ℓ1-embeddable results in an SDP with no integrality gap. Theorem 1 then immediately gives the following
corollary about ℓ2

2 metrics:

Corollary 1. There exist ℓ2
2 metrics that are not isometrically embeddable into ℓ1, yet satisfy all hypermetric

inequalities supported on O(
√

log n/ log log n) points.

It is interesting to compare Corollary 1 with recent results contrasting local and global phenomena in
metric spaces. In [1, 5] the authors describe metric spaces that cannot be well-embedded into ℓ1 but locally
every small subset embeds isometrically into ℓ1. In contrast, our corollary shows the existence of a metric
that locally resembles ℓ1 (although not provably ℓ1) but globally does not embed isometrically into ℓ1. From
this standpoint, this is far weaker than [1, 5]. However, the metric we supply is also an ℓ2

2 metric. Finding
ℓ2
2 metrics that are far from being ℓ1 proved to be a very challenging task (see Khot and Vishnoi’s work [6]

motivated by integrality gap instances for sparsest cut). To the best of our knowledge, there are no known
results that point to such metrics which further satisfy any local conditions beyond the obvious triangle
inequality.

A result related to Theorem 1 was proved by Georgiou et al. in [10]. The main result of that paper showed
that SDP relaxations obtained by tightening the standard linear programming relaxation for vertex cover

using O(
√

log n/ log log n) rounds of the LS+ “lift-and-project” method of Lovász and Schrijver [18] have
integrality gap 2 − o(1). The SDPs considered in [10] seem intimately related to those obtained by adding
local ℓ1 or hypermetric constraints. Indeed, it is well known that relaxations from the LP Lovász-Schrijver
hierarchy satisfy all valid local LP constraints. However, it is also known [10] that relaxations from the
SDP Lovász-Schrijver hierarchy do not necessarily satisfy all valid local SDP constraints. In particular, the
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vertex cover SDP relaxation obtained after k rounds of the LS+ method is not obviously comparable to
the relaxation obtained by adding all order-k hypermetric inequalities to SDP (1). In section 4 we show in
a strong sense the incomparability of these relaxations: Fix any subset S of vertices that is an independent
set in the underlying graph. We then find a hypermetric inequality supported on all points of S that is
nevertheless not valid for any vertex cover SDP in the Lovász Schrijver hierarchy. In particular, this
shows that the integrality gaps proved in [10] do not preclude the possibility that adding such concrete
constraints as, say, the “heptagonal” inequalities, may result in an improved SDP relaxation.

We briefly describe how we prove Theorem 1. We use the same graph family as in [17, 4, 13, 10]. The
SDP solution can be thought of as an ℓ1 metric to which a small perturbation is applied. This perturbation
is characterized by two “infinitesimal” parameters, γ and ǫ, relating to the graph and the integrality gap,
respectively. We show that hypermetric inequalities that are supported on k ≥ 4 points, one of which is v0,
must have a slack component that depends on k and on ǫ and γ, that will be maintained as long as kγ = O(ǫ).
The case when k = 3 (i.e., the triangle inequality) is covered by [4] and [13], and the case where v0 does not
participate in the inequality is handled by the fact that the metric formed by the remaining vectors is an ℓ1

metric. Setting ǫ to an arbitrary small constant, and setting γ to Θ(
√

log log n/ logn) provides the bound in
our theorem.

2 Preliminaries

Given two vectors x,y ∈ {−1, 1}n their Hamming distance dH(x,y) is |{i ∈ [n] : xi 6= yi}|. For two vectors
u ∈ R

n and v ∈ R
m denote by (u,v) ∈ R

n+m the vector whose projection on the first n coordinates is u
and on the last m coordinates is v.

The tensor product u ⊗ v of vectors u ∈ R
n and v ∈ R

m is the vector in R
nm indexed by ordered

pairs from n × m and that assumes the value uivj at coordinate (i, j). Define u⊗d to be the vector in R
nd

obtained by tensoring u with itself d times. Let P (x) = c1x
t1 + . . .+ cqx

tq be a polynomial with nonnegative
coefficients. Then TP is the function that maps a vector u to the vector TP (u) = (

√
c1u

⊗t1 , . . . ,
√

cqu
⊗tq).

