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Abstract

We examine the problem of generating state-space compressions of POMDPs in a
way that minimally impacts decision quality. We analyze theimpact of compres-
sions on decision quality, observing that compressions that allow accurate policy
evaluation (prediction of expected future reward) will notaffect decision qual-
ity. We derive a set of sufficient conditions that ensure accurate prediction in this
respect, illustrate interesting mathematical propertiesthese confer on lossless lin-
ear compressions, and use these to derive an iterative procedure for finding good
linear lossy compressions. We also elaborate on how structured representations
of a POMDP can be used to find such compressions.

1 Introduction

Partially observable Markov decision processes (POMDPs) provide a rich framework for
modeling a wide range of sequential decision problems in thepresence of uncertainty.
Unfortunately, the application of POMDPs to real world problems remains limited due to
the intractability of current solution algorithms, in large part because of the exponential
growth of state spaces with the number of relevant variables.

Ideally, we would like to mitigate this source of intractability by compressing the state
space as much as possible without compromising decision quality. Our aim in solving
a POMDP is to maximize future reward based on our current beliefs about the world.
By compressing itsbelief state, an agent may lose relevant information, which results in
suboptimal policy choice. Thus an important aspect of belief state compression lies in
distinguishing relevant information from that which can besafely discarded. A number of
schemes have been proposed for either directly or indirectly compressing POMDPs. For
example, approaches using bounded memory [8, 10] and state aggregation—eitherdynamic
[2] or static [5, 9]—can be viewed in this light.

In this paper, we study the effect of static state-space compression on decision quality. We
first characterizelosslesscompressions—those that do not lead to any error in expected
value—by deriving a set of conditions that guarantee decision quality will not be impaired.
We also characterize the specific case of linear compressions. This analysis leads to algo-
rithms that find good compression schemes, including methods that exploit structure in the
POMDP dynamics (as exhibited, e.g., in graphical models). We then extend these concepts
to lossycompressions. We derive a (somewhat loose) upper bound on the loss in decision
quality when the conditions for lossless compression (of some required dimensionality) are



not met. Finally we propose a simple optimization program tofind linear lossy compres-
sions that minimizes this bound, and describe how structured POMDP models can be used
to implement this scheme efficiently.

2 Background and Notation

2.1 POMDPs

A POMDP is defined by: a setS of statess; a setA of actionsa; a setZ of observationsz; a transition functionT , whereT (s; a; s0) denotes the transition probabilityPr(s0js; a);
an observation functionZ, whereZ(s; z) denotes the probabilityPr(zjs) of making ob-
servationz in states; and a reward functionR, whereR(s) denotes the immediate reward
associated with states.1 We assume discrete state, action and observation sets and wefocus
on discounted, infinite horizon POMDPs with discount factor0 � 
 < 1.

Policies and value functions for POMDPs are typically defined overbelief space, where
a belief stateb is a distribution overS capturing an agent’s knowledge about the current
state of the world. Belief stateb can be updated in response to a specific action-observation
pair ha; zi using Bayes rule:b0(s0) = �Ps b(s)T (s; a; s0)Z(s0; z) (� is a normalization
constant). We denote the (unnormalized) mappingT a;z, where, in matrix form, we haveT a;zij = Pr(sj ja; si)Pr(zjsj). Note that a belief stateb and reward functionR can be
viewed respectively asjSj-dimensional row and column vectors. We defineR(b) = b �R.

Solving a POMDP consists of finding an optimal policy� mapping belief states to actions.
The valueV � of a policy� is the expected sum of discounted rewards and is defined as:V �(b) = R(b) + 
Xz V �(T �(b);z(b)) (1)

A number of techniques [11] based on value iteration or policy iteration can be used to
compute optimal or approximately optimal policies for POMDPs.

2.2 Conditional Independence and Additive Separability

When our state space is defined by a set of variables, POMDPs can often be represented
concisely in a factored way by specifying the transition, observation and reward functions
using adynamic Bayesian network (DBN). Such representations exploit the fact that tran-
sitions associated with each variable depend only on a smallsubset of variables. These
representations can often be exploited to solve POMDPs without state space enumeration
[2].

