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Abstract

We consider the problem belief-state monitoring
for the purposes of implementing a policy for
a partialy-observable Markov decision process
(POMDP), specificaly how one might approxi-
meate the belief state. Other schemes for belief-
state approximation (e.g., based on minimizing a
measure such as KL -divergence between thetrue
and estimated state) are not necessarily appropri-
ate for POMDPs. Instead we propose a frame-
work for analyzing val ue-directed approximation
schemes, where approximation quality is deter-
mined by the expected error in utility rather than
by the error in the belief state itself. We propose
heuristic methods for finding good projection
schemes for belief state estimation—exhibiting
anytime characteristics—given a POMDP value
function. We al so describe severa agorithmsfor
constructing boundson the error in decision qual -
ity (expected utility) associated with acting in ac-
cordancewith agiven belief state approximation.

1 Introduction

Considerable attention has been devoted to partialy-
observable Markov decision processes (POMDPs) [15, 17]
as amodd for decision-theoretic planning. Their general-
ity allows oneto seamlessly model sensor and action uncer-
tainty, uncertainty in the state of knowledge, and multiple
objectives[1, 4]. Despite their attractiveness as a concep-
tual model, POMDPs are intractable and have found prac-
tical applicability in only limited special cases.

Much research in Al has been directed at exploiting cer-
taintypesof problem structureto enable valuefunctionsfor
POMDPs to be computed more effectively. These primar-
ily consist of methodsthat usethebasic, explicit state-based
representation of planning problems [5]. There has, how-
ever, been work on the use of factored representations that
resemble classical Al representations, and agorithms for
solving POMDPs that exploit this structure [2, 8]. Repre-
sentations such as dynamic Bayes nets (DBNS) [ 7] are used
to represent actions and structured representations of value
functionsare produced. Such modelsare important because
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they allow oneto deal (potentially)with problemsinvolving
alarge number of states (exponentia in the number of vari-
ables) without explicitly manipulating states, instead rea-
soning directly with the factored representation.

Unfortunately, such representations do not automatically
trandate into effective policy implementation: given a
POMDP value function, one must still maintain a belief
state (or distribution over system states) onlinein order to
implement the policy implicit in the value function. Belief
state maintenance, in the worst case, has complexity equal
to the size of the state space (exponential in the number of
variables), as well. Thisis typicaly the case even when
the system dynamics can be represented compactly using a
DBN, as demonstrated convincingly by Boyen and Koller
[3]. Because of this, Boyen and Koller develop an approx-
imation scheme for monitoring dynamical systems (as op-
posed to POMDP policy implementation); intuitively, they
show that one can decompose a process aong lines sug-
gested by the DBN representation and maintai n bounded er-
ror in the estimated belief state. Specifically, they approx-
imate the belief state by projection, breaking the joint dis-
tribution into smaller pieces by marginalization over sub-
sets of variables, effectively discounting certain dependen-
cies among variables.

In this paper, we consider approximate belief state moni-
toring for POMDPs. We assume that a POMDP has been
solved and that a value function has been provided to usin
a factored form (as we explain below). Our goal isto de-
termine a projection scheme, or decomposition, so that ap-
proximating the belief state using this scheme hinders the
ability to implement the optimal policy aslittleas possible.
Our schemewill be quitedifferent from Boyen and Koller’s
since our aim is not to keep the approximate belief state
as “close’ to the true belief state as possible (as measured
by KL-divergence). Rather wewant to ensurethat decision
quality is sacrificed aslittle as possible.

In many circumstances, this means that small correlations
need to be accounted for, while large correlations can be
ignored completely. As an example, one might imagine a
process in which two parts are stamped from the same ma-
chine. If the machine has a certain fault, both parts have
a high probability of being faulty. Yet if the decisions for
subsequent processing of the parts are independent, the fact



that the fault probabilitiesfor the parts are dependent isir-
relevant. We can thus project our belief state into two inde-
pendent subprocesses with no lossin decision quality. As-
suming the faults are independent causes a large “error” in
the belief state; but this has no impact on subsequent deci-
sionsor even expected utility assessment. Thuswe need not
concern ourselves with this“error.” In contrast, very small
dependencies, when marginalized, may lead to very small
“error” in the belief state; yet this small error can have se-
vere consequences on decision quality.

Because of this, while Boyen and Koller’s notion of pro-
jection offers avery useful tool for belief state approxima:
tion, the model and analysisthey provide cannot be applied
usefully to POMDPs. For example, in [14] this modd is
integrated with a (sampling-based) search tree approach to
solving POMDPs. Because the error in decision quaity is
determined as a function of the worst-case decision quality
with respect to actua belief state approximation error, the
bounds are unlikely to be useful in practice. We strongly
believe estimates of decision quality error should be based
on direct information about the value function.

In this paper we provide a theoretical framework for the
analysis of value-directed belief state approximation (VDA)
in POMDPs. The framework provides a novel view of ap-
proximation and the errors it induces in decision quality.
We use the value function itself to determine which cor-
relations can be “safely” ignored when monitoring one's
belief state. Our framework offers methods for bounding
(reasonably tightly) the error associated with a given pro-
jection scheme. While these methods are computationally
intensive—requiring in the worst case a quadratic increase
in the solution time of a POMDP—we argue that this of-
fline effort is worthwhile to enable fast online implemen-
tation of a policy with bounded loss in decision quality.
We also suggest a heuristic method for choosing good pro-
jection schemes given the value function associated with a
POMDP. Finally, we discuss how our techniques can aso
be applied to approximation methods other than projection
(e.g., aggregation using density trees[13]).

