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Abstract

We consider the problem belief-state monitoring
for the purposes of implementing a policy for
a partially-observable Markov decision process
(POMDP), specifically how one might approxi-
mate the belief state. Other schemes for belief-
state approximation (e.g., based on minimizing a
measure such as KL-divergence between the true
and estimated state) are not necessarily appropri-
ate for POMDPs. Instead we propose a frame-
work for analyzing value-directed approximation
schemes, where approximation quality is deter-
mined by the expected error in utility rather than
by the error in the belief state itself. We propose
heuristic methods for finding good projection
schemes for belief state estimation—exhibiting
anytime characteristics—given a POMDP value
function. We also describe several algorithms for
constructing bounds on the error in decision qual-
ity (expected utility) associated with acting in ac-
cordance with a given belief state approximation.

1 Introduction
Considerable attention has been devoted to partially-
observable Markov decision processes (POMDPs) [15, 17]
as a model for decision-theoretic planning. Their general-
ity allows one to seamlessly model sensor and action uncer-
tainty, uncertainty in the state of knowledge, and multiple
objectives [1, 4]. Despite their attractiveness as a concep-
tual model, POMDPs are intractable and have found prac-
tical applicability in only limited special cases.

Much research in AI has been directed at exploiting cer-
tain types of problem structure to enable value functions for
POMDPs to be computed more effectively. These primar-
ily consist of methods that use the basic, explicit state-based
representation of planning problems [5]. There has, how-
ever, been work on the use of factored representations that
resemble classical AI representations, and algorithms for
solving POMDPs that exploit this structure [2, 8]. Repre-
sentations such as dynamic Bayes nets (DBNs) [7] are used
to represent actions and structured representations of value
functions are produced. Such models are important because

they allow one to deal (potentially)with problems involving
a large number of states (exponential in the number of vari-
ables) without explicitly manipulating states, instead rea-
soning directly with the factored representation.

Unfortunately, such representations do not automatically
translate into effective policy implementation: given a
POMDP value function, one must still maintain a belief
state (or distribution over system states) online in order to
implement the policy implicit in the value function. Belief
state maintenance, in the worst case, has complexity equal
to the size of the state space (exponential in the number of
variables), as well. This is typically the case even when
the system dynamics can be represented compactly using a
DBN, as demonstrated convincingly by Boyen and Koller
[3]. Because of this, Boyen and Koller develop an approx-
imation scheme for monitoring dynamical systems (as op-
posed to POMDP policy implementation); intuitively, they
show that one can decompose a process along lines sug-
gested by the DBN representation and maintain bounded er-
ror in the estimated belief state. Specifically, they approx-
imate the belief state by projection, breaking the joint dis-
tribution into smaller pieces by marginalization over sub-
sets of variables, effectively discounting certain dependen-
cies among variables.

In this paper, we consider approximate belief state moni-
toring for POMDPs. We assume that a POMDP has been
solved and that a value function has been provided to us in
a factored form (as we explain below). Our goal is to de-
termine a projection scheme, or decomposition, so that ap-
proximating the belief state using this scheme hinders the
ability to implement the optimal policy as little as possible.
Our scheme will be quite different from Boyen and Koller’s
since our aim is not to keep the approximate belief state
as “close” to the true belief state as possible (as measured
by KL-divergence). Rather we want to ensure that decision
quality is sacrificed as little as possible.

In many circumstances, this means that small correlations
need to be accounted for, while large correlations can be
ignored completely. As an example, one might imagine a
process in which two parts are stamped from the same ma-
chine. If the machine has a certain fault, both parts have
a high probability of being faulty. Yet if the decisions for
subsequent processing of the parts are independent, the fact



that the fault probabilities for the parts are dependent is ir-
relevant. We can thus project our belief state into two inde-
pendent subprocesses with no loss in decision quality. As-
suming the faults are independent causes a large “error” in
the belief state; but this has no impact on subsequent deci-
sions or even expected utilityassessment. Thus we need not
concern ourselves with this “error.” In contrast, very small
dependencies, when marginalized, may lead to very small
“error” in the belief state; yet this small error can have se-
vere consequences on decision quality.

Because of this, while Boyen and Koller’s notion of pro-
jection offers a very useful tool for belief state approxima-
tion, the model and analysis they provide cannot be applied
usefully to POMDPs. For example, in [14] this model is
integrated with a (sampling-based) search tree approach to
solving POMDPs. Because the error in decision quality is
determined as a function of the worst-case decision quality
with respect to actual belief state approximation error, the
bounds are unlikely to be useful in practice. We strongly
believe estimates of decision quality error should be based
on direct information about the value function.

In this paper we provide a theoretical framework for the
analysis of value-directed belief state approximation (VDA)
in POMDPs. The framework provides a novel view of ap-
proximation and the errors it induces in decision quality.
We use the value function itself to determine which cor-
relations can be “safely” ignored when monitoring one’s
belief state. Our framework offers methods for bounding
(reasonably tightly) the error associated with a given pro-
jection scheme. While these methods are computationally
intensive—requiring in the worst case a quadratic increase
in the solution time of a POMDP—we argue that this of-
fline effort is worthwhile to enable fast online implemen-
tation of a policy with bounded loss in decision quality.
We also suggest a heuristic method for choosing good pro-
jection schemes given the value function associated with a
POMDP. Finally, we discuss how our techniques can also
be applied to approximation methods other than projection
(e.g., aggregation using density trees [13]).