Recently, Pfeffer [13] showed that conditional independence combined with some form of
additive separability can enable efficient inference in many DBNs. Roughly, a function
can beadditively separatedwhen it decomposes into a sum of smaller terms. For instance,Pr(ZjXY ) is separable if there exist conditional distributionsPrX (ZjX) andPrY (ZjY ),
and� 2 [0; 1℄, such thatPr(ZjXY ) = �PrX (ZjX) + (1 � �)PrY (ZjY ). This ensures
that one need only know the marginals ofX andY (instead of their joint distribution) to
infer Z. Pfeffer shows how additive separability in the CPTs of a DBNcan be exploited
to identify families ofself-sufficient variables. A self-sufficient family consists of a set
of subsets of variables such that the marginals of each subset are sufficient to predict the
marginals of the same subsets at the next time step. Hence, ifwe require the probabilities
of a few variables, and can identify a self-sufficient familycontaining those variables, then
we need only compute marginals over this family when monitoring belief state.

1The ideas presented in this paper generalize to cases whenZ andR also depend on actions.
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Figure 1: a) Functional flow of a POMDP (dotted arrows) and a compressed POMDP (solid
arrows) where the next belief state is accurately predicted. b) Functional flow of a POMDP
(dotted arrows) and a compressed POMDP (solid arrows) wherethe next compressed belief
state is accurately predicted.

2.3 Invariant and Krylov Subspaces

We briefly review several linear algebraic concepts used later (see [15] for more details).
Let S be a vector subspace. We sayS is invariant with respect to matrixM if it is closed
under multiplication byM (i.e., Mx 2 S;8x 2 S). A Krylov subspaceKr(M;x) is
the smallest subspaceS that containsx and is invariant with respect toM . A basisB for
a Krylov subspace can easily be generated by repeatedly multiplying x by M (i.e.,B =fx;Mx;M2x;M3x; : : :g). If Kr(M;x) is n-dimensional, one can show thatMn�1x is
the last linearly independent vector in this sequence and that all subsequent vectors are
linear combinations ofB.

In a DBN, families of self-sufficient variables naturally correspond to invariant subspaces.
For instance, supposef is a linear function that depends only on self-sufficient familyffXg; fY; Zgg. If we regressf through the dynamics of the DBN—i.e., if we multiplyf
by the transition matrixT a;z—the resulting function will also be defined over the truth val-
ues offXg andfY; Zg. Hence, when a family of variables is self-sufficient, the subspace
of linear functions defined over the truth values of that family is invariant w.r.t.T a;z.
3 Lossless Compressions

If a compression of the state space of a POMDP allows us to accurately evaluate all policies,
we say the compression islossless, since we have sufficient information to select the opti-
mal policy. We provide one characterization of lossless compressions. We then specialize
this to the linear case, and discuss the use of compact POMDP representations.

Let f be acompression functionthat maps each belief stateb into some lower dimensional
compressed belief state~b (see Figure 1(a)). Here~b can be viewed as abottleneck(e.g., in the
sense of the information bottleneck [17]) that filters the information contained inb before
it’s used to estimate future rewards. We desire a compression f such that~b corresponds to
the smallest statistic sufficient for accurately predicting the current rewardr as well as the
next belief stateb0 (since we can accurately predict all following rewards fromb0). Such a
compressionf exists if we can also find mappingsga;z and ~R such that:R = ~R Æ f and T a;z = ga;z Æ f 8a 2 A; z 2 Z (2)

Since we are only interested in predicting future rewards, we don’t really need to accurately
estimate the next belief stateb0; we could just predict the next compressed belief state~b0
since it captures all information inb0 relevant for estimating future rewards. Figure 1(b)
illustrates the resulting functional flow, where~T a;z represents the transition function that
directly maps one compressed belief state to the next compressed belief state. Eq. 2 can



then be replaced by the following weaker but still sufficientconditions:R = ~R Æ f and f Æ T a;z = ~T a;z Æ f 8a 2 A; z 2 Z (3)

Given anf , ~R and ~T a;z satisfying Eq. 3, we can evaluate a policy� using the compressed
POMDP dynamics as follows:~V �(~b) = ~R(~b) + 
Xz ~V �( ~T �(~b);z(~b)) (4)

Once~V � is found, we can recover the original value functionV � = ~V � Æ f . Indeed, Eq. 1
and Eq. 4 are equivalent:

Theorem 1 Let f , ~R and ~T a;z satisfy Eq. 3 and letV � = ~V � Æ f . Then Eq. 1 holds iff
Eq. 4 does.