Fact: For all vectors u,v ∈ R
d, TP (u) · TP (v) = P (u · v).

Metrics and ℓ1 Inequalities We quickly review the facts we need about ℓ1 inequalities. Deza and Laurent [7]
is a good source for more information.

A finite metric space is an ℓ1 metric if it can be embedded in ℓ1-normed space so that all distances remain
unchanged. It is easy to see that the set C of all ℓ1 metrics on a fixed number of points is a convex cone. Let
X be a set of size n. A subset S of X is associated with a metric δS(x, y) that is called a cut metric and is
defined as |χS(x) − χS(y)|, where χS(·) is the characteristic function of S. These metrics are the extreme
rays of C; namely, every ℓ1 metric is a positive linear combination of cut metrics. This fact leads to a simple
characterization of all inequalities that are valid for ℓ1 metrics as follows. Consider the polar cone of C,

C∗ = {B ∈ IRn×n|B · D ≤ 0 for all D ∈ C},
where by B ·D we denote the matrix inner product of B and D, that is B ·D = trace(BDt) =

∑

i,j BijDij .
Notice that for B to be in C∗ it is enough to require that B · δS ≤ 0 for all cuts S. By definition it is clear
that any B ∈ C∗ defines a valid inequality such that

∑

i,j Bijdij ≤ 0 whenever d is an ℓ1 metric. Conversely,
(strong) duality implies that if d satisfies all inequalities of this type for every B ∈ C∗ then d is an ℓ1 metric.

A special canonical class of ℓ1 inequalities is the class of hypermetric inequalities. Let b ∈ Z
k, with

∑k
i=1 bi = 1. It can be easily verified that B = bbt is in C∗. The inequality

∑

i,j bibjdij ≤ 0 is called a

hypermetric. If we further require b ∈ {−1, 1}k, in which case the hypermetric is called pure, we obtain the
k-gonal inequalities, e.g., the triangle inequality for k = 3, pentagonal inequality for k = 5, etc.

3 Construction and Proof

Fix arbitrarily small constants γ, ǫ > 0 such that ǫ > 3γ, and let m be a sufficiently large integer. The Frankl-
Rödl graph Gγ

m is the graph with vertices {−1, 1}m
and where two vertices i, j ∈ {−1, 1}m

are adjacent if
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dH(i, j) = (1− γ)m. A classical result of Frankl and Rödl [9] implies that the size of a minimal vertex cover
in Gγ

m is 2m(1−o(1)) whenever γ = Ω(
√

log m/m). We denote the vertices V of G as vectors wi ∈ {−1, 1}m

(the association of index i with a vector in the cube is arbitrary) and normalize these to get unit vectors
ui = 1√

m
wi.

Consider the polynomial

P (x) = βx(x + 1)
2m
γ + αx

1

γ + (1 − α − 2β)x ,

where the constants α, β > 0 will be defined below. Let z0 = (1, 0 . . . , 0), zi = (2ǫ,
√

1 − 4ǫ2TP (ui)), where
TP (v) is the tensoring of v induced by the polynomial P . We fix the values of α and β defining P (and
hence, defining the vectors zi) according to the following lemma implicit in [10]:

Lemma 1 ([10]). Suppose 2m
γ and 1

γ are even and that m is significantly larger than 1/γ. Suppose further
that ǫ > 3γ. Then there exist constants α, β > 0 satisfying

α < 7.5γ ,

2β + α >
4ǫ

1 + 2ǫ
− 4γ ,

such that the vectors z0, z1, . . . , zn satisfy both the standard vertex cover SDP (1) and the triangle in-
equality 2.

A translated version of the vector set {z0, z1, . . . , zn} lay at root of the LS+ lower bounds proved in [10].
Specifically, the Gram matrix of the vectors vi = z0+zi

2 was shown to be a solution for the vertex cover

SDP resulting from O(
√

log n/ log log n) rounds of LS+ lift-and-project.
The remainder of this section is devoted to proving the following theorem.