2 POMDPsand Belief State Monitoring
2.1 Solving POMDPs

A partially-observable Markov decision process (POMDP)
is a genera model for decision making under uncertainty.
Formally, we require the following components: a finite
state space S; afinite action space .A; afinite observation
space Z; atrangition function 7 : § x A — A(S); an
observation function O : & x A — A(Z); and areward
function R : S — R.! Intuitively, the transition function
T(s,a) determines adistribution over next states when an
agent takes action « in state s—we write Pr(s, a,¢) to de-
notethe probability that statet isreached. Thiscapturesun-
certainty in action effects. The observationfunctionreflects
the fact that an agent cannot generally determine the true
system state with certainty (e.g., due to sensor noise)—we
writePr(s, a, z) to denotethe probability that observation =

' A(X) denotesthe set of distributions over finite set X
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Figure 1: Geometric View of Value Function

ismade at state s when action a isperformed. Finaly R(s)
denotes the immediate reward associated with s.

The rewards obtai ned over time by an agent adopting a spe-
cific course of action can be viewed as random variables
R®). Our aimisto construct apolicy that maximizes theex-
pected sum of discounted rewards £ (3 "< , v R(*)) (where
~ isadiscount factor less than one). It is well-known that
an optimal course of action can be determined by consid-
ering the fully-observable belief state MDP, where belief
states (distributions over &) form states, and a policy 7 :
A(S) — A maps belief statesinto action choices. In prin-
ciple, dynamic programming algorithms for MDPs can be
used to solvethisproblem; but apractical difficulty emerges
when one considersthat thebelief space A(S) isan |S|—1-
dimensional continuous space. A key result of Sondik [17]
showed that the value function V' for afinite-horizon prob-
lem is piecewise-linear and convex and can be represented
as a finite collection of a-vectors.® Specifically, one can
generateacollection X of «-vectors, each of dimension |S]|,
such that V(b)) = maxqex bev. Figurelillustratesacollec-
tion of «-vectors with the upper surface corresponding to
V. Furthermore, each o« € X has a specific action associ-
ated with it; so given belief state b, the agent should choose
the action associated with the maximizing «-vector.

Insight into the nature of POMDP value functions, which
will prove critica in the methods we consider in the
next section, can be gained by examining Monahan’s [15]
method for solving POMDPs. Monahan's algorithm pro-
ceeds by producing a sequence of k-stage-to-go valuefunc-
tions V'*, each represented by a set of a-vectors ®*. Each
a € N* denotes the value (as a function of the belief state)
of executing a k-step conditional plan. More precisely, let
the k-step observation strategies be the set OS" of map-
pingse : Z — W1 Then each a-vector in X* corre-
spondsto the value of executing some action « followed by
implementing some ¢ € OS; that is, it is the value of do-
ing a, and executing the k — 1-step plan associated with the
a-vector o(z) if z isobserved. Using CP(«) to denotethis
plan, we have that CP(a) = (a;if z;, CP(c(2;))Vz). We
informally write this as (a; o). We write a({a; o)) to de-
note the «-vector reflecting the value of this plan.

Given &%, N*+1 js produced in two phases. First, the set
of vectors corresponding to all action-observation policies

2 Action costs are ignored to keep the presentation simple.

?For infinite-horizon problems, afinite collection may not be
sufficient [18], but will generally offer a good approximation.



is constructed (i.e., foreach a € A and o € OSt, the
vector « denotingthevalueof plan {(a, CP(c(z;))) isadded
to R*+1). Second, thisset is pruned by removing all domi-
nated vectors. Thismeansthat thosevectorsa suchthat 6-«
isnot maximal for any belief stateb areremoved fromRF+1,
InFigure 1, o4 is dominated, playing no useful rolein the
representation of 1/, and can be pruned. Pruningisimple-
mented by a series of linear programs. Refinements of this
approach are possiblethat eliminate (or reduce) the need for
pruning by directly identifying only «-vectorsthat are non-
dominated [17, 6, 4]. Other algorithms, such as incremen-
tal pruning[5], are similar in spirit to Monahan’s approach,
but cleverly avoid enumerating all observation policies. A
finite k-stage POMDP can be solved optimally thisway and
afinite representation of its value function is assured. For
infinite-horizon problems, a k-stage sol ution can be used to
approximate the true value function (error bounds can eas-
ily be derived based on the differences between successive
value functions).

One difficulty with these classical approaches is the fact
that the «-vectors may be difficult to manipulate. A sys-
tem characterized by n random variables has a state space
size that is exponentia in n. Thus manipulating a single
a-vector may be intractable for complex systems.* Fortu-
nately, it is often the case that an MDP or POMDP can be
specified very compactly by exploiting structure (such as
conditiona independence among variables) in the system
dynamics and reward function [1]. Representations such as
dynamic Bayes nets (DBNS) [7] can be used to great effect;
and schemes have been proposed whereby the a-vectorsare
computed directly in afactored form by exploitingthisrep-
resentation.

Boutilier and Poole [2], for example, represent a-vectors
as decision trees in implementing Monahan's algorithm.
Hansen and Feng [8] use agebraic decision diagrams
(ADDs) as their representation in their version of incre-
mental pruning.” The empirical resultsin [8] suggest that
such methods can make reasonably large problems solv-
able. Furthermore, factored representations will likely fa
cilitate good approximation schemes. There is no reason
in principlethat the other a gorithms mentioned cannot be
adapted to factored representations as well.

2.2 Bédief State Monitoring

Even if the value function can be constructed in a compact
way, theimplementation of the optimal policy requiresthat
the agent maintainsitsbelief state over time. The monitor-
ing problemitself is not generaly tractable, since each be-
lief stateisavector of size |S|. Given acompact represen-
tation of system dynamics and sensorsintheform of DBN,
one might expect that monitoring may become tractable us-
ing standard belief net inference schemes. Unfortunately,
thisisgenerally not the case. Though variables may beini-

*The number of -vectors can grow exponentially in the worst
case, aswell; but for many problemsthe number remains manage-
able; and approximation schemesthat simply bound their number
have been proposed [6].

