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Abstract

We examine the problem of generating state-space compnsssi POMDPs in a
way that minimally impacts decision quality. We analyzeithpact of compres-
sions on decision quality, observing that compressiorntsaflaw accurate policy
evaluation (prediction of expected future reward) will adfiect decision qual-
ity. We derive a set of sufficient conditions that ensure eateprediction in this
respect, illustrate interesting mathematical propettiese confer on lossless lin-
ear compressions, and use these to derive an iterativechnector finding good
linear lossy compressions. We also elaborate on how stectnepresentations
of a POMDP can be used to find such compressions.

1 Introduction

Partially observable Markov decision processes (POMDRsjighe a rich framework for
modeling a wide range of sequential decision problems inpttesence of uncertainty.
Unfortunately, the application of POMDPs to real world geshs remains limited due to
the intractability of current solution algorithms, in largart because of the exponential
growth of state spaces with the number of relevant variables

Ideally, we would like to mitigate this source of intractiityi by compressing the state
space as much as possible without compromising decisiolityqu®ur aim in solving

a POMDRP is to maximize future reward based on our currenefselbout the world.
By compressing itbelief state an agent may lose relevant information, which results in
suboptimal policy choice. Thus an important aspect of baliate compression lies in
distinguishing relevant information from that which candadely discarded. A number of
schemes have been proposed for either directly or indyrectnpressing POMDPs. For
example, approaches using bounded memory [8, 10] and gigitegation—either dynamic
[2] or static [5, 9]—can be viewed in this light.

In this paper, we study the effect of static state-space cesspn on decision quality. We
first characterizdosslesscompressions—those that do not lead to any error in expected
value—by deriving a set of conditions that guarantee deciguality will not be impaired.

We also characterize the specific case of linear compressidris analysis leads to algo-
rithms that find good compression schemes, including mettiaat exploit structure in the
POMDP dynamics (as exhibited, e.qg., in graphical model®) thNgn extend these concepts
to lossycompressions. We derive a (somewhat loose) upper bouncedngh in decision
quality when the conditions for lossless compression (ofescequired dimensionality) are



not met. Finally we propose a simple optimization prograrfind linear lossy compres-
sions that minimizes this bound, and describe how strudtBf@MDP models can be used
to implement this scheme efficiently.

2 Background and Notation

21 POMDPs

A POMDP is defined by: a s& of statess; a setA of actionsa; a setZ of observations
z; a transition functio”, whereT (s, a, s') denotes the transition probabilifyr(s'|s, a);
an observation functio®, whereZ(s, z) denotes the probabilitPr(z|s) of making ob-
servatiornz in states; and a reward functiof?, whereR(s) denotes the immediate reward
associated with state! We assume discrete state, action and observation sets dodwge
on discounted, infinite horizon POMDPs with discount fatet v < 1.

Policies and value functions for POMDPs are typically dafiogerbelief spacewhere

a belief state is a distribution oveiS capturing an agent’s knowledge about the current
state of the world. Belief statecan be updated in response to a specific action-observation
pair (a, z) using Bayes ruleb'(s") = a )" b(s)T'(s,a,s")Z(s', z) (« is a normalization
constant). We denote the (unnormalized) mapgitig, where, in matrix form, we have
Ti* = Pr(sjla,s;)Pr(z|s;). Note that a belief staté and reward functior? can be

viewed respectively als5|-dimensional row and column vectors. We defid@) = b - R.

Solving a POMDP consists of finding an optimal polieynapping belief states to actions.
The valueV' ™ of a policy is the expected sum of discounted rewards and is defined as:

VT(b) = R(b) +v > _ VT(T™)3(b)) )

A number of techniques [11] based on value iteration or pdtieration can be used to
compute optimal or approximately optimal policies for PORD

2.2 Conditional Independence and Additive Separ ability

When our state space is defined by a set of variables, POMDPsftan be represented
concisely in a factored way by specifying the transitiorsetvation and reward functions
using adynamic Bayesian network (DBNJuch representations exploit the fact that tran-
sitions associated with each variable depend only on a subBet of variables. These
representations can often be exploited to solve POMDPwitktate space enumeration

[2].