Theorem 2. The vectors z0, z1, . . . , zn satisfy all hypermetric inequalities on r points, r ≤ 2
45

ǫ
γ .

We claim that Theorem 1 follows immediately from Theorem 2. Indeed, note first that the value of
SDP (1) on the vectors z0, z1, . . . , zn is (1 + ǫ)2m−1. On the other hand, recall that the underlying graph
Gγ

m has minimal vertex cover size (1 − o(1))2m whenever γ = Ω(
√

log m/m). Hence, Theorem 1 follows by

taking ǫ > 0 to be any arbitrarily small constant and γ = Ω(
√

log m/m).
As an aside, we note that our vectors {zi} also satisfy the “antipodal” triangle inequalities (±zi −

±zj) · (±zi − ±zk) ≥ 0 for all i, j, k ∈ {0} ∪ V . Recall that these inequalities define the SDP at root
of Karakostas’s [14] vertex cover algorithm. That our vectors satisfy these inequalities can be seen as
follows. Consider the subset {zi}i≥1. For each coordinate, the vectors in this subset take on at most 2
different values, and hence this subset is ℓ1-embeddable. Moreover, this remains true even if we replace some
(or all) of the zi by −zi. Hence, it suffices to consider only the “antipodal” triangle inequalities involving z0.
The validity of these inequalities then follows easily from the fact that the zi satisfy the standard triangle
inequalities (by Lemma 1) and the fact that the value of zi · z0 does not depend on i.

Before giving the proof of Theorem 2 we give some intuition. Note that the vector set {zi} is the result
of a perturbation applied to the following simple-minded ℓ1 metric: Let D = {v0,v1, . . . ,vn} be the metric
obtained by taking vi to be the (normalized version of) the vectors of the m-dimensional cube, and let v0

be a unit vector perpendicular to all vi. Notice that these vectors are precisely the vectors we would have
obtained if we had used the polynomial P (x) = x to define the tensored vectors zi (corresponding to taking
ǫ = γ = 0). The metric D is easily seen to be an ℓ1 metric: take the Hamming cube and place the zeroth
point at the origin to get an ℓ1 embedding that is an isometry. Since D is ℓ1, every hypermetric inequality
is valid for it. On the other hand, D does not satisfy even the basic conditions of SDP (1) (e.g., the edge
constraints) with respect to our graph of interest (i.e., Gγ

m with γ > 0) and any basic attempts to remedy that
will violate even the triangle inequality: A subtle way of perturbing D via the tensoring polynomial P will
be required. By focusing on the pure hypermetrics, we can give some intuition about why our construction
works and why the critical value of k is O(ǫ/γ) (for non-pure hypermetrics, this intuition is less accurate).
Given any choice of α, β > 0 we get a set of tensored vectors zi whose distances are a perturbation of D by
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an additive factor D∆. As mentioned in the proof outline in the introduction and in light of Lemma 1, it
suffices to restrict our attention only to inequalities supported on more than three points. Since any given
pure hypermetric inequality defined by the bi’s must be satisfied by D, it is sufficient to prove that it is
satisfied for the perturbed component of the metric, i.e., D∆. Analyzing this inequality on D∆ then shows
that

∑

i,j bibjdij ≤ −2ǫ+Cγk, where C is a universal constant and the dij are the distances defined by D∆.
Consequently, as long as k = O(ǫ/γ), the inequality holds for D∆. Hence it holds for D + D∆, the metric
resulting from the zi’s as well.

Proof (of Theorem 2). By Lemma 1 we already know that the vectors satisfy all hypermetric inequalities on
three points, namely, the triangle inequalities.

So we only need to show that the solution satisfies hypermetric inequalities on 4 or more points. This is
an important point since the arguments we will use to handle hypermetric inequalities on at least 4 points
cannot be applied to the triangle inequalities.