5ADDs, commonly used in verification, have been applied
very effectively to the solution of fully-observable MDPs[9].

tially independent (thus admitting a compact representation
of adistribution), and though at each time step only asmall
number of variablesbecome correl ated, over timethese cor-
relations “bleed through” the DBN, rendering most (if not
all) variables dependent after atime. Thus compact repre-
sentation of belief state istypically impossible.

Boyen and Koller [3] have devised a clever approximation
scheme for aleviating the computational burden of moni-
toring. In thiswork, no POMDP is used, but rather a sta-
tionary process, represented in a factored manner (e.g., us-
ing a DBN), is assumed. This might, for example, be the
processinduced by adoptingafixed policy. Intuitively, they
consider projection schemes whereby the joint distribution
isapproximated by projectingit ontoaset of subsetsof vari-
ables. It isassumed that these subsets partition the variable
set. For each subset, its marginal is computed; the approx-
imate belief stateisformed by assuming the subsetsare in-
dependent. Thus only variableswithin the same subset can
remain correlated in the approximate belief state. For in-
stance, if thereare4 variables A, B, C'and D, theprojection
scheme {A B, C'D} will computethemarginal distributions
for AB and C'D. The resulting approximate belief state,
P(ABCD) = P(AB)P(CD), has a compact, factored
representation given by the distribution of each marginal.

Formally, we say a projection scheme S isa set of subsets
of the set of state variables such that each statevariableisin
some subset. This alows marginals with overlapping sub-
sets of variables (e.g., { ABC, BCD}). Weview strict par-
titioningasaspecial typeof projection. Some schemeswith
overlapping subsets may not be computationally useful in
practice because it may not be possibleto easily generate a
joint distribution from them by building a clique tree. We
therefore classify as practical those projection schemes for
which ajoint distributionis easily obtained. Assuming that
belief state monitoring is performed using the DBN repre-
senting the system dynamics (see [10, 12] for detailsonin-
ference with DBNs), we obtain belief state 5'+! from 6 us-
ing the following steps: (a) construct a clique tree encod-
ing the variable dependencies of the system dynamics (for
a specific action and observation) and the correlations that
have been preserved by the marginals representing &¢; (b)
initializethe cliquetreewiththetransition probabilities, the
observation probabilities and the (approximate, factored)
jointdistributiondt; (c) query thetreeto obtainthedistribu-
tion ', at the next time step; and (d) project ¥, according
to some practical projection scheme S to obtain the collec-
tion of marginals representing »**' = S(b%.). The com-
plexity of belief state updating is now exponentia only in
the size of the largest clique rather than the total number of
variables.

Boyen and Koller show how to compute a bound on the
KL-divergence of the true and approximate belief states,
exploiting the contraction properties of Markov processes
(under certain assumptions). But direct trand ation of these
bounds into decision quality error for POMDPs generally
yields weak bounds [14]. Furthermore, the suggestions
made by Boyen and Koller for choosing good projection
schemes are designed to minimize KL-divergence, not to
minimizeerror in expected valuefor aPOMDP. For thisrea
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Figure 2: Relevant belief states at stage k

son, we are interested in new methods for choosing projec-
tionsthat are directly influenced by considerations of value
and decision quality.

Other belief state approximation schemes can be used for
belief state monitoring. For example, aggregation using
density trees can provide a means of representing a belief
state with many fewer parameters than the full joint. Our
model can be applied to such schemes as well.

3 Error Boundson Approximation Schemes

In this section, we assume that a POMDP has been solved
and that its value function has been provided to us. We
also assume that some structured technique has been used
so that a-vectors representing the value function are struc-
tured [2, 8]. We begin by assuming that we have been given
an approximation scheme S for belief state monitoring in
a POMDP and derive error bounds associated with acting
according to that approximation scheme. We focus primar-
ily on projection, but we will mention how other types of
approximation can be fit into our model. We present two
techniquesfor boundingtheerror for agiven approximation
scheme and show that the complexity of these algorithmsis
similar to that of solving the POMDP, with a (multiplica-
tive) overhead factor of |R|.

3.1 Plan Switching

Implementing the policy for an infinite-horizonPOMDP re-
quires that one maintains a belief state, plugging thisinto
the value function at each step, and executing the action as-
sociated with the maximizing a-vector. When the belief
state b is approximated using an approximation scheme S,
a suboptimal policy may be implemented since the maxi-
mizing vector for S(b) will be chosen rather than the max-
imizing vector for b. Furthermore this mistaken choice of
vectors (hence actions) can be compounded with each fur-
ther approximation at later stages of the process. To bound
such error, we first define the notion of plan switching. We
phrase our definitionsin terms of finite-horizon value func-
tions, introducing the minor variations needed for infinite-
horizon problems | ater.

Suppose with k stages-to-go, the true belief state, had we
monitored accurately to that point, isb. However, due to
previousbelief state approximationswetake our current be-
lief state to be b. Now imagine our approximation scheme
has been applied at time k to obtain S(b). Given R*, rep-
resenting VV*, suppose the maximizing vectors associated

Figure 3: The Switch Set Sw* (a3) of a3

with b, b and S(b) are oy, oo and e, respectively (see Fig-
ure?2). The approximation at stage £ mistakenly inducesthe
choice of the action associated with a3 instead of a5 at b;
thisincurs an error in decision quality of b - «s — b - as.
Whilethe optimal choiceisin fact a1, the unaccounted er-
rorb - oy — b - s induced by the prior approximationswill
be viewed as caused by theearlier approximations; our goal
at this point is simply to consider the error induced by the
current approximation.