2 POMDPs and Belief State Monitoring

2.1 Solving POMDPs

A partially-observable Markov decision process (POMDP)
is a general model for decision making under uncertainty.
Formally, we require the following components: a finite
state space S; a finite action space A; a finite observation
space Z; a transition function T : S � A ! �(S); an
observation function O : S � A ! �(Z); and a reward
function R : S ! R.1 Intuitively, the transition functionT (s; a) determines a distribution over next states when an
agent takes action a in state s—we write Pr(s; a; t) to de-
note the probability that state t is reached. This captures un-
certainty in action effects. The observation function reflects
the fact that an agent cannot generally determine the true
system state with certainty (e.g., due to sensor noise)—we
writePr(s; a; z) to denote the probability that observation z1�(X) denotes the set of distributions over finite setX .
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Figure 1: Geometric View of Value Function

is made at state s when action a is performed. FinallyR(s)
denotes the immediate reward associated with s.2
The rewards obtained over time by an agent adopting a spe-
cific course of action can be viewed as random variablesR(t). Our aim is to construct a policy that maximizes the ex-
pected sum of discounted rewards E(P1t=0 
tR(t)) (where
 is a discount factor less than one). It is well-known that
an optimal course of action can be determined by consid-
ering the fully-observable belief state MDP, where belief
states (distributions over S) form states, and a policy � :�(S) ! A maps belief states into action choices. In prin-
ciple, dynamic programming algorithms for MDPs can be
used to solve this problem; but a practical difficultyemerges
when one considers that the belief space �(S) is an jSj�1-
dimensional continuous space. A key result of Sondik [17]
showed that the value function V for a finite-horizon prob-
lem is piecewise-linear and convex and can be represented
as a finite collection of �-vectors.3 Specifically, one can
generate a collection@ of �-vectors, each of dimension jSj,
such that V (b) = max�2@ b�. Figure 1 illustrates a collec-
tion of �-vectors with the upper surface corresponding toV . Furthermore, each � 2 @ has a specific action associ-
ated with it; so given belief state b, the agent should choose
the action associated with the maximizing �-vector.

Insight into the nature of POMDP value functions, which
will prove critical in the methods we consider in the
next section, can be gained by examining Monahan’s [15]
method for solving POMDPs. Monahan’s algorithm pro-
ceeds by producing a sequence of k-stage-to-go value func-
tions V k, each represented by a set of �-vectors @k. Each� 2 @k denotes the value (as a function of the belief state)
of executing a k-step conditional plan. More precisely, let
the k-step observation strategies be the set OSk of map-
pings � : Z ! @k�1. Then each �-vector in @k corre-
sponds to the value of executing some action a followed by
implementing some � 2 OSk; that is, it is the value of do-
ing a, and executing the k�1-step plan associated with the�-vector �(z) if z is observed. Using CP(�) to denote this
plan, we have that CP(�) = ha; if zi;CP(�(zi))8zii. We
informally write this as ha;�i. We write �(ha;�i) to de-
note the �-vector reflecting the value of this plan.

Given @k, @k+1 is produced in two phases. First, the set
of vectors corresponding to all action-observation policies2Action costs are ignored to keep the presentation simple.3For infinite-horizon problems, a finite collection may not be
sufficient [18], but will generally offer a good approximation.



is constructed (i.e., for each a 2 A and � 2 OSk+1, the
vector � denoting the value of plan ha;CP(�(zi))i is added
to @k+1). Second, this set is pruned by removing all domi-
nated vectors. This means that those vectors� such that b��
is not maximal for any belief state b are removed from@k+1.
In Figure 1, �4 is dominated, playing no useful role in the
representation of V , and can be pruned. Pruning is imple-
mented by a series of linear programs. Refinements of this
approach are possible that eliminate (or reduce) the need for
pruning by directly identifying only �-vectors that are non-
dominated [17, 6, 4]. Other algorithms, such as incremen-
tal pruning [5], are similar in spirit to Monahan’s approach,
but cleverly avoid enumerating all observation policies. A
finitek-stage POMDP can be solved optimally this way and
a finite representation of its value function is assured. For
infinite-horizon problems, a k-stage solution can be used to
approximate the true value function (error bounds can eas-
ily be derived based on the differences between successive
value functions).

One difficulty with these classical approaches is the fact
that the �-vectors may be difficult to manipulate. A sys-
tem characterized by n random variables has a state space
size that is exponential in n. Thus manipulating a single�-vector may be intractable for complex systems.4 Fortu-
nately, it is often the case that an MDP or POMDP can be
specified very compactly by exploiting structure (such as
conditional independence among variables) in the system
dynamics and reward function [1]. Representations such as
dynamic Bayes nets (DBNs) [7] can be used to great effect;
and schemes have been proposed whereby the�-vectors are
computed directly in a factored form by exploiting this rep-
resentation.

Boutilier and Poole [2], for example, represent �-vectors
as decision trees in implementing Monahan’s algorithm.
Hansen and Feng [8] use algebraic decision diagrams
(ADDs) as their representation in their version of incre-
mental pruning.5 The empirical results in [8] suggest that
such methods can make reasonably large problems solv-
able. Furthermore, factored representations will likely fa-
cilitate good approximation schemes. There is no reason
in principle that the other algorithms mentioned cannot be
adapted to factored representations as well.