Consider the set of vectors {zi}, i ≥ 1. For each coordinate, the vectors in this subset take on at most 2
different values, and hence this subset is ℓ1-embeddable. Therefore, any ℓ1 inequality (and in particular any
hypermetric inequality) not involving z0 must be satisfied.

Now let B = bbt ∈ C∗, where b ∈ Z
k+1 and

∑k
i=0 bi = 1, be any hypermetric inequality supported on

r = k + 1 points. By the above discussion, it suffices to consider the case where z0 is one of the points,
and we can assume that the points are 0, 1, . . . , k. Our goal is to show that

∑

i<j≤k Bij‖zi − zj‖2 ≤ 0. By
definition, for i, j ≥ 1,

‖zi − zj‖2 = 2 − 2(4ǫ2 + (1 − 4ǫ2)P (ui · uj)) = 2(1 − 4ǫ2)(1 − P (ui · uj)) ,

and ‖zi − z0‖2 = 2 − 4ǫ. Hence,

∑

0≤i<j≤k

Bij‖zi − zj‖2 = 2(1 − 2ǫ)

k
∑

i=1

B0i + 2(1 − 4ǫ2)
∑

0<i<j≤k

Bij(1 − P (ui · uj)) .

Therefore, we need to show

k
∑

i=1

B0i + (1 + 2ǫ)
∑

0<i<j≤k

Bij(1 − P (ui · uj)) ≤ 0 . (3)

We will require the technical lemma below, but first some definitions. By homogeneity we may assume
b0 < 0 (and hence that b0 ≤ −1 since b0 ∈ Z). Let

S = {i ∈ [k] : bi > 0} ,

T = {i ∈ [k] : bi < 0} .

Next let Hij = (ui ·uj +1)(ui ·uj)
2m
γ and Mij = (ui ·uj)

1

γ , and let ∆ij be the Hamming distance between
ui and uj . With these definitions we can then write P (ui · uj) = βHij + αMij + (1 − α − 2β)(1 − 2

m∆ij).

Lemma 2. Assume that γ, ǫ and m satisfy the conditions in Lemma 1. Then,

1.
∑

0<i<j≤k Bij = 1
2 ((1 − b0)

2 −∑k
i=1 b2

i )
2.
∑

0<i<j≤k Bij(−βHij − αMij) ≤ 15γ
∑

i∈S,j∈T bi(−bj)

3.
∑

0<i<j≤k Bij∆ij ≤ 1
4m(1 − b0)

2

Proof. The first equality is an immediate consequence of the fact that
∑k

i=1 bi = 1−b0 and that (
∑k

i=1 bi)
2 =

∑k
i=1 b2

i + 2
∑

0<i<j≤k bibj.
For the second inequality, note first that ui ·uj ≤ 1−1/m. Hence, Hij is negligible for all i 6= j. Moreover,

since the ui are unit vectors and 1/γ is even, it follows that 0 ≤ Mij ≤ 1. Hence, by the bounds for α and
β given by Lemma 1 it follows that βHij + αMij ≤ 15γ and the second inequality follows.
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For the last inequality notice that since ∆ij is the sum of m cut metrics (defined by the m coordinates),
it is enough to show that for every subset I ⊂ {0, 1, . . . , k},

∑

0<i<j≤k

BijδI(i, j) ≤
1

4
(1 − b0)

2 .

Indeed, using the fact that B is a hypermetric we have,

∑

0<i<j≤k

BijδI(i, j) =
∑

i∈I,j /∈I

bibj =

(

∑

i∈I

bi

)

·
(

1 − b0 −
∑

i∈I

bi

)

≤
(

1 − b0

2

)2

.

⊓⊔

We can now bound the left-hand-side of (3). To begin with, we have,

k
∑

i=1

B0i + (1 + 2ǫ)
∑

0<i<j≤k

Bij(1 − P (ui · uj))

=

k
∑

i=1

B0i + (1 + 2ǫ)
∑

0<i<j≤k

Bij(1 − βHij − αMij − (1 − α − 2β)(1 − 2

m
∆ij))

=

k
∑

i=1

B0i + (1 + 2ǫ)
∑

0<i<j≤k

Bij(−βHij − αMij + α + 2β + (1 − α − 2β)
2

m
∆ij) .