In order to derivean error bound, we must identify, for each
o € N, the set of vectors Sw'" (a) that the agent can switch

to by approximating its current belief state b given that b
identifies « as optimal. Formally, we define

W (a) = {o/ e ¥ . IVa(b-a > b-a, S(b)-o' > S(b)-a)}

Intuitively, thisisthe set of vectorswe could choose as max-
imizing (thus implementing the corresponding conditional
plan) dueto belief state approximation. In Figure 3, we see
that SAﬁ(O[g) = {ay, a0, aa}. The st Sl\lk(ozi) can be
identified readily by solving a series of O(|R*|) optimiza
tion problems, each testing the possibility of switchingto a
specific vector o; € R, formulated as the following (pos-
sibly nonlinear) program:

max d

st. bo(oy—ap) > d Vi#£i
Sb)-(aj—ay) >d VI#]
S b(s) = 1
b(s) >0 Vs

The solution to this program has a positive objective func-
tion value whenever thereis abelief state b such that «o; is
optimal a b, and «; isoptimal at S(b). Note, infact, that
we need only find a positive feasible solution, not an opti-
mal one, to identify o; as an element of SW*(a;). There
are || switch sets to construct, so O(|R*|?) optimization
problems need to be solved to determine all switch sets.

For linear approximation schemes (i.e., those in which the
congtraints on S(b) are linear in the variables b;), these
problems are easily solvablelinear programs (LPs). We re-
turn to linear schemes in Section 6. Unfortunately, projec-
tion schemes are nonlinear, making optimization (or iden-
tification of feasible solutions) more difficult. On the other
hand, a projection scheme determines a set of linear con-
straints on the approximate belief state S(4). For instance,
consider the projection scheme S = {CD,DE} for



a POMDP with 3 binary variables. This projection im-
poses one linear constraint on .S(4) for each subset of the
marginalsin the projection:®

b(®) = () b(C) = V()
bD) = V(D)  bE) = V(E)
HCD) = V(CD) WDE) = b(DE)

Here &' denotes S(b) and b(XY") denotes the cumuletive
probability (according to belief state b) of all states where
X and Y aretrue. These constraints define an LP that can

be used to construct a superset é\Nk(ai) of SW* (a;). Given
scheme S = {My, ..., M, }, wedefine thefollowing LP:

max d

st bo(lag—ag)>d Yl #i
Vo(aj—a) >d V4
V(M) =5b(M) VM CM,1<Il<n
2o b(s) =1
b(s) >0 Vs
b'(s) >0 Vs

When afeasible positive solution exists, «; isadded to the

set é\Nk(ai), thoughin fact, it may not properly be a mem-
ber of SW* (a;). If no positive solution exists, we know «

isnotin Sw* (a;) and it isnot added to é\Nk(ai). This su-
perset of the switch set can be used to derive an upper bound
on error.

Whilethe number of constraintsof thetypeb(M) = &' (M)
isexponentia in the size of thelargest marginal, we expect
that the number of variables in each margina for a useful
projection scheme will be bounded by a small constant. In
this way, the number of constraints can be viewed as con-
stant (i.e., independent of state space size).

Though the above LPs (for both linear approximations and
projection schemes) look complex, they are in fact very
similar in size to the LPs used for dominance testing in
Monahan’s pruning algorithm and the Witness a gorithm,
involving O(|S|) variables and O(|X*|) constraints. The
number of L P variablesisexponential inthenumber of state
variables, however, thefactored representation of «-vectors
allows LPs to be structured in such a way that the state
space need not be enumerated (i.e., the variabl es represent-
ing the state probabilities can be clustered). Precisely the
same structuringissuggested in[2] and implementedin[8].
Thussolvingan LPtotestif theagent can switchfrom «; to
«; hasthe same complexity as adominancetest in the prun-
ing phase of POMDP solving. However, thereare O(|R*|?)
pairs of «-vectors to test for plan switching whereas the
pruning phase may require as few as |*| dominance tests
if no vector is pruned. Hence, in the worst case, switch set
generation may increase the running time for solving the
POMDP by afactor of O(|R*|) at each stage k.

For a k-stage, finite-horizon POMDP, we can now bound
theerror indecision quality dueto approximation.S. Define
the bound on the maximum error introduced at each stage j,

These equations can be generalized for POMDPs with non-
binary variables, though giving morethan one equation per subset.

when « isviewed as optimal, as.”
B‘g(a) =max max b-(a—a')

oc’Eé\N] («)

Since error a a belief state is simply the expectation of
the error at its component states, B% () can be determined
by comparing the vectors in é\N](Oz) with o component-
wise (with the maximum difference being Bi(a)). Let
Bl = max,eni BL(«) be the greatest error introduced

by a single approximation S at stage j. Then the total er-
ror for k successive approximationsis bounded by U5 =

S°¥_ 4 Bi. For an infinite-horizon POMDP, assume we
have been given theinfinite-horizonvalue function®* (i.e.,
no stages are involved). Then we only need to compute
the switch sets Sw*(«) for this single R-set, and the max-
imum one-shot switching error B%. The upper bound on
thelossincurred by applying S indefinitely issimply Ug =
Bt /(1 —+). Computingtheerror UZ isroughly equivalent
to performing O(|X*|) dynamic programming backups on
n*,

The LP formulation used to construct switch setsis com-
putationally intensive. Other methods can be used how-
ever to construct these switch sets. We have, for example,
implemented a scheme whereby belief states are treated as
vectors in 151, and projection schemes are viewed as dis-
placing these vectors. The displacement vectors (vectors
whichwhen added to abelief state b give S(b)) induced by a
scheme S’ can be computed easily and can be used to deter-
minethedirectioninwhich belief state approximation shifts
the true belief state. Thisis turn can be used to construct
overestimates of switch sets. Whilegiving riseto looser er-
ror bounds, this method is much more efficient in practice.
Our emphasis, however, is on the analysis of error due to
approximation, so we do not dwell on this scheme in this
paper (see[16] for details).