Recently, Pfeffer [13] showed that conditional indepermerombined with some form of
additive separability can enable efficient inference in ymBBNs. Roughly, a function
can beadditively separate@hen it decomposes into a sum of smaller terms. For instance,
Pr(Z|XY) is separable if there exist conditional distributidpsy (Z]| X ) andPry (Z]Y'),
anda € [0, 1], such thatPr(Z|XY) = aPrx(Z|X) + (1 — a)Pry(Z|Y). This ensures
that one need only know the marginalsX@fandY (instead of their joint distribution) to
infer Z. Pfeffer shows how additive separability in the CPTs of a D&M be exploited
to identify families ofself-sufficient variables A self-sufficient family consists of a set
of subsets of variables such that the marginals of each sabsasufficient to predict the
marginals of the same subsets at the next time step. Henge,riéquire the probabilities
of a few variables, and can identify a self-sufficient fantintaining those variables, then
we need only compute marginals over this family when momitpbelief state.

The ideas presented in this paper generalize to cases #vaed R also depend on actions.
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Figure 1: a) Functional flow of a POMDP (dotted arrows) andrapessed POMDP (solid
arrows) where the next belief state is accurately predidigBunctional flow of a POMDP
(dotted arrows) and a compressed POMDP (solid arrows) vihengext compressed belief
state is accurately predicted.

2.3 Invariant and Krylov Subspaces

We briefly review several linear algebraic concepts usest [@ee [15] for more details).
Let S be a vector subspace. We s&ys invariant with respect to matrixy/ if it is closed
under multiplication byM (i.e., Mz € S,Vz € S). A Krylov subspacer(M,z) is
the smallest subspacgthat containg and is invariant with respect to/. A basisB for

a Krylov subspace can easily be generated by repeatedlyplgirdy « by M (i.e., B =
{z, Mz, M?*z, M3x,...}). If Kr(M,z) is n-dimensional, one can show thaf" 'z is
the last linearly independent vector in this sequence aatath subsequent vectors are
linear combinations oB.

In a DBN, families of self-sufficient variables naturallyroespond to invariant subspaces.
For instance, supposgis a linear function that depends only on self-sufficient ifgm
{{X},{Y, Z}}. If we regressf through the dynamics of the DBN—i.e., if we multipfy
by the transition matrif'**—the resulting function will also be defined over the truth va
ues of{ X'} and{Y, Z}. Hence, when a family of variables is self-sufficient, thbspace
of linear functions defined over the truth values of that fgnsi invariant w.r.t.7'%:=,

3 Lossless Compressions

If a compression of the state space of a POMDP allows us taaistyevaluate all policies,
we say the compressionlissslesssince we have sufficient information to select the opti-
mal policy. We provide one characterization of losslessm@ssions. We then specialize
this to the linear case, and discuss the use of compact POM@ESentations.

Let f be acompression functiotihat maps each belief staiénto some lower dimensional
compressed belief stabésee Figure 1(a)). Helecan be viewed asleottlenecKe.g., in the
sense of the information bottleneck [17]) that filters thi®imation contained ih before
it's used to estimate future rewards. We desire a compnegssaich thab corresponds to
the smallest statistic sufficient for accurately predigtine current reward as well as the
next belief staté’ (since we can accurately predict all following rewards frigin Such a
compressiorf exists if we can also find mapping%* andR such that:

R=Rof and T%* =g of Yac A,z € Z (2)

Since we are only interested in predicting future rewardsgan’t really need to accurately
estimate the next belief stabé we could just predict the next compressed belief state
since it captures all information ibl relevant for estimating future rewards. Figure 1(b)
illustrates the resulting functional flow, whef&-* represents the transition function that
directly maps one compressed belief state to the next caspdebelief state. Eqg. 2 can



then be replaced by the following weaker but still sufficieonditions:
R=Rof and fol% =T% 0o f Yac A,z€ Z ()

Given anf, R andT®* satisfying Eq. 3, we can evaluate a policysing the compressed
POMDP dynamics as follows:

V(B) = R(B) + > V(T D(B)) @)

OnceV ™ is found, we can recover the original value functiéfl = V™ o f. Indeed, Eq. 1
and Eq. 4 are equivalent:

Theorem 1 Let f, R andT%* satisfy Eq. 3 and let™ = V™ o f. Then Eq. 1 holds iff
Eq. 4 does.