Proof V �(b) = R�(b) + 
Pz V �(T �(b);z(b))() ~V �(f(b)) = ~R(f(b)) + 
Pz ~V �(f(T �(b);z(b)))() ~V �(f(b)) = ~R(f(b)) + 
Pz ~V �( ~T �(b);z(f(b)))() ~V �(~b) = ~R(~b) + 
Pz ~V �( ~T �(b);z(~b))
3.1 Linear compressions

We sayf is alinear compressionwhenf is a linear function, representable by some matrixF . In this case, the approximate transition and reward functions ~T a;z and ~R must also be
linear (assuming Eq. 3 is satisfied). Eq. 3 can be rewritten inmatrix notation:R = F ~R and T a;zF = F ~T a;z 8a; z (5)

In a linear compression,F can be viewed as effecting a change of basis for the value func-
tion, with the columns ofF defining a subspace in which the compressed value function
lies. Furthermore, the rank ofF indicates the dimensionality of the compressed state space.
When Eq. 5 is satisfied, the columns ofF span a subspace that containsR and that is in-
variant with respect to eachT a;z. Intuitively, Eq. 5 says that a sufficient statistic must be
able to “predict itself” at the next time step (hence the subspace is invariant), and that it
must predict the current reward (hence the subspace containsR). Formally:

Theorem 2 Let ~T a;z, ~R and F satisfy Eq. 5. Then the range ofF containsR and is
invariant with respect to eachT a;z.
Proof Eq. 5 ensuresR is a linear combination of the columns ofF , so it lies in the range

of F . It also requires that the columns of eachT a;zF are linear combinations of
the columns ofF , soF is invariant with respect to eachT a;z.

Thus, the best linear lossless compression corresponds to the smallest invariant subspace
that containsR. This is by definition the Krylov subspaceKr(fT a;z : a 2 A; z 2 Zg; R).
Using this fact we can easily compute the best lossless linear compression by iteratively
multiplying R by eachT a;z until the Krylov basis is obtained. We then let the Krylov
basis form the columns ofF , and compute~R and each~T a;z by solving each part of Eq. 5.
Finally, we can solve the POMDP in the compressed state spaceby using ~R and ~T a;z.
Note that this technique can be viewed as a generalization ofGivan et al’s MDP model
minimization technique [3]. It is interesting to note that Littman et al. [9] proposed a
similar iterative algorithm to compress POMDPs based on predicting future observations.2

2Assuming that rewards are functions of the observations.



3.2 Structured Linear Compressions

When a POMDP is specified in compactly, say, using a DBN, the size of the state space may
be exponentially larger than the specification. The practical need to avoid state enumeration
is a key motivation for POMDP compression. However, the complexity of the search for
a good compression must also be independent of the state space size. Unfortunately, the
iterative Krylov algorithm involves repeatedly multiplying explicit transition matrices and
basis vectors. We consider several ways in which a compact POMDP specification can be
exploited to construct a linear compression without state enumeration.

One solution lies in exploiting DBN structure and context-specific independence. If tran-
sition, observation and reward functions are represented using DBNs and structured CPTs
(e.g., decision trees or algebraic decision diagrams), then the matrix operations required by
the Krylov algorithm can be implemented effectively [1, 7].Although this approach can
offer substantial savings, the DTs or ADDs that represent the basis vectors of the Krylov
subspace may still be much larger than the dimensionality ofthe compressed state space
and the original DBN specifications.

Alternatively, families of self-sufficient variables corresponding to invariant subspaces can
be identified by exploiting additive separability. Starting with the variables upon whichR
depends, we can recursively grow a family of variables untilit is self-sufficient with respect
to eachT a;z. The corresponding subspace is invariant and necessarily containsR. Assum-
ing a tractable self-sufficient family is found, a compact basis can then be constructed by
using all indicator functionsfor each subset of variables in this family (e.g., iffX;Y; Zg
is one such subset of binary variables, then eight basis vectors will correspond to this set).
This approach allows us to quickly identify a good compression by a simple inspection of
the additive separability structure of the DBN. The resulting compression is not necessar-
ily optimal; however, it is the best among those corresponding to some such family. It is
important to note that the dynamics~T a;z and reward~R of the compressed POMDP can
be constructed easily (i.e., without state enumeration) from thisF and the original DBN
model. Pfeffer [13] notes that observations tend to reduce the amount of additive separabil-
ity present in a DBN, thereby increasing the size of self-sufficient families. Therefore, we
should point out that lossless compressions of POMDPs that exploit self-sufficiency and
offer an acceptable degree of compression may not exist. Hence lossy compressions are
likely to be required in many cases.