3.2 Alternative Plans

The cumulative error induced by switching plans at cur-
rent and future stages can be bounded in atighter way. The
ideaisto generate the set of alternative plans that may be
executed as aresult of both current and future approxima-
tions. Supposethat an agent, due to approximation at stage
k changes its belief state from & to S(b). This can induce
achange in the choice of optimal a-vector in X%, say from
a1 to«s. However, even though the agent has switched and
chosen the first action associated with o5, it has not nec-
essarily committed to implementing the entire conditional
plan CP(«» ) associated with 2. Thisisbecause further ap-
proximation at stage k¥ — 1 may cause it to switch from the
continuation of CP(«).

Suppose for instance that CP(«vs) = (a; o), where o (z) =
a3 € ¥*~1If » isobserved, and the agent updates its (ap-
proximate) belief state S(b) accurately to obtain S(5)’, then

"We use SV instead of SV to emphasize the fact that we
use the approximate switch set generated for a projection scheme;
however, all definitions apply equally well to exact switch sets if
they are available.



the maximizing vector at the next stage is necessarily as.
But given that S(b)’ will be approximated before the max-
imizing vector is chosen, the agent may adopt some other
continuation of the plan if «3 does not maximize value for
the (second) approximated belief state S(S(b)"). In fact,
the agent may implement CP(«,4) at stage & — 1 for any
oy € SV~ (as). Noticethat the value of the plan actually
implemented—doing thefirst action of «», followed by the
first action of a4, and so on—may not berepresented by any
a-vector in Nk,

We can actually construct the values of such plans, and thus
obtain much tighter error bounds, while we perform dy-
namic programming. We recursively define the set of al-
ternative sets, or Alt-sets for each vector at each stage.® We
first define

Alt! (a) = Sw'(a)

That is, if o isoptima at stage 1, then any vector in its
switch set can have its plan executed. The future alterna-
tive set for any o € X%, where CP(a) = (a, o), is:

FAltk(oz) ={a((a,0’)) : (Vz) ¢'(2) € Altk_l(a(z))}

If « isinfact chosen to be executed at stage &, true expected
value may in fact be given by any vector in FAIt* (), this
is due to future switching of policiesat stages following %.
Finally, define

At () = U{FAIt (o) : o/ € ()}

If « isinfact optimal at stage k for agiven belief state b, but
b is approximated currently and at every future stage, then
expected value might be reflected by any vector in Alt* (a).
These vectors correspond to every possible course of ac-
tion that could be adopted because of approximation: if we
switch vectors at stage %, we could begin to execute (the
plan associated with) any o € SW*(«); and if we begin ex-
ecuting o, we could end up executing (the plan associated
with) any o € FAIt" (/).

Given these Alt-sets, the error associated with belief state
approximation can be given by the maximum differencein
value between any « and one of its Alt-vectors. These FAIt
and Alt-sets can be computed by dynamic programming
whileaPOMDP isbeing solved. The complexity of thisal-
gorithmis virtually identical to that of generating R* from
NF—1 with the proviso that there are |N*| Alt-sets. How-
ever, these sets grow exponentially much like the sets &t*
would if left unpruned. However, these sets can be pruned
in exactly the same way as R-sets, with the exception that
since we want to produce a worst-case bound on error, we
want to construct alower surface for the Alt-setsrather than
an upper surface.

Givenany Alt-set, wedenote by Alt the collection of vectors
that are anti-dominating in Alt. For example, if the collec-
tion of vectors in Figure 4, form the set AIt*(a), then the
vectors «v; and ay, making up the lower surface of this set,

8This definition can be more concisely specified, but this for-
mat makes the computational implications clear.

— lower surface of {ay,0,,03 04 }

i\

a.

Figure 4: Lower surface

formAlt' (a). FAIt. («) isdefined similarly. Theset of anti-
dominated vectors can be pruned in exactly the same way
that dominated «-vectorsare pruned from avalue function.
The same structuring techniques can be used to prevent ex-
plicit state enumeration as well. This pruning can keep the

Alt-setsvery manageablein size. Assuming we have an ap-
proximation AAItk(a) of Alt* (a) for every o € ®*, we con-
struct AAItkH(a) as follows: (8) SV *!(a) is constructed
for each a € NF+L; (b) fATtkH(a) is constructed using
AAItk(a), and isthen pruned to retain only anti-dominating
vectors; and (c) AAItkH(a) is defined as the union of the
FAIt ™' (/) sets for those o/ € SW**L(a), and is then
pruned.

Thefollowingquantity boundsthe error associated with ap-
proximating belief state using scheme S over thecourse of a
k-stage POMDP, when o represents optimal expected value
for theinitial belief state:

E¥(a) = mbaxmax{b (a—a'):d € ,&\ltk(a)}

This error can be computed using simple pointwise com-
parison of « with each such o’. It can aso be restricted to
that region of belief space where « isoptimal; maximizing
the difference only over belief statesin that areato obtain a
tighter bound. Approximation error can be bounded glob-
ally using

FY = max{E%(a) : a € ¥}
Furthermore, E% < U¥ since alternate vectors provide a

much tighter way to measure cumul ative error.

For an infinite-horizon problem, we can compute switch
setsonce asin the computation of /. To compute atighter

bound E'%, we can construct k-stages of Alt-sets, backi ngup
from R*. The bound E% is computed as above, and we set
By = Bg++"U3

In thisway, we can obtain fairly tight bounds on the error
induced by belief state approximation.