Applying the inequalities from Lemma 2 it then follows that the above is upper-bounded by

b0(1 − b0) + (1 + 2ǫ)



15γ
∑

i∈S,j∈T

bi(−bj) +
1

2
(α + 2β)

[

(1 − b0)
2 −

k
∑

i=1

b2
i

]

+
1

2
(1 − α − 2β)(1 − b0)

2





=
1

2
(1 − b2

0) + 2ǫ
1

2
(1 − b0)

2 + (1 + 2ǫ)



15γ
∑

i∈S,j∈T

bi(−bj) −
1

2
(α + 2β)

k
∑

i=1

b2
i





<
1

2
(1 − b2

0) + 2ǫ
1

2
(1 − b0)

2 + (1 + 2ǫ)



15γ
∑

i∈S,j∈T

bi(−bj) −
[

2ǫ

1 + 2ǫ
− 2γ

] k
∑

i=1

b2
i





=
1

2
(1 − b2

0) + 2ǫ
1

2
(1 − b0)

2 − 2ǫ

k
∑

i=1

b2
i + (1 + 2ǫ)



15γ
∑

i∈S,j∈T

bi(−bj) + 2γ

k
∑

i=1

b2
i





<
1

2
(1 − b2

0) − ǫ(2
k
∑

i=1

b2
i − (1 − b0)

2) + 15γ(1 + 2ǫ)





∑

i∈S,j∈T

bi(−bj) +
k
∑

i=1

b2
i





<
1

2
(1 − b2

0) − ǫ(2
k
∑

i=1

b2
i − (1 − b0)

2) + 30γ





∑

i∈S,j∈T

bi(−bj) +
k
∑

i=1

b2
i



 .

Note that since the hypermetric inequality we are considering is not a triangle inequality, it follows that
we must have

∑

i>0 b2
i ≥ 3. But then, the following technical lemma can be used to show that the above is

bounded by 0, completing the proof of the theorem.
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Lemma 3. Let k ≤ 2
45

ǫ
γ − 1 and let 0 < ǫ < 1

6 and γ > 0. Assume b0 ≤ −1,
∑

b2
i ≥ 3 and that bi 6= 0 for

all i. Then

1

2
(1 − b2

0) − 2ǫ

(

k
∑

i=1

b2
i −

1

2
(1 − b0)

2

)

+ 30γ





∑

i∈S,j∈T

bi(−bj) +
k
∑

i=1

b2
i



 < 0 .

Proof. It is not hard to to check that since ǫ < 1
6 and b0 is a (strictly) negative integer, we have

1

2
(1 − b2

0) − 2ǫ

(

k
∑

i=1

b2
i −

1

2
(1 − b0)

2

)

≤ −2ǫ

(

k
∑

i=1

b2
i − 2

)

≤ −2ǫ

3

k
∑

i=1

b2
i .

Note that it was critical to have
∑

i>0 b2
i ≥ 3 here, as only then can we claim that

∑k
i=1 b2

i − 2 is a positive
constant. Indeed, for the triangle inequality (b0 = −1, b1 = b2 = 1), i.e., the only hypermetric inequality for
which this doesn’t hold, we cannot expect any method bounding the slack of the inequality to work: the
vertex cover edge constraints force the triangle inequality to be tight for edges!

It now suffices to prove that

−2ǫ

3

k
∑

i=1

b2
i + 30γ





∑

i∈S,j∈T

bi(−bj) +
k
∑

i=1

b2
i



 < 0 . (4)

Let s, t be the cardinalities of S, T , respectively, and let x =
∑

i∈S bi and y =
∑

i∈T (−bi). Now, using the
Cauchy-Schwartz inequality and the fact that s, t ≤ k, we get

∑

i∈S,j∈T bi(−bj) +
∑k

i=1 b2
i

∑k
i=1 b2

i

≤ 1 +
xy

s(x/s)2 + t(y/t)2
≤ 1 + k

xy

x2 + y2
≤ 1 + k/2 .