Finally, we ask whether the existence of lossless compressions requires some form of struc-
ture in the POMDP. We argue that this is almost always the case. Suppose a transition
matrixT a;z and a reward vectorR are chosen uniformly at random. The odds thatR falls
into a proper invariant subspace ofT a;z are essentially zero since there are infinitely more
vectors in the full space than in all the proper invariant subspaces put together. This means
that if a POMDP can be compressed, it must almost certainly bebecause its dynamics ex-
hibit some structure. We have described how context-specific independence and additive
separability can be exploited to identify some linear lossless compressions. However they
do not guarantee that the optimal compression will be found,so it remains an open question
whether other types of structure could be used in similar ways.

4 Lossy compressions

Since we cannot generally find effective lossless compressions, we also consider lossy
compressions. We propose a simple approach to find linear lossy compressions that “almost
satisfy” Eq. 5. Table 1 outlines a simple optimization program to find lossy compressions
that minimize a weighted sum of the max-norm residual errors, �T and�R, in Eq. 5. Here
 andd are weights that allow us to vary the degree to which the two components of Eq. 5



min 
�R + d�T
s.t. ��R � kR� F ~Rk1 � �R (6)��T � kT a;zF � F ~T a;zk1 � �T 8a 2 A; z 2 Z (7)kFk1 = 1

Table 1: Optimization program for linear lossy compressions

should be satisfied. The unknowns of the program are all the entries of ~R, ~T a;z andF as
well as�T and�R. The constraintkFk1 = 1 is necessary to preserve scale, otherwise�T could be driven down to 0 simply by setting all the entries ofF to 0. Since ~T a;z
and ~R multiply F , some constraints are nonlinear. However, it is possible tosolve this
optimization program by solving a series of LPs (linear programs). We alternate solving
the LP that adjusts~R and ~T a;z while keepingF fixed, and solving the LP that adjustsF
while keeping~R and ~T a;z fixed. This guarantees that the objective function decreases at
each iteration and will converge, but not necessarily to a local optimum.

4.1 Max-norm Error Bound

The quality of the compression resulting from this program depends on the weights
 andd. Ideally, we would like to set
 andd in a way that
�R + d�T represents the loss in
decision quality associated with compressing the state space. If we can bound the error�V
of evaluating any policy using the compressed POMDP, then the difference in expected total
return between the policy that is best w.r.t. the compressedPOMDP and the true optimal
policy is at most2�V . Let �V bemax� kV �� ~V � Æfk1. Theorem 3 gives an upper bound
on �V as a linear combination of the max-norm residual errors in Eq. 5.

Theorem 3 Let�V = max� kV �� ~V � Æfk1, �R = kR� ~RÆfk1, �T = maxa;z kT a;z�~T a;z Æ fk1 and ~V � = max� ~V �. Then�V � 11�
 �R + 
jZj k ~V �k11�
 �T .

We omit the proof due to lack of space. It essentially consists of a sequence of substitutions
of the typekABk1 � kAk1 kBk1 andkA + Bk1 � kAk1 + kBk1. We suspect
that the above error bound will grossly overestimate the loss in decision quality, however
we intend to use it mostly as a guide for setting
 andd. Here
jZj k ~V �k1=(1 � 
) is
typically much greater than1=(1� 
) because of the factork ~V �k1, which means that�T
has a much higher impact on the loss in decision quality than�R. Intuitively, this makes
sense because the error�T in predicting the next compressed belief state may compound
over time, so we should setd significantly higher than
.
4.2 Structured Compressions

As with lossless compressions, solving the program in Table1 may be intractable due to
the size ofS. There areO(jSj) constraints andjSjj ~Sj unknown entries in matrixF .3 We
describe several techniques that allow one to exploit problem structure to find an acceptable
lossy compression without state space enumeration.