4 Value-Directed Approximations

The bounds B* («) and E* described above can be used in
several waysto determine a good projection scheme. Inor-
der to compute error boundsto guide our search for agood



Figure5: Lattice of Projection Schemes

projection scheme, our “generic agorithm” will haveto de-
terminetheerror associated withadifferent projection S ap-
plied to each «-vector. Because of this, wewill consider the
use of different projection schemes S, for each «-vector (at
each stageif we haveafinite-horizon problem). Despitethe
fact that we previoudly derived bounds on error assuming
a uniform projection scheme, our algorithmswork equally
wdll (i.e., providelegitimatebounds) if different projections
are used with each vector. The projection S,, adopted for
vector o simply influences its switch set. Since the agent
knows which vector it is “implementing” a any point in
time, we can record and easily apply the projection scheme
S, for that vector. This alowsthe agent to tailor its belief
state approximationto provide good resultsfor itscurrently
anticipated course of action. Thisinturn will lead to much
better performance than using a uniform scheme.

4.1 Latticeof Projection Schemes

We can structurethe search for a projection scheme by con-
sidering the lattice of projection schemes defined by sub-
set inclusion. Specifically, we say S, contains S» (written
loosdly S; C 5y) if every subset of S, is contained within
some subset of S;. Thismeansthat S, isafiner “partition”
than S; . Thelatticeof projectionsfor threebinary variables
isillustrated in Figure 5. Each node represents the set of
marginals defining some projection S. Above each node,
the subsets corresponding to its constraining equations are
listed (we refer to each such subset as a constraint). The
finest projections (which are the “most approximate” since
they assume moreindependence) are at thetop of thelattice.
Edges are labeled with the subset of variables correspond-
ing to the single constraining equation that must be added
to the parent’s constraints to obtain the child’s constraints.

It should beclear thatif S; C .Sy, then S; offers (not neces-
sarily gtrictly) tighter bounds on error when used instead of
Sy a any point. To see this, imagine that various approxi-
mation schemes are used for different «-vectorsat different
stages, and that S5 is used whenever o € N/ ischosen. If
we keep everything fixed but replace S» with S; a «, we
first observe that Sw (o) C Swf, (). This ensures that

B‘gl(a) < B‘gQ(a) and B‘gl < B‘gQ. If all other projection

operators are the same, then obviously U8 < U% . Simi-
lar remarks apply to theinfinite-horizon case. Furthermore,
given the definition of Alt-sets, reducing the switch set for
o a stage k by using S; instead of S- ensures that the Alt-
sets at al preceding stages are no larger (and may well be
smaller) than they would be if S; were used. For thisrea-
son, wehavethat £ < E% (andsimilarly £%, < E7%.).

Consequently, as we move down the lattice, the bound on
approximation error gets smaler (i.e., our approximations
improve, at least in the worst case). Of course, the com-
putational effort of monitoring increases as well. The pre-
cise computational effort of monitoring will depend on the
structure of the DBN for the POMDP dynamics and itsin-
teraction with the marginals given by the chosen projec-
tion scheme; however, the complexity of inference (i.e., the
dominant factors in the corresponding clique tree), can be
easily determined for any node in the lattice.

4.2 Search for a Good Projection Scheme

In aPOM DP setting, the agent may have abounded amount
of time to make an online decision a each time-step.
For thisreason, efficient belief-state monitoring is crucial.
However, just as solvingthe POMDPisviewed asan offline
operation, so is the search for a good projection scheme.
Thus it will generally pay to expend some computational
effort to search for a good projection scheme that makes
the appropriate tradeoff between decision quality and the
complexity of belief state maintenance. For instance, if any
scheme S with a most ¢ constraints offers acceptable on-
lineperformance, then the agent need only search therow of
the | attice containing those projection schemes with ¢ con-
straints. However, the size of thisrow isfactoria inc. So
instead we use the structure of the latticeto direct our atten-
tion toward reasonabl e projections.

We describe here a generic, greedy, anytime agorithm for
finding a suitabl e projection scheme. We start with theroot,
and evaluate each of itschildren. The child that looks most
“promising” ischosen as our current projection scheme. Its
children are then evaluated, and so on; this continues un-
til an approximation is found that incurs no error (specifi-
caly, each switch set isasingleton, as we describe below),
or abound on the size of the projectionis reached. We as-
sume for simplicity that at most ¢ constraints will be al-
lowed. The search proceedsto depth ¢ — n inthelattice and
at each node, a most n(¢ — n) children are evaluated, so
atotal of O(nc? — en?) nodes are examined. Since ¢ must
be greater than n—the root node itself has » constraints—
we assume O (nc?) complexity. The structure of the lattice
ensuresthat decision quality (as measured by error bounds)
cannot decrease at any step. We notethat practical and non-
practical projectionsare included in thelattice. Infigure5,
the only non-practical schemeis S = {AB, AC, BCY}.
During the search, it doesn’t matter if anode corresponding
to anon-practical scheme is traversed, as long as the final
node is practical. If itis not practical, then the best prac-
tical sibling of that node is picked or we backtrack until a
practical scheme isfound. We aso notethat since thisisa
greedy approach, we may not discover the best projection
with a fixed number of constraints. However, it isawell-



structured search space and other search methods for navi-
gating the lattice could be used.

We first describe one instantiation of this algorithm, the
finite-horizon U -bound search, for a k-stage, finite-horizon
POMDP Giventhecollectionsof a-vectorsi?, - - - X* we
run the foll owing search independently for each vector o €
R? for each 7 < k. The order does not matter; we will end
up with a projection scheme S for each a-vector, which is
applied whenever that a-vector ischosen asoptimal at stage
i. We essentially minimize (over S) each term B () in
the bound U/* independently. For a given vector o a stage
i, the search proceeds from the root in a greedy fashion.
Each child S of the current node is evaluated by comput-
ing B («), which basically requires that we compute the
switch set Swi (a), which in turn requires the solution of
|N?| LPs. Once the projection schemes S, for each o are
found, the error bound U/* isgiven by the sum of thebounds
B’ as described in the previous section. At each stage ¢,
the number of LPs that must be solved isO (ne?|N|?) since
thereare O(|X’]) a-vectorsand for each a-vector, thelattice
search traverses O(nc?) nodes, each requiring the solution
of O(|X?]) LPs. Since the solution of the original POMDP
requires the solution of at least [R| LPs, the overhead in-
curred is at most afactor of nc?|R|.