(Note that if y = t = 0 the bound is trivial and we therefore ignored this case above.) Hence,

−2ǫ

3

k
∑

i=1

b2
i + 30γ





∑

i∈S,j∈T

bi(−bj) +

k
∑

i=1

b2
i



 <

(

−2ǫ

3
+ 30γ(1 + k/2)

) k
∑

i=1

b2
i ,

and so (4) holds as long as k ≤ 2
45

ǫ
γ − 1. ⊓⊔

Theorem 2 now follows. ⊓⊔

4 Hypermetric Inequalities vs. Lovász-Schrijver SDP Lift-and-Project

In this section we show that hypermetric inequalities need not be derived by Lovász and Schrijver’s LS+

lift-and-project system. Our plan of attack is as follows. After stating all necessary definitions, we will first
show that no pure hypermetric inequalities are derived by LS+ for the convex cone defined by the inequalities
0 ≤ xi ≤ x0, i = 1, . . . , n. We will then use this result to show the following for vertex cover: Fix a graph G
and an independent set S in G, and consider a vertex cover SDP for G derived using LS+ lift-and-project.
Then the constraints defining this SDP do not imply any of the pure hypermetric constraints supported on
S.

We begin by defining the Lovász-Schrijver LS+ lift-and-project system [18]. In what follows all vectors
will be indexed starting at 0. Recall that a set C ⊂ R

n is a convex cone if for every y, z ∈ C and for
every α, β ≥ 0, αy + βz ∈ C. Given a convex cone C ⊂ R

n+1 we denote its projection onto the hyperplane
x0 = 1 by C|x0=1. Let ei denote the vector with 1 in coordinate i and 0 everywhere else. Let Qn ⊂ R

n+1

be the convex cone defined by the constraints 0 ≤ xi ≤ x0 and fix a convex cone C ⊂ Qn. The lifted cone
M+(C) ⊆ R

(n+1)×(n+1) consists of all positive semidefinite matrices (n + 1)× (n + 1) matrices Y such that,
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Property I. For all i = 0, 1, . . . , n, Y0i = Yii.

Property II. For all i = 0, 1, . . . , n, Y ei, Y e0 − Y ei ∈ C.

The cone M+(C) is the LS+ positive semidefinite tightening for C. This procedure can be iterated by
projecting M+(C) back to R

n+1 and then re-applying the M+ operator to the projection. In particular, let
N+(C) = {Y e0 : Y ∈ M+(C)} ⊆ R

n+1. Define Nk
+(C) inductively by setting N0

+(C) = C and Nk
+(C) =

N+(Nk−1
+ (C)), and define Mk

+(C) to be M+(Nk−1
+ (C)). Lovász and Schrijver show that Nk+1

+ (C) ⊆ Nk
+(C)

and Mk+1
+ (C) ⊆ Mk

+(C) and that moreover these containment are proper if and only if Nk
+(C)|x0=1 is not

the integral hull of C|x0=1. Moreover, they show that Nn
+(C)|x0=1 is equal to the integral hull of C|x0=1. It

is useful to note, that Y ∈ Mk
+(C) ⊆ R

(n+1)×(n+1) if and only if Y is PSD and satisfies both Property I and
the following property:

Property II′. For all i = 0, 1, . . . , n, Y ei, Y e0 − Y ei ∈ Nk−1
+ (C).

With these definitions in hand, we can now begin by showing that M+(Qn) does not satisfy any pure
hypermetric constraint (recall that Qn is the cone satisfying 0 ≤ xi ≤ x0 for all i = 1, . . . , n). As a warm up
we examine the triangle inequality of SDP (1) for a three vertex graph with no edges. Note that this SDP
has no edge constraints. Moreover, any vector solution vi can be mapped using the affine transformation
vi → (vi + v0)/2 to a set of vectors whose Gram matrix is in M+(Q3), and vice versa. Now consider three
vectors v1,v2,v3 that correspond to the three vertices of the graph. Geometrically it is possible to place
these vectors such that the Gram matrix of v0,v1,v2,v3 satisfies Properties I and II above for an LS+

tightening, yet v1,v2,v3 violate triangle inequality. We can accomplish this by making v1 and v2 almost
coincide and placing v3 between them.