2.2 Belief State Monitoring

Even if the value function can be constructed in a compact
way, the implementation of the optimal policy requires that
the agent maintains its belief state over time. The monitor-
ing problem itself is not generally tractable, since each be-
lief state is a vector of size jSj. Given a compact represen-
tation of system dynamics and sensors in the form of DBN,
one might expect that monitoring may become tractable us-
ing standard belief net inference schemes. Unfortunately,
this is generally not the case. Though variables may be ini-4The number of �-vectors can grow exponentially in the worst
case, as well; but for many problems the number remains manage-
able; and approximation schemes that simply bound their number
have been proposed [6].5ADDs, commonly used in verification, have been applied
very effectively to the solution of fully-observable MDPs [9].

tially independent (thus admitting a compact representation
of a distribution), and though at each time step only a small
number of variables become correlated, over time these cor-
relations “bleed through” the DBN, rendering most (if not
all) variables dependent after a time. Thus compact repre-
sentation of belief state is typically impossible.

Boyen and Koller [3] have devised a clever approximation
scheme for alleviating the computational burden of moni-
toring. In this work, no POMDP is used, but rather a sta-
tionary process, represented in a factored manner (e.g., us-
ing a DBN), is assumed. This might, for example, be the
process induced by adopting a fixed policy. Intuitively, they
consider projection schemes whereby the joint distribution
is approximated by projecting it onto a set of subsets of vari-
ables. It is assumed that these subsets partition the variable
set. For each subset, its marginal is computed; the approx-
imate belief state is formed by assuming the subsets are in-
dependent. Thus only variables within the same subset can
remain correlated in the approximate belief state. For in-
stance, if there are 4 variablesA,B,C andD, the projection
scheme fAB;CDgwill compute the marginal distributions
for AB and CD. The resulting approximate belief state,bP (ABCD) = P (AB)P (CD), has a compact, factored
representation given by the distribution of each marginal.

Formally, we say a projection scheme S is a set of subsets
of the set of state variables such that each state variable is in
some subset. This allows marginals with overlapping sub-
sets of variables (e.g., fABC;BCDg). We view strict par-
titioningas a special type of projection. Some schemes with
overlapping subsets may not be computationally useful in
practice because it may not be possible to easily generate a
joint distribution from them by building a clique tree. We
therefore classify as practical those projection schemes for
which a joint distribution is easily obtained. Assuming that
belief state monitoring is performed using the DBN repre-
senting the system dynamics (see [10, 12] for details on in-
ference with DBNs), we obtain belief state bt+1 from bt us-
ing the following steps: (a) construct a clique tree encod-
ing the variable dependencies of the system dynamics (for
a specific action and observation) and the correlations that
have been preserved by the marginals representing bt; (b)
initialize the clique tree with the transition probabilities, the
observation probabilities and the (approximate, factored)
joint distributionbt; (c) query the tree to obtain the distribu-
tion bt+ at the next time step; and (d) project bt+ according
to some practical projection scheme S to obtain the collec-
tion of marginals representing bt+1 = S(bt+). The com-
plexity of belief state updating is now exponential only in
the size of the largest clique rather than the total number of
variables.

Boyen and Koller show how to compute a bound on the
KL-divergence of the true and approximate belief states,
exploiting the contraction properties of Markov processes
(under certain assumptions). But direct translation of these
bounds into decision quality error for POMDPs generally
yields weak bounds [14]. Furthermore, the suggestions
made by Boyen and Koller for choosing good projection
schemes are designed to minimize KL-divergence, not to
minimize error in expected value for a POMDP. For this rea-
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Figure 2: Relevant belief states at stage k
son, we are interested in new methods for choosing projec-
tions that are directly influenced by considerations of value
and decision quality.

Other belief state approximation schemes can be used for
belief state monitoring. For example, aggregation using
density trees can provide a means of representing a belief
state with many fewer parameters than the full joint. Our
model can be applied to such schemes as well.

3 Error Bounds on Approximation Schemes
In this section, we assume that a POMDP has been solved
and that its value function has been provided to us. We
also assume that some structured technique has been used
so that �-vectors representing the value function are struc-
tured [2, 8]. We begin by assuming that we have been given
an approximation scheme S for belief state monitoring in
a POMDP and derive error bounds associated with acting
according to that approximation scheme. We focus primar-
ily on projection, but we will mention how other types of
approximation can be fit into our model. We present two
techniques for bounding the error for a given approximation
scheme and show that the complexity of these algorithms is
similar to that of solving the POMDP, with a (multiplica-
tive) overhead factor of j@j.
3.1 Plan Switching

Implementing the policy for an infinite-horizonPOMDP re-
quires that one maintains a belief state, plugging this into
the value function at each step, and executing the action as-
sociated with the maximizing �-vector. When the belief
state b is approximated using an approximation scheme S,
a suboptimal policy may be implemented since the maxi-
mizing vector for S(b) will be chosen rather than the max-
imizing vector for b. Furthermore this mistaken choice of
vectors (hence actions) can be compounded with each fur-
ther approximation at later stages of the process. To bound
such error, we first define the notion of plan switching. We
phrase our definitions in terms of finite-horizon value func-
tions, introducing the minor variations needed for infinite-
horizon problems later.

Suppose with k stages-to-go, the true belief state, had we
monitored accurately to that point, is b. However, due to
previous belief state approximations we take our current be-
lief state to be ~b. Now imagine our approximation scheme
has been applied at time k to obtain S(~b). Given @k, rep-
resenting V k, suppose the maximizing vectors associated
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Figure 3: The Switch Set Swk(�3) of �3
with b, ~b and S(~b) are �1, �2 and �3, respectively (see Fig-
ure 2). The approximation at stage kmistakenly induces the
choice of the action associated with �3 instead of �2 at ~b;
this incurs an error in decision quality of b � �2 � b � �3.
While the optimal choice is in fact �1, the unaccounted er-
ror b ��1� b ��2 induced by the prior approximations will
be viewed as caused by the earlier approximations; our goal
at this point is simply to consider the error induced by the
current approximation.