One approach is related to the basis function model proposedin [4], in which we restrictF
to be functions over some small set offactors(subsets of state variables.) This ensures that
the number of unknown parameters in any column ofF (which we optimize in Table 1) is

3Assuming ~S is small, thej ~Sj2 variables in each~T a;z andj ~Sj variables in~R are unproblematic.



linear in the number of instantiations of each factor. By keeping factors small, we main-
tain a manageable set of unknowns. To deal with theO(jSj) constraints, we can exploit
the structure imposed onF and the DBN structure to reduce the number of constraints
to something (in the many cases) polynomial in the number of state variables. This can
be achieved using the techniques described in [4, 16] to rewrite an LP with many fewer
constraints or to generate small subsets of constraints incrementally. These techniques are
rather involved, so we refer to the cited papers for details.

By searching within a restricted set of structured compressions and by exploiting DBN
structure it is possible to efficiently solve the optimization program in Table 1. The question
of factor selection remains: on what factors shouldF be defined? A version of this question
has been tackled in [12, 14] in the context of selecting a basis to approximately solve MDPs.
The techniques proposed in those papers could be adapted to our optimization program.

An alternative method for structuring the computation ofF involves additive separability.
Let Xj (j � m) be subsets of variables, and�j(Xj ; ~S) be a function overXj and the
compressed state space~S. We restrict each column ofF to be a separable function of the�j ; that is, columni (corresponding to state~si) is

Pj �j�j(Xj ; ~si) for some parameters�j . Here the�j can be viewed as weights indicating the importance of the contribution of
each�j in the separable function. Given a family of subsets, the parameters over which
we optimize to determineF are now the�j and the entries of each function�j(Xj ; ~S).
While nonlinear, the same alternating minimization schemedescribed earlier can be used
to optimize these two classes of parameters ofF in turn. Note that the number of vari-
ables is dependent only on the size of the subsetsXj and the compressed state space~S.
Furthermore, this form of additive separability lends itself to the same compact constraint
generation techniques mentioned above. Finally, the (discrete) search for decent subsetsXj can be interleaved with optimization of the compression mapping for fixed setsXj .
5 Preliminary Experiments

We report on preliminary experiments with the coffee problem described in [2]. Given its
relatively small size (32 states, 3 observations and 2 actions), these results should be viewed
as simply illustrating the feasibility and potential of thealgorithms proposed in Secs. 3.1
and 4.1. Further experiments for the structured versions (Secs. 3.2 and 4.2) are necessary
to assess the degree of compression achievable with large, realistic problems.

The 32-dimensional belief space can be compressed without any loss to a 7-dimensional
subspace using the Krylov subspace algorithm described in Section 3.1. For further com-
pression, we applied the optimization program described inTable 1 by setting the weights

andd to 1 and200 respectively. The alternating variable technique was iterated150 times,
with the best solution chosen from15 random restarts (to mitigate the effects of local op-
tima). Figure 2 shows the loss in expected return (w.r.t. theoptimal policy) when policy
computed using varying degrees of compression is executingfor 100 stages. The loss is
sampled from 100,000 random initial belief states, averaged over 10 runs. These policies
manage to achieve expected returns with less than4% loss. In contrast, the average loss of
a random policy is about2:5 (or 27%).

6 Concluding Remarks

We have presented an in-depth theoretical analysis of the impact of static compressions on
decision quality. We derived a set of conditions that guarantee compression does not impair
decision quality, leading to interesting mathematical properties for linear compressions
that allow us to exploit structure in the POMDP dynamics. We also proposed a simple
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Figure 2: Average loss for various lossy compressions

optimization program to search for good lossy compressions. Preliminary results suggest
that significant compression can be achieved with little impact on decision quality.

This research can be extended in various directions. It would be interesting to carry out a
similar analysis in terms of information theory (instead oflinear algebra) since the problem
of identifying information in a belief state relevant to predicting future rewards can be mod-
eled naturally using information theoretic concepts [6]. Dynamic compressions could also
be analyzed since, as we solve a POMDP, the set of reasonable policies shrinks, allowing
greater compression.
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