Pr oof

3.1 Linear compressions

We sayf is alinear compressiowhenf is a linear function, representable by some matrix
F'. In this case, the approximate transition and reward foneti'*-* and R must also be
linear (assuming Eq. 3 is satisfied). Eq. 3 can be rewrittendtrix notation:

R=FR and T%*F = FT%* Ya,z (5)
In a linear compressiork;, can be viewed as effecting a change of basis for the value func
tion, with the columns of" defining a subspace in which the compressed value function
lies. Furthermore, the rank &f indicates the dimensionality of the compressed state space
When Eq. 5 is satisfied, the columnsBfspan a subspace that contaidsnd that is in-
variant with respect to eachi®>*. Intuitively, Eq. 5 says that a sufficient statistic must be

able to “predict itself” at the next time step (hence the pals is invariant), and that it
must predict the current reward (hence the subspace cedifrormally:

Theorem 2 Let T%#, R and F' satisfy Eq. 5. Then the range &f containsR and is
invariant with respect to eachi*>*.

Proof Eq. 5 ensures is a linear combination of the columns 57 so it lies in the range
of F. It also requires that the columns of edEt* F' are linear combinations of
the columns of’, sOF is invariant with respect to ead"=.

Thus, the best linear lossless compression corresponte tenallest invariant subspace
that containgk®. This is by definition the Krylov subspadér({T** : a € A,z € Z}, R).
Using this fact we can easily compute the best losslessrlic@apression by iteratively
multiplying R by eachT'®* until the Krylov basis is obtained. We then let the Krylov
basis form the columns df, and compute? and eachi"** by solving each part of Eq. 5.
Finally, we can solve the POMDP in the compressed state $passingR andT%>.

Note that this technique can be viewed as a generalizatigivan et al's MDP model
minimization technique [3]. It is interesting to note thattinan et al. [9] proposed a
similar iterative algorithm to compress POMDPs based odiptieg future observatiors.

2Assuming that rewards are functions of the observations.



3.2 Structured Linear Compressions

When a POMDP is specified in compactly, say, using a DBN, treedithe state space may
be exponentially larger than the specification. The prattieed to avoid state enumeration
is a key motivation for POMDP compression. However, the demity of the search for
a good compression must also be independent of the state sjzac Unfortunately, the
iterative Krylov algorithm involves repeatedly multiphg explicit transition matrices and
basis vectors. We consider several ways in which a compaRtBspecification can be
exploited to construct a linear compression without statengeration.

One solution lies in exploiting DBN structure and contegésific independence. If tran-
sition, observation and reward functions are represerggdjuDBNs and structured CPTs
(e.g., decision trees or algebraic decision diagramsi), ttiee matrix operations required by
the Krylov algorithm can be implemented effectively [1, Although this approach can
offer substantial savings, the DTs or ADDs that represembidisis vectors of the Krylov
subspace may still be much larger than the dimensionalith@tompressed state space
and the original DBN specifications.

Alternatively, families of self-sufficient variables cesponding to invariant subspaces can
be identified by exploiting additive separability. Stagtiwith the variables upon whicR
depends, we can recursively grow a family of variables itriilself-sufficient with respect
to eachl'®*. The corresponding subspace is invariant and necessaritgiosk. Assum-
ing a tractable self-sufficient family is found, a compacsibaan then be constructed by
using allindicator functiongor each subset of variables in this family (e.g.{X,Y, Z}

is one such subset of binary variables, then eight basigrsewatll correspond to this set).
This approach allows us to quickly identify a good compmassiy a simple inspection of
the additive separability structure of the DBN. The resgjttompression is not necessar-
ily optimal; however, it is the best among those correspogdd some such family. It is
important to note that the dynami@&"* and rewardR of the compressed POMDP can
be constructed easily (i.e., without state enumeratiamfthis /' and the original DBN
model. Pfeffer [13] notes that observations tend to redaeamount of additive separabil-
ity present in a DBN, thereby increasing the size of selfisight families. Therefore, we
should point out that lossless compressions of POMDPs ttbié self-sufficiency and
offer an acceptable degree of compression may not existcédlEssy compressions are
likely to be required in many cases.