In order to derive an error bound, we must identify, for each� 2 @k, the set of vectors Swk(�) that the agent can switch
to by approximating its current belief state ~b given that ~b
identifies � as optimal. Formally, we define

Swk(�) = f�0 2 @k : 9b8��(b�� � b���; S(b)��0 � S(b)���)g
Intuitively, this is the set of vectors we could choose as max-
imizing (thus implementing the corresponding conditional
plan) due to belief state approximation. In Figure 3, we see
that Swk(�3) = f�1; �2; �4g. The set Swk(�i) can be
identified readily by solving a series of O(j@kj) optimiza-
tion problems, each testing the possibility of switching to a
specific vector �j 2 @k, formulated as the following (pos-
sibly nonlinear) program:max ds:t: b � (�i � �l) � d 8l 6= iS(b) � (�j � �l) � d 8l 6= jPs b(s) = 1b(s) � 0 8s
The solution to this program has a positive objective func-
tion value whenever there is a belief state b such that �i is
optimal at b, and �j is optimal at S(b). Note, in fact, that
we need only find a positive feasible solution, not an opti-
mal one, to identify �j as an element of Swk(�i). There
are j@kj switch sets to construct, so O(j@kj2) optimization
problems need to be solved to determine all switch sets.

For linear approximation schemes (i.e., those in which the
constraints on S(b) are linear in the variables bi), these
problems are easily solvable linear programs (LPs). We re-
turn to linear schemes in Section 6. Unfortunately, projec-
tion schemes are nonlinear, making optimization (or iden-
tification of feasible solutions) more difficult. On the other
hand, a projection scheme determines a set of linear con-
straints on the approximate belief state S(b). For instance,
consider the projection scheme S = fCD;DEg for



a POMDP with 3 binary variables. This projection im-
poses one linear constraint on S(b) for each subset of the
marginals in the projection:6b(;) = b0(;) b(C) = b0(C)b(D) = b0(D) b(E) = b0(E)b(CD) = b0(CD) b(DE) = b0(DE)
Here b0 denotes S(b) and b(XY ) denotes the cumulative
probability (according to belief state b) of all states whereX and Y are true. These constraints define an LP that can
be used to construct a superset cSw

k(�i) of Swk(�i). Given
scheme S = fM1; : : : ;Mng, we define the following LP:max ds:t: b � (�i � �l) � d 8l 6= ib0 � (�j � �l) � d 8l 6= jb0(M ) = b(M ) 8M � Ml; 1 � l � nPs b(s) = 1b(s) � 0 8sb0(s) � 0 8s
When a feasible positive solution exists, �j is added to the

set cSw
k(�i), though in fact, it may not properly be a mem-

ber of Swk(�i). If no positive solution exists, we know �j
is not in Swk(�i) and it is not added to cSw

k(�i). This su-
perset of the switch set can be used to derive an upper bound
on error.

While the number of constraints of the type b(M ) = b0(M )
is exponential in the size of the largest marginal, we expect
that the number of variables in each marginal for a useful
projection scheme will be bounded by a small constant. In
this way, the number of constraints can be viewed as con-
stant (i.e., independent of state space size).

Though the above LPs (for both linear approximations and
projection schemes) look complex, they are in fact very
similar in size to the LPs used for dominance testing in
Monahan’s pruning algorithm and the Witness algorithm,
involving O(jSj) variables and O(j@kj) constraints. The
number of LP variables is exponential in the number of state
variables; however, the factored representation of�-vectors
allows LPs to be structured in such a way that the state
space need not be enumerated (i.e., the variables represent-
ing the state probabilities can be clustered). Precisely the
same structuring is suggested in [2] and implemented in [8].
Thus solving an LP to test if the agent can switch from�i to�j has the same complexity as a dominance test in the prun-
ing phase of POMDP solving. However, there areO(j@kj2)
pairs of �-vectors to test for plan switching whereas the
pruning phase may require as few as j@kj dominance tests
if no vector is pruned. Hence, in the worst case, switch set
generation may increase the running time for solving the
POMDP by a factor of O(j@kj) at each stage k.

For a k-stage, finite-horizon POMDP, we can now bound
the error in decision quality due to approximationS. Define
the bound on the maximum error introduced at each stage j,6These equations can be generalized for POMDPs with non-
binary variables, though giving more than one equation per subset.

when � is viewed as optimal, as:7BjS(�) = maxb max�02cSw
j (�) b � (�� �0)

Since error at a belief state is simply the expectation of
the error at its component states, BjS (�) can be determined

by comparing the vectors in cSw
j(�) with � component-

wise (with the maximum difference being BjS (�)). LetBjS = max�2@j BjS (�) be the greatest error introduced
by a single approximation S at stage j. Then the total er-
ror for k successive approximations is bounded by UkS =Pki=1 
iBiS . For an infinite-horizon POMDP, assume we
have been given the infinite-horizon value function@� (i.e.,
no stages are involved). Then we only need to compute
the switch sets Sw�(�) for this single @-set, and the max-
imum one-shot switching error B�S . The upper bound on
the loss incurred by applyingS indefinitely is simplyU�S =B�S=(1�
). Computing the error U�S is roughly equivalent
to performing O(j@�j) dynamic programming backups on@�.