Our counterexample for hypermetrics will be a generalization of the following more subtle matrix in
M+(Q3) violating triangle inequality:

Y =









1 ǫ ǫ ǫ
ǫ ǫ 0 βǫ
ǫ 0 ǫ βǫ
ǫ βǫ βǫ ǫ









.

By having ǫ ∈ (0, 1/2) and β ∈ [0, 1] we ensure Y satisfies Properties I and II. One can show that by setting
ǫ arbitrarily close to 0 and β close to but bigger than 1/2, we ensure that Y is PSD, while ensuring that its
Cholesky decomposition violates the triangle inequality. This matrix sacrifices some of the above geometric
intuition to make our calculations easier.

This construction can be extended to show that M+(Qn) does not satisfy any inequality
∑

bibjdij ≤ 0
where b is a vector of length n = 2k + 1,

∑

bi = 1, and for all i, |bi| = 1. Indeed, consider an inequality
on 2k + 1 points defined by the vector (0, b1, b2, . . . , b2k+1) ∈ Z

2k+2
+ (note that b0 = 0) where bi = 1 for

i = 1, . . . , k + 1 and bi = −1 for i = k + 2, . . . , 2k + 2. In this way we naturally split the points into two
clusters of size k + 1 and k points. The associated inequality requires that the sum of distances across the
clusters dominates the sum of distances within the clusters. Define the distance within the clusters as 2ǫ,
and the distance across the clusters as 2ǫ(1 − β). We have k(k + 1) cross pairs and

(

k
2

)

+
(

k+1
2

)

= k2 inner
pairs. Therefore in order to violate the inequality, we should have 2ǫ(1 − β)k(k + 1) < 2ǫk2. In other words
it suffices for β to be slightly bigger than 1

k+1 (this will be crucial later).
Define the matrix

Y (s,t) =





1 ǫJ1,s ǫJ1,t

ǫJs,1 ǫIs ǫβJs,t

ǫJt,1 ǫβJt,s ǫIt



 ,

where Jm,n is the m × n all-1 matrix, and In is the n × n identity matrix (note that s = 2, t = 1 gives Y
above). The configuration described above can be realized by the matrix Y (k+1,k) of order (2k+2). Similarly
as in the case of the triangle inequality, Y (s,t) satisfies Properties I and II as long as ǫ ∈ (0, 1/2) and b ∈ [0, 1].

Hence, Y (k+1,k) is in M+(Qn) provided we can show that it is PSD. This is implied by the following
technical lemma.
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Lemma 4. For all s, t, such that s + t = 2k + 1 there exist ǫ ∈ (0, 1/2) and β > 1
k+1 such that the matrix

Y (s,t) ∈ IR(2k+2)×(2k+2) is PSD.

Proof. To simplify notation, we will denote 1
ǫ Y (s,t,ǫ,β) by Y (s,t).

We begin by computing all principal minors of Y (s,t). Subtracting the third row from the second in
Y (s,t), we get det(Y (s,t)) = det(Y (s−1,t))+det(L(s−1,t)), where L(s,t) is the same matrix as Y (s,t) except that

L
(s,t)
22 = 0 (instead of 1).