Finally, we ask whether the existence of lossless commmessequires some form of struc-
ture in the POMDP. We argue that this is almost always the.c&sgpose a transition
matrix 7'“* and a reward vectaR are chosen uniformly at random. The odds tRd#lls
into a proper invariant subspaceDf:* are essentially zero since there are infinitely more
vectors in the full space than in all the proper invariantspates put together. This means
that if a POMDP can be compressed, it must almost certainbelsause its dynamics ex-
hibit some structure. We have described how context-spenifiependence and additive
separability can be exploited to identify some linear lesslcompressions. However they
do not guarantee that the optimal compression will be fosadt,remains an open question
whether other types of structure could be used in similarswvay

4 Lossy compressions

Since we cannot generally find effective lossless compassiwe also consider lossy
compressions. We propose a simple approach to find linesy tmsnpressions that “almost
satisfy” Eq. 5. Table 1 outlines a simple optimization progrto find lossy compressions
that minimize a weighted sum of the max-norm residual efiarandeg, in Eq. 5. Here
¢ andd are weights that allow us to vary the degree to which the twopanents of Eq. 5



min cer + der

st —er<|[R—FR|w < er (6)
—er <||T%*F — FT%*||oo < er Ya€ A,z€Z 7
1F]loc =1

Table 1: Optimization program for linear lossy compression

should be satisfied. The unknowns of the program are all théeeerof R, 7%* and F as
well ase; andeg. The constraint| F|| = 1 is necessary to preserve scale, otherwise
er could be driven down to 0 simply by setting all the entriesfoto 0. SinceT®*
and R multiply F', some constraints are nonlinear. However, it is possiblsotee this
optimization program by solving a series of LPs (linear pamgs). We alternate solving
the LP that adjust® and7** while keepingF fixed, and solving the LP that adjusks
while keepingRk andT®* fixed. This guarantees that the objective function deceease
each iteration and will converge, but not necessarily tacalloptimum.

4.1 Max-norm Error Bound

The quality of the compression resulting from this prograapehds on the weightsand

d. ldeally, we would like to set andd in a way thatceg + der represents the loss in
decision quality associated with compressing the stateespiwe can bound the errey

of evaluating any policy using the compressed POMDP, thedifference in expected total
return between the policy that is best w.r.t. the compre8@MDP and the true optimal
policy is at mosRey . Letey bemax, [|[V™ — V7 o f||. Theorem 3 gives an upper bound
oney as alinear combination of the max-norm residual errors ing=q

Theorem 3 Letey = max, |[V™ =V 0 f|lo, €r = ||[R—Ro f

j:'a,z o f”oo andf/* = ma:ﬂ,rV”. Thenev < —1i763 + 7W|Z‘1”_‘; H°°6T.

loos €7 = Max, ; ||[T%% —

We omit the proof due to lack of space. It essentially cosgifa sequence of substitutions
of the type||AB o < [|Alloc [|Bllx and||4 + Blls < [|4]loc + ||Blleo- We suspect
that the above error bound will grossly overestimate the inslecision quality, however
we intend to use it mostly as a guide for settingndd. Herey|Z| ||V*|lo/(1 — 7) is
typically much greater thah/(1 — ~) because of the factdi’ *||., which means thaty

has a much higher impact on the loss in decision quality thhanintuitively, this makes
sense because the eregrin predicting the next compressed belief state may compound
over time, so we should sétsignificantly higher tham.

4.2 Structured Compressions

As with lossless compressions, solving the program in Tabteay be intractable due to
the size ofS. There are)(|S|) constraints andiS||S| unknown entries in matri¥’.3 We
describe several techniques that allow one to exploit prolstructure to find an acceptable
lossy compression without state space enumeration.