The LP formulation used to construct switch sets is com-
putationally intensive. Other methods can be used how-
ever to construct these switch sets. We have, for example,
implemented a scheme whereby belief states are treated as
vectors in <jSj, and projection schemes are viewed as dis-
placing these vectors. The displacement vectors (vectors
which when added to a belief state b giveS(b)) induced by a
scheme S can be computed easily and can be used to deter-
mine the direction in which belief state approximationshifts
the true belief state. This is turn can be used to construct
overestimates of switch sets. While giving rise to looser er-
ror bounds, this method is much more efficient in practice.
Our emphasis, however, is on the analysis of error due to
approximation, so we do not dwell on this scheme in this
paper (see [16] for details).

3.2 Alternative Plans

The cumulative error induced by switching plans at cur-
rent and future stages can be bounded in a tighter way. The
idea is to generate the set of alternative plans that may be
executed as a result of both current and future approxima-
tions. Suppose that an agent, due to approximation at stagek changes its belief state from b to S(b). This can induce
a change in the choice of optimal �-vector in @k, say from�1 to�2. However, even though the agent has switched and
chosen the first action associated with �2, it has not nec-
essarily committed to implementing the entire conditional
plan CP(�2) associated with�2. This is because further ap-
proximation at stage k � 1 may cause it to switch from the
continuation of CP(�2).
Suppose for instance that CP(�2) = ha;�i, where �(z) =�3 2 @k�1. If z is observed, and the agent updates its (ap-
proximate) belief state S(b) accurately to obtainS(b)0, then7We use cSw

j
instead of Swj to emphasize the fact that we

use the approximate switch set generated for a projection scheme;
however, all definitions apply equally well to exact switch sets if
they are available.



the maximizing vector at the next stage is necessarily �3.
But given that S(b)0 will be approximated before the max-
imizing vector is chosen, the agent may adopt some other
continuation of the plan if �3 does not maximize value for
the (second) approximated belief state S(S(b)0). In fact,
the agent may implement CP(�4) at stage k � 1 for any�4 2 Swk�1(�3). Notice that the value of the plan actually
implemented—doing the first action of �2, followed by the
first action of�4, and so on—may not be represented by any�-vector in @k.

We can actually construct the values of such plans, and thus
obtain much tighter error bounds, while we perform dy-
namic programming. We recursively define the set of al-
ternative sets, or Alt-sets for each vector at each stage.8 We
first define

Alt1(�) = Sw1(�)
That is, if � is optimal at stage 1, then any vector in its
switch set can have its plan executed. The future alterna-
tive set for any � 2 @k, where CP(�) = ha; �i, is:

FAltk(�) = f�(ha; �0i) : (8z) �0(z) 2 Altk�1(�(z))g
If � is in fact chosen to be executed at stage k, true expected
value may in fact be given by any vector in FAltk(�), this
is due to future switching of policies at stages following k.
Finally, define

Altk(�) = [fFAltk(�0) : �0 2 Swk(�)g
If � is in fact optimal at stage k for a given belief state b, butb is approximated currently and at every future stage, then
expected value might be reflected by any vector in Altk(�).
These vectors correspond to every possible course of ac-
tion that could be adopted because of approximation: if we
switch vectors at stage k, we could begin to execute (the
plan associated with) any �0 2 Swk(�); and if we begin ex-
ecuting �0, we could end up executing (the plan associated
with) any �00 2 FAltk(�0).
Given these Alt-sets, the error associated with belief state
approximation can be given by the maximum difference in
value between any � and one of its Alt-vectors. These FAlt
and Alt-sets can be computed by dynamic programming
while a POMDP is being solved. The complexity of this al-
gorithm is virtually identical to that of generating @k from@k�1, with the proviso that there are j@kj Alt-sets. How-
ever, these sets grow exponentially much like the sets @k
would if left unpruned. However, these sets can be pruned
in exactly the same way as @-sets, with the exception that
since we want to produce a worst-case bound on error, we
want to construct a lower surface for the Alt-sets rather than
an upper surface.

Given any Alt-set, we denote bycAlt the collection of vectors
that are anti-dominating in Alt. For example, if the collec-
tion of vectors in Figure 4, form the set Altk(�), then the
vectors �1 and �4, making up the lower surface of this set,8This definition can be more concisely specified, but this for-
mat makes the computational implications clear.

α1

α2

α3

α4

α4α3α2α1lower surface of {    ,     ,     ,     }

Figure 4: Lower surface

formcAlt
k(�). dFAlt

k(�) is defined similarly. The set of anti-
dominated vectors can be pruned in exactly the same way
that dominated �-vectors are pruned from a value function.
The same structuring techniques can be used to prevent ex-
plicit state enumeration as well. This pruning can keep thecAlt-sets very manageable in size. Assuming we have an ap-

proximationcAlt
k(�) of Altk(�) for every � 2 @k, we con-

struct cAlt
k+1(�) as follows: (a) Swk+1(�) is constructed

for each � 2 @k+1; (b) dFAlt
k+1(�) is constructed usingcAlt

k(�), and is then pruned to retain only anti-dominating

vectors; and (c) cAlt
k+1(�) is defined as the union of thedFAlt

k+1(�0) sets for those �0 2 Swk+1(�), and is then
pruned.

The followingquantity bounds the error associated with ap-
proximatingbelief state using scheme S over the course of ak-stage POMDP, when� represents optimal expected value
for the initial belief state:EkS(�) = maxb maxfb � (�� �0) : �0 2 cAlt

k(�)g
This error can be computed using simple pointwise com-
parison of � with each such �0. It can also be restricted to
that region of belief space where � is optimal; maximizing
the difference only over belief states in that area to obtain a
tighter bound. Approximation error can be bounded glob-
ally using EkS = maxfEkS(�) : � 2 @kg
Furthermore, EkS � UkS since alternate vectors provide a
much tighter way to measure cumulative error.