The method above can be streamlined considerably. When
comparing two nodes, it is not aways necessary to gener-
ate the entire switch set to determine which node has the
lowest bound B! («a). Each vector o/ in a’sswitch set intro-
duces an error of at most max;, {b(a —a’)}. Since B (a) =
maxa,ESN,(a){maxb b(a — o)}, we can test vectors o
in decreasing order of contributed error until one vector is
found to be in the switch set a one node but not the other.
The node that does not include this vector in its switch set
hasthelowest bound B (a) (where S isthat node’s projec-
tion scheme). Instead of solving |X*| pairsof LPs, generaly
only afew pairsof LPswill be solved.

When testing whether two different schemes S; and Ss
allow switching to some «-vector, the LPs to be solved
for each scheme are similar, differing only in the con-
straintsdictated by each projection scheme. Thissimilarity
can be exploited computationally by using techniques that
take advantage of the numerous common constraintsif we
solve similar LPs “concurrently” (for instance, by solving
a stripped down LP that has only the common constraints
and using the dual simplex method to account for the extra
congtraints). Though details are beyond the scope of this
paper, these techniques are faster in practice than solving
each LP from scratch. The greedy search can take full ad-
vantage of these speed-ups: each child has only one addi-
tional constraint (compared to its parent), so not only can
structure be shared across children, but the parent’s solu-
tion can be exploited as well. We reiterate that these LPs
can also be structured, so state space enumeration isnot re-
quired. Taken together, these computational tricksdon’t re-
duce the worst-case running time of O (nc?|®|?) LPs; how-
ever inpracticeitispossiblethat only 2(ne|®|) LPsneed be
solved, inwhich case, whenintegrated with theal gorithmto
solve the POMDP, the overhead incurred would be afactor

proportional to ne. A thorough experimentation remainsto
be done.

There are three variations of the algorithm above. The
infinite-horizon U -bound agorithm is much like the finite-
horizon version. However, we only have one set of a-
vectors, X*, rather than k sets. Thus we compute far fewer
switch sets, and cal culate thefinal bound using the equation
for U/*. Thefinite-horizon £-bound algorithmis similar to
theabove algorithmaswell. Thedifferenceisthat we com-

pute Alt-sets (or rather approximations to them, Altl; (a))
to obtain tighter bounds on error. To do this requires that
we compute the projection schemes for the various stages
in order, from the last stage back to the first. Once a good
scheme has been found for the elements of %7, the FAIt-sets
can be computed for stage j + 1 without difficulty (thisin-
volvessimple DP backups). Then switch sets are computed

exactly asabove, fromwhich Alt-sets, and error bounds, are
generated. Findly, the infinite-horizon E-bound agorithm
proceeds by computing the switch sets for a given projec-
tiononly oncefor each vector in X*; but additional DP back-
ups to compute Alt-sets (as described in the previous sec-
tion) are needed to derive tight error bounds.

5 Illustrative Example

We describe avery simple POMDPtoillustratethe benefits
of value-directed approximation, with the aim of demon-
strating that minimizing belief state error is not aways ap-
propriate when approximate monitoring is used to imple-
ment an optimal policy. The process involves only seven
stages with only one or two actions per stage (thusat some
stages no choi ce needsto be made), and no observationsare
involved. Yet even such asimple system shows the benefits
of allowing the value functionto i nfluence the choice of ap-
proximation scheme.

We suppose there is a seven-stage manufacturing process
whereby four parts are produced using three machines, M,
M1, and M2. Parts P1, P2, P3, and P4 are each stamped
in turn by machine M. Once stamped, parts P1 and P2
are processed separately (in turn) on machine M1, while
parts P3 and P4 are processed together on M2. Machine
M may be faulty (FM), with prior probability Pr(FM).
When the partsare stamped by M , partsP1 and P2 may be-
come faulty (F1, F2), with higher probability of fault if FM
holds. Parts P3 and P4 may also become faulty (F3, F4),
again with higher probability if FM; but F3 and F4 are both
less sensitive to FM than F1 and F2 (eg., Pr(F1|FM) =
Pr(F2|FM) > Pr(F3|FM) = Pr(F4|FM)). If P1lor P2 are
processed on machine M1 when faulty, a cost isincurred;
if processed when OK, againis had; if not processed (re-
jected), no cost or gain is had. When P3 and P4 are pro-
cessed (jointly)on M 3, agreater gainishadif both partsare
OK, alesser gainis had when one part isOK, and adrastic
cost isincurred if both parts are faulty (e.g., machine M 3
isdestroyed). The specific problem parameters are givenin
Table 1.

Figure 6 shows the dependencies between variables for the



Stages to go Actions | Transitions Rewards
7) Stamp P1 Stamp P1 only affects F1 no reward
if FM at previous step
then Pr(F1) = 0.8 else Pr(F1) = 0.1
6) Stamp P2 Stamp P2 only affects F2 no reward
if FM at previous step
then Pr(F2) = 0.8 else Pr(F2) = 0.1
5) Stamp P3 Stamp P3 only affects F3: no reward
if FM at previous step
then Pr(F3) = 0.1 else Pr(F3) = 0.05
4) Stamp P4 Stamp P4 only affects F4: no reward
if FM at previous step
then Pr(F4) = 0.1 else Pr(F4) = 0.05
3) Process/Reject P1 Process P1 all variables are persistant if FlthenOelse 8
Reject P1 al variables are persistant 4 for every state
2) Process/Reject P2 Process P2 all variables are persistant if F”2thenOelse 8
Reject P2 all variables are persistant 4 for every state
1) Process/Reject P3,P4 | Process P3,P4 | all variables are persistant if F3 & F4 then -2000
if ~F3 & ~F4 then 16
otherwise 8
Reject P3,P4 | al variables are persistant 3.3 for every state

Table 1: POMDP specifications for the factory example

Figure 6: DBN for the factory example

seven-stage DBN of the example.® It is clear with three
stagesto go, al the variables are correlated. If approximate
belief state monitoring is required for execution of the op-
timal policy (admittedly unlikely for such a simple prob-
lem!), a suitable projection scheme could be used.