One approach is related to the basis function model progodégl in which we restrictr’
to be functions over some small setfa€tors(subsets of state variables.) This ensures that
the number of unknown parameters in any columi'qfvhich we optimize in Table 1) is

$Assumings is small, thelS|? variables in eacli®* and|S| variables ink are unproblematic.



linear in the number of instantiations of each factor. Bypkeg factors small, we main-
tain a manageable set of unknowns. To deal with@{gS|) constraints, we can exploit
the structure imposed of' and the DBN structure to reduce the number of constraints
to something (in the many cases) polynomial in the numbetaiés/ariables. This can
be achieved using the techniques described in [4, 16] toiteean LP with many fewer
constraints or to generate small subsets of constraintsrimentally. These techniques are
rather involved, so we refer to the cited papers for details.

By searching within a restricted set of structured compgoessand by exploiting DBN
structure itis possible to efficiently solve the optimipatprogram in Table 1. The question
of factor selection remains: on what factors shakilde defined? A version of this question
has beentackled in[12, 14] in the context of selecting asltasipproximately solve MDPs.
The techniques proposed in those papers could be adaptadeptimization program.

An alternative method for structuring the computatiorfbinvolves additive separability.
Let X; (j < m) be subsets of variables, agd(X;, S) be a function oveX; and the
compressed state spafe We restrict each column df to be a separable function of the
¢;; that is, columni (corresponding to stai§) is Zj Bi¢;(X;,3;) for some parameters
B;. Here thes; can be viewed as weights indicating the importance of thérianion of
eachg; in the separable function. Given a family of subsets, thamaters over which
we optimize to determiné” are now the3; and the entries of each functiar (X, S).
While nonlinear, the same alternating minimization schel@scribed earlier can be used
to optimize these two classes of parameterg’dh turn. Note that the number of vari-
ables is dependent only on the size of the subXgtsind the compressed state space
Furthermore, this form of additive separability lendslitse the same compact constraint
generation techniqgues mentioned above. Finally, the riglisg search for decent subsets
X can be interleaved with optimization of the compressionpiragpfor fixed setsX ;.

5 Preliminary Experiments

We report on preliminary experiments with the coffee prabliescribed in [2]. Given its
relatively small size (32 states, 3 observations and 2a€}johese results should be viewed
as simply illustrating the feasibility and potential of thkgorithms proposed in Secs. 3.1
and 4.1. Further experiments for the structured versioasqS3.2 and 4.2) are necessary
to assess the degree of compression achievable with l&aestic problems.

The 32-dimensional belief space can be compressed witmyubas to a 7-dimensional
subspace using the Krylov subspace algorithm describeddtidh 3.1. For further com-
pression, we applied the optimization program describdabie 1 by setting the weights
andd to 1 and200 respectively. The alternating variable technique wasie150 times,
with the best solution chosen frohd random restarts (to mitigate the effects of local op-
tima). Figure 2 shows the loss in expected return (w.r.t.agpigmal policy) when policy
computed using varying degrees of compression is exectdmt)0 stages. The loss is
sampled from 100,000 random initial belief states, avetamyer 10 runs. These policies
manage to achieve expected returns with less #f#aioss. In contrast, the average loss of
a random policy is abo@.5 (or 27%).

6 Concluding Remarks

We have presented an in-depth theoretical analysis of thadirof static compressions on
decision quality. We derived a set of conditions that gues@oompression does not impair
decision quality, leading to interesting mathematicalpgmies for linear compressions
that allow us to exploit structure in the POMDP dynamics. W groposed a simple
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Figure 2: Average loss for various lossy compressions

optimization program to search for good lossy compressi®nsliminary results suggest
that significant compression can be achieved with littleastmn decision quality.

This research can be extended in various directions. Itdvbalinteresting to carry out a
similar analysis in terms of information theory (insteadinéar algebra) since the problem
of identifying information in a belief state relevant to gdieting future rewards can be mod-
eled naturally using information theoretic concepts [6§ynBmic compressions could also
be analyzed since, as we solve a POMDP, the set of reasordldiep shrinks, allowing
greater compression.
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