For an infinite-horizon problem, we can compute switch
sets once as in the computation ofU�S . To compute a tighter
boundE�S , we can constructk-stages ofcAlt-sets, backing up
from @�. The bound EkS is computed as above, and we setE�S = EkS + 
kU�S
In this way, we can obtain fairly tight bounds on the error
induced by belief state approximation.

4 Value-Directed Approximations
The bounds Bk(�) and Ek described above can be used in
several ways to determine a good projection scheme. In or-
der to compute error bounds to guide our search for a good
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projection scheme, our “generic algorithm” will have to de-
termine the error associated witha different projectionS ap-
plied to each �-vector. Because of this, we will consider the
use of different projection schemes S� for each �-vector (at
each stage if we have a finite-horizon problem). Despite the
fact that we previously derived bounds on error assuming
a uniform projection scheme, our algorithms work equally
well (i.e., provide legitimate bounds) if different projections
are used with each vector. The projection S� adopted for
vector � simply influences its switch set. Since the agent
knows which vector it is “implementing” at any point in
time, we can record and easily apply the projection schemeS� for that vector. This allows the agent to tailor its belief
state approximation to provide good results for its currently
anticipated course of action. This in turn will lead to much
better performance than using a uniform scheme.

4.1 Lattice of Projection Schemes

We can structure the search for a projection scheme by con-
sidering the lattice of projection schemes defined by sub-
set inclusion. Specifically, we say S1 contains S2 (written
loosely S2 � S1) if every subset of S2 is contained within
some subset of S1. This means that S2 is a finer “partition”
thanS1. The lattice of projections for three binary variables
is illustrated in Figure 5. Each node represents the set of
marginals defining some projection S. Above each node,
the subsets corresponding to its constraining equations are
listed (we refer to each such subset as a constraint). The
finest projections (which are the “most approximate” since
they assume more independence) are at the top of the lattice.
Edges are labeled with the subset of variables correspond-
ing to the single constraining equation that must be added
to the parent’s constraints to obtain the child’s constraints.

It should be clear that if S2 � S1, then S1 offers (not neces-
sarily strictly) tighter bounds on error when used instead ofS2 at any point. To see this, imagine that various approxi-
mation schemes are used for different �-vectors at different
stages, and that S2 is used whenever � 2 @j is chosen. If
we keep everything fixed but replace S2 with S1 at �, we
first observe that SwkS1 (�) � SwkS2 (�). This ensures thatBjS1 (�) � BjS2 (�) and BjS1 � BjS2 . If all other projection

operators are the same, then obviously UkS1 � UkS2 . Simi-
lar remarks apply to the infinite-horizon case. Furthermore,
given the definition of Alt-sets, reducing the switch set for� at stage k by using S1 instead of S2 ensures that the Alt-
sets at all preceding stages are no larger (and may well be
smaller) than they would be if S2 were used. For this rea-
son, we have that EkS1 � EkS2 (and similarly E�S1 � E�S2).

Consequently, as we move down the lattice, the bound on
approximation error gets smaller (i.e., our approximations
improve, at least in the worst case). Of course, the com-
putational effort of monitoring increases as well. The pre-
cise computational effort of monitoring will depend on the
structure of the DBN for the POMDP dynamics and its in-
teraction with the marginals given by the chosen projec-
tion scheme; however, the complexity of inference (i.e., the
dominant factors in the corresponding clique tree), can be
easily determined for any node in the lattice.

4.2 Search for a Good Projection Scheme

In a POMDP setting, the agent may have a bounded amount
of time to make an online decision at each time-step.
For this reason, efficient belief-state monitoring is crucial.
However, just as solving the POMDP is viewed as an offline
operation, so is the search for a good projection scheme.
Thus it will generally pay to expend some computational
effort to search for a good projection scheme that makes
the appropriate tradeoff between decision quality and the
complexity of belief state maintenance. For instance, if any
scheme S with at most c constraints offers acceptable on-
line performance, then the agent need only search the row of
the lattice containing those projection schemes with c con-
straints. However, the size of this row is factorial in c. So
instead we use the structure of the lattice to direct our atten-
tion toward reasonable projections.

We describe here a generic, greedy, anytime algorithm for
finding a suitable projection scheme. We start with the root,
and evaluate each of its children. The child that looks most
“promising” is chosen as our current projection scheme. Its
children are then evaluated, and so on; this continues un-
til an approximation is found that incurs no error (specifi-
cally, each switch set is a singleton, as we describe below),
or a bound on the size of the projection is reached. We as-
sume for simplicity that at most c constraints will be al-
lowed. The search proceeds to depth c�n in the lattice and
at each node, at most n(c � n) children are evaluated, so
a total of O(nc2 � cn2) nodes are examined. Since c must
be greater than n—the root node itself has n constraints—
we assume O(nc2) complexity. The structure of the lattice
ensures that decision quality (as measured by error bounds)
cannot decrease at any step. We note that practical and non-
practical projections are included in the lattice. In figure 5,
the only non-practical scheme is S = fAB;AC;BCg.
During the search, it doesn’t matter if a node corresponding
to a non-practical scheme is traversed, as long as the final
node is practical. If it is not practical, then the best prac-
tical sibling of that node is picked or we backtrack until a
practical scheme is found. We also note that since this is a
greedy approach, we may not discover the best projection
with a fixed number of constraints. However, it is a well-



structured search space and other search methods for navi-
gating the lattice could be used.