Noticethat the decisionsto process P1 and P2 at stages-to-
0o 3 and 2 are independent: they depend only on Pr(F1)
and Pr(F2), respectively, but not on the correlation be-
tween the two variables. Thus, though these become quite
strongly correlated with five stages to go, this correlation
can be ignored without any impact on the decision one
would make at those points. Conversely, F3 and F4 become
much more weakly correlated with three stages to go; but
the optimal decision at the final stage does depend on their
joint probability. Were we to ignore this wesak correlation,
we run the risk of acting suboptimally.

We ran the greedy search algorithm of Section 4.2 and, as
expected, it suggested projection schemesthat break al cor-
relations except for FM and F3 with four stages to go, and
F3 and F4 with three, two, and one stage(s) to go. The lat-
ter, Pr(F3, F4), is clearly needed (at least for certain prior
probabilitieson FM) to make the correct decision at thefi-

?We have imposed certain constraints on actions to keep the
problem simple; with the addition of several variables, the prob-
lem could easily beformulated asa*“true” DBN with identical dy-
namics and action choices at each time slice.

Correlation | L; L, | KL |Loss
F1/F2 | 0.7704 { 0.3092 | 0.4325 | 1.0
F3/F4 | 0.9451 | 0.3442 | 0.5599 | 0.0

Table 2: Comparison of different distance measures
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Figure 7: An Example Density Tree

nal stage; and the former, Pr(FM, F3), is needed to accu-
rately assess Pr(F3, F4) at the subsequent stage. Thus we
mai ntain an approximate belief statewith marginalsinvolv-
ing no morethan two variables, yet weare assured of acting
optimally.

In contrast, if one chooses a projection scheme for this
problem by minimizing KL-divergence, L;-distance, or
Lo-distance, different correlations will generally be pre-
served. For instance, assuming a uniform prior over FM
(i.e, machine M is faulty with probability 0.5), Table 5
shows the approximation error that is incurred according
to each such measure when only the correlation between
F1 and F2 is maintained or when only the correlation be-
tween F3 and F4 ismaintained. All of these “direct” mea-
sures of belief state error prefer the former. However, the
lossin expected value dueto theformer belief state approx-
imation is 1.0, whereas no loss is incurred using the lat-
ter. To test this further, we also compared the approxima-
tion preferred using these measures over 1000 (uniformly)
randomly-generated prior distributions. If only the F1/F2-
correlation is preserved at the first stage, then in 520 in-
stances a non-optimal action is executed with an average
lossof 0.6858. This clearly demonstrates the advantage of
using a value-directed method to choose good approxima:
tion schemes.

6 Framework Extensions

The methods described above provide means to anayze
value-directed approximations. Though we focused above
on projection schemes, approximate monitoring can be ef-
fected by other means. Our framework alowsfor the anal-
ysisof error of any linear approximation scheme S. Infact,
our analysis is better suited to linear approximations: the
congtraints on the approximate belief state S(b), if linear,
allow usto construct exact switch sets Sw(«) rather than ap-
proximations, providing still tighter bounds.

One linear approximation scheme involvesthe use of den-
Sity trees [13]. A density tree represents a distribution by
aggregation: the tree splits on variables, and probabilities
labeling theleaves denote the probability of every state con-
sistent with the corresponding branch. For instance, the



tree in Figure 7 denotes a distribution over four variables
in which states cde f and cde f both have probability 0.1.
A treethat is polynomially-sizedin the number of variables
offersan exponentia reduction inthe number of parameters
required to represent adistribution. A belief state can be ap-
proximated by forcingit tofit withinatree of abounded size
(or satisfying other constraints). Thisapproximation can be
reconstructed at each stage, just like projection. It isclear
that adensity tree approximationislinear. Furthermore, the
number of constraints and required variablesin the LP for
computing a switch set issmall.

We a so hopeto extend thisframework to analyze sampling
methods[11, 13, 19]. While such schemes are generally an-
alyzed fromthepoint of view of belief-state error, wewould
liketo consider theimpact of sampling on decision quality
and develop value-directed sampling techniques that mini-
mize thisimpact.

7 Concluding Remarks

The vaue-directed approximation analysis we have pre-
sented takes arather different view of belief state approxi-
mation than that adopted in previouswork. Rather than try-
ing to ensure that the approximate belief stateis as close as
possibleto thetrue belief state, wetry to make the approx-
imate belief state induce decisionsthat are as close as pos-
sible to optimal, given constraints on (say) the size of the
belief state clusters we wish to maintain. Our approach re-
mains tractabl e by exploiting recent results on factored rep-
resentations of value functions.

There are a number of directions in which this research
must betaken to verify itspracticality. We are currently ex-
perimenting with the four bounding algorithms described
in section 4.2. Ultimately, although these algorithms pro-
vide worst-case bounds on the expected error, it is of in-
terest to gain some insight regarding the average error in-
curred in practice. We are also experimenting with other
heuristics, such as the the vector-space method mentioned
inSection 3.1, that may provideatradeoff between thequal -
ity of the error bounds and the efficiency of their compu-
tation. Other directionsinclude the development of online,
dynamic choice of projection schemes for usein search-tree
approaches to POMDPs (see, e.g., [14]), aswell as solving
POMDPsin a bounded-optimal way that takes into account
the fact that belief state monitoring will be approximate.
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