The same operation on rows shows that det(L(s,t)) = det(L(1,t)). Next denote by K(1,t) the same matrix

as L(1,t) except that K
(1,t)
33 = 0 (instead of 1). Subtracting the fourth row from the third in L(1,t) we get

det(L(1,t)) = det(L(1,t−1)) + det(K(1,t−1)) where again det(K(1,t)) = det(K(1,1)). Finally let M (1,t) be the

same matrix as Y (1,t) except that M
(1,t)
33 = 0 (instead of 1). Again, the same row operation in Y (1,t) gives

det(Y (1,t)) = det(Y (1,t−1)) + det(M (1,t−1)) with det(M (1,t)) = det(M (1,1)).
For simplicity denote Y (1,1), L(1,1), M (1,1), K(1,1) by Y, L, M, K respectively. Then for these base matrices

Y =





1/ǫ 1 1
1 1 β
1 β 1



 L =





1/ǫ 1 1
1 0 β
1 β 1



 M =





1/ǫ 1 1
1 1 β
1 β 0



 K =





1/ǫ 1 1
1 0 β
1 β 0





we have

det(Y ) =
1

ǫ
(1 − β2 + 2βǫ − 2ǫ)

det(L) = det(M) =
1

ǫ
(−β2 + 2βǫ − ǫ)

det(K) =
β

ǫ
(−β2 + 2ǫ) .

Using these values, we have

det(Y (s,t)) = det(Y (1,t)) + (s − 1) (det(L) + (t − 1) det(K))

= det(Y ) + (t − 1) det(M) + (s − 1) (det(L) + (t − 1) det(K))

=
1

ǫ
(1 − stβ2 + ǫ(−t − s + 2stβ)) .

Recall that we required β > 1
k+1 and so we can take β arbitrarily close to that bound. But then

stβ2 ≤
(

2k + 1

2

)2
1

(k + 1)2
=

(

2k + 1

2k + 2

)2

< 1

making det(Y (s,t)) strictly positive for sufficient small ǫ.
⊓⊔

We are ready now to show that vertex cover SDPs in the LS+ hierarchy violate pure hypermetrics on
any independent set. Fix an n-vertex graph G = (V, E) and consider the convex cone C ⊂ Qn consisting of
all vectors x ∈ R

n+1 such that xi + xj ≥ x0. Then LS+ lifting yields the following sequence of SDPs for G:
M+(C), M2

+(C), . . .. We will show that for all k, every independent set S in G, and all pure hypermetrics B
supported on S, there exists Y ∈ Mk

+(C) such that Y does not satisfy B.
To that end, fix k and S, and let s = |S| be odd. Without loss of generality, assume that S = {1, 2, . . . , s}.

Fix a pure hypermetric B defined on the set S. By the discussion above we know that there exists Y ′ ∈
M+(Qs) that violates the pure hypermetric B. Let v0,v1, . . . ,vs be the Cholesky decomposition for Y ′. Now
let Y ∈ R

(n+1)×(n+1) be the matrix with Cholesky decomposition v0,v1, . . . ,vs,v
′
s+1, . . . ,v

′
n where v′

j = v0

for all j ≥ s + 1. By construction Y is PSD, satisfies Property I, and does not satisfy B on S. So it suffices
to verify Property II′ in order to show that Y ∈ Mk

+(C). Note that Y ei is the all-1 vector for all i ≥ s + 1
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and hence Property II′ holds for all i ≥ s+1 since the all-1 vector is in the integral hull and hence in Nk
+(C)

for all k. Now consider a vector Y ei where 1 ≤ i ≤ s. Note that Y00 = Y0j for all j ≥ s + 1. But then, since
S is independent, it follows that the projection of Y ei onto the hyperplane x0 = 1 is also in the integral hull
and hence in Nk

+(C). Similarly, it follows that Y (e0 − ei) is also in Nk
+(C) whenever 1 ≤ i ≤ s. So Property

II’ holds for all i, and Y ∈ Mk
+(C).

We end this section by remarking that the above arguments can be combined with those from [10] to
show that there is a graph G for which O(

√

log n/ log log n) rounds of LS+ produce an SDP which (a) does
not satisfy the triangle inequality and (b) has integrality gap 2 − o(1). The argument, which we do not
have room to go into here, considers the Frankl-Rödl graph Gγ

m to which we append three isolated vertices.
The idea is to not satisfy the triangle inequality on the isolated vertices while the remaining vertices will
essentially employ the SDP solutions from [10].
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