We first describe one instantiation of this algorithm, the
finite-horizonU -bound search, for a k-stage, finite-horizon
POMDP. Given the collections of �-vectors@1; � � � ;@k, we
run the following search independently for each vector � 2@i for each i � k. The order does not matter; we will end
up with a projection scheme S for each �-vector, which is
applied whenever that�-vector is chosen as optimal at stagei. We essentially minimize (over S) each term BiS (�) in
the bound Uk independently. For a given vector � at stagei, the search proceeds from the root in a greedy fashion.
Each child S of the current node is evaluated by comput-
ing BiS(�), which basically requires that we compute the
switch set SwiS(�), which in turn requires the solution ofj@ij LPs. Once the projection schemes S� for each � are
found, the error boundUk is given by the sum of the boundsBi as described in the previous section. At each stage i,
the number of LPs that must be solved isO(nc2j@ij2) since
there areO(j@ij)�-vectors and for each �-vector, the lattice
search traverses O(nc2) nodes, each requiring the solution
of O(j@ij) LPs. Since the solution of the original POMDP
requires the solution of at least j@j LPs, the overhead in-
curred is at most a factor of nc2j@j.
The method above can be streamlined considerably. When
comparing two nodes, it is not always necessary to gener-
ate the entire switch set to determine which node has the
lowest boundBi(�). Each vector �0 in �’s switch set intro-
duces an error of at most maxbfb(���0)g. SinceBi(�) =max�02Swi(�)fmaxb b(� � �0)g, we can test vectors �0
in decreasing order of contributed error until one vector is
found to be in the switch set at one node but not the other.
The node that does not include this vector in its switch set
has the lowest boundBiS(�) (where S is that node’s projec-
tion scheme). Instead of solving j@ij pairs of LPs, generally
only a few pairs of LPs will be solved.

When testing whether two different schemes S1 and S2
allow switching to some �-vector, the LPs to be solved
for each scheme are similar, differing only in the con-
straints dictated by each projection scheme. This similarity
can be exploited computationally by using techniques that
take advantage of the numerous common constraints if we
solve similar LPs “concurrently” (for instance, by solving
a stripped down LP that has only the common constraints
and using the dual simplex method to account for the extra
constraints). Though details are beyond the scope of this
paper, these techniques are faster in practice than solving
each LP from scratch. The greedy search can take full ad-
vantage of these speed-ups: each child has only one addi-
tional constraint (compared to its parent), so not only can
structure be shared across children, but the parent’s solu-
tion can be exploited as well. We reiterate that these LPs
can also be structured, so state space enumeration is not re-
quired. Taken together, these computational tricks don’t re-
duce the worst-case running time of O(nc2j@j2) LPs; how-
ever in practice it is possible that only
(ncj@j)LPs need be
solved, in which case, when integrated with the algorithm to
solve the POMDP, the overhead incurred would be a factor

proportional to nc. A thorough experimentation remains to
be done.

There are three variations of the algorithm above. The
infinite-horizonU -bound algorithm is much like the finite-
horizon version. However, we only have one set of �-
vectors, @�, rather than k sets. Thus we compute far fewer
switch sets, and calculate the final bound using the equation
for U�. The finite-horizonE-bound algorithm is similar to
the above algorithm as well. The difference is that we com-

pute Alt-sets (or rather approximations to them, cAlt
kS(�))

to obtain tighter bounds on error. To do this requires that
we compute the projection schemes for the various stages
in order, from the last stage back to the first. Once a good
scheme has been found for the elements of @j , thedFAlt-sets
can be computed for stage j + 1 without difficulty (this in-
volves simple DP backups). Then switch sets are computed
exactly as above, from whichcAlt-sets, and error bounds, are
generated. Finally, the infinite-horizonE-bound algorithm
proceeds by computing the switch sets for a given projec-
tion onlyonce for each vector in@�; but additional DP back-
ups to compute Alt-sets (as described in the previous sec-
tion) are needed to derive tight error bounds.

5 Illustrative Example

We describe a very simple POMDP to illustrate the benefits
of value-directed approximation, with the aim of demon-
strating that minimizing belief state error is not always ap-
propriate when approximate monitoring is used to imple-
ment an optimal policy. The process involves only seven
stages with only one or two actions per stage (thus at some
stages no choice needs to be made), and no observations are
involved. Yet even such a simple system shows the benefits
of allowing the value function to influence the choice of ap-
proximation scheme.

We suppose there is a seven-stage manufacturing process
whereby four parts are produced using three machines, M ,
M1, and M2. Parts P1, P2, P3, and P4 are each stamped
in turn by machine M . Once stamped, parts P1 and P2
are processed separately (in turn) on machine M1, while
parts P3 and P4 are processed together on M2. MachineM may be faulty (FM), with prior probability Pr(FM).
When the parts are stamped byM , parts P1 and P2 may be-
come faulty (F1, F2), with higher probability of fault if FM
holds. Parts P3 and P4 may also become faulty (F3, F4),
again with higher probability if FM; but F3 and F4 are both
less sensitive to FM than F1 and F2 (e.g., Pr(F1jFM) =Pr(F2jFM) > Pr(F3jFM) = Pr(F4jFM)). If P1 or P2 are
processed on machine M1 when faulty, a cost is incurred;
if processed when OK, a gain is had; if not processed (re-
jected), no cost or gain is had. When P3 and P4 are pro-
cessed (jointly)onM3, a greater gain is had if both parts are
OK, a lesser gain is had when one part is OK, and a drastic
cost is incurred if both parts are faulty (e.g., machine M3
is destroyed). The specific problem parameters are given in
Table 1.

Figure 6 shows the dependencies between variables for the
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Figure 6: DBN for the factory example

seven-stage DBN of the example.9 It is clear with three
stages to go, all the variables are correlated. If approximate
belief state monitoring is required for execution of the op-
timal policy (admittedly unlikely for such a simple prob-
lem!), a suitable projection scheme could be used.

Notice that the decisions to process P1 and P2 at stages-to-
go 3 and 2 are independent: they depend only on Pr(F1)
and Pr(F2), respectively, but not on the correlation be-
tween the two variables. Thus, though these become quite
strongly correlated with five stages to go, this correlation
can be ignored without any impact on the decision one
would make at those points. Conversely, F3 and F4 become
much more weakly correlated with three stages to go; but
the optimal decision at the final stage does depend on their
joint probability. Were we to ignore this weak correlation,
we run the risk of acting suboptimally.

We ran the greedy search algorithm of Section 4.2 and, as
expected, it suggested projection schemes that break all cor-
relations except for FM and F3 with four stages to go, and
F3 and F4 with three, two, and one stage(s) to go. The lat-
ter, Pr(F3;F4), is clearly needed (at least for certain prior
probabilities on FM) to make the correct decision at the fi-9We have imposed certain constraints on actions to keep the
problem simple; with the addition of several variables, the prob-
lem could easily be formulated as a “true” DBN with identical dy-
namics and action choices at each time slice.

Correlation L1 L2 KL Loss
F1=F2 0:7704 0:3092 0:4325 1:0
F3=F4 0:9451 0:3442 0:5599 0:0

Table 2: Comparison of different distance measures
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Figure 7: An Example Density Tree

nal stage; and the former, Pr(FM;F3), is needed to accu-
rately assess Pr(F3;F4) at the subsequent stage. Thus we
maintain an approximate belief state with marginals involv-
ing no more than two variables, yet we are assured of acting
optimally.

In contrast, if one chooses a projection scheme for this
problem by minimizing KL-divergence, L1-distance, orL2-distance, different correlations will generally be pre-
served. For instance, assuming a uniform prior over FM
(i.e., machine M is faulty with probability 0:5), Table 5
shows the approximation error that is incurred according
to each such measure when only the correlation between
F1 and F2 is maintained or when only the correlation be-
tween F3 and F4 is maintained. All of these “direct” mea-
sures of belief state error prefer the former. However, the
loss in expected value due to the former belief state approx-
imation is 1.0, whereas no loss is incurred using the lat-
ter. To test this further, we also compared the approxima-
tion preferred using these measures over 1000 (uniformly)
randomly-generated prior distributions. If only the F1=F2-
correlation is preserved at the first stage, then in 520 in-
stances a non-optimal action is executed with an average
loss of 0:6858. This clearly demonstrates the advantage of
using a value-directed method to choose good approxima-
tion schemes.

6 Framework Extensions

The methods described above provide means to analyze
value-directed approximations. Though we focused above
on projection schemes, approximate monitoring can be ef-
fected by other means. Our framework allows for the anal-
ysis of error of any linear approximation scheme S. In fact,
our analysis is better suited to linear approximations: the
constraints on the approximate belief state S(b), if linear,
allow us to construct exact switch sets Sw(�) rather than ap-
proximations, providing still tighter bounds.

One linear approximation scheme involves the use of den-
sity trees [13]. A density tree represents a distribution by
aggregation: the tree splits on variables, and probabilities
labeling the leaves denote the probabilityof every state con-
sistent with the corresponding branch. For instance, the



tree in Figure 7 denotes a distribution over four variables
in which states c �def and c �de �f both have probability 0:1.
A tree that is polynomially-sized in the number of variables
offers an exponential reduction in the number of parameters
required to represent a distribution. A belief state can be ap-
proximated by forcing it to fit withina tree of a bounded size
(or satisfying other constraints). This approximation can be
reconstructed at each stage, just like projection. It is clear
that a density tree approximation is linear. Furthermore, the
number of constraints and required variables in the LP for
computing a switch set is small.

We also hope to extend this framework to analyze sampling
methods [11, 13, 19]. While such schemes are generally an-
alyzed from the point of view of belief-state error, we would
like to consider the impact of sampling on decision quality
and develop value-directed sampling techniques that mini-
mize this impact.

7 Concluding Remarks

The value-directed approximation analysis we have pre-
sented takes a rather different view of belief state approxi-
mation than that adopted in previous work. Rather than try-
ing to ensure that the approximate belief state is as close as
possible to the true belief state, we try to make the approx-
imate belief state induce decisions that are as close as pos-
sible to optimal, given constraints on (say) the size of the
belief state clusters we wish to maintain. Our approach re-
mains tractable by exploiting recent results on factored rep-
resentations of value functions.

There are a number of directions in which this research
must be taken to verify its practicality. We are currently ex-
perimenting with the four bounding algorithms described
in section 4.2. Ultimately, although these algorithms pro-
vide worst-case bounds on the expected error, it is of in-
terest to gain some insight regarding the average error in-
curred in practice. We are also experimenting with other
heuristics, such as the the vector-space method mentioned
in Section 3.1, that may provide a tradeoff between the qual-
ity of the error bounds and the efficiency of their compu-
tation. Other directions include the development of online,
dynamic choice of projection schemes for use in search-tree
approaches to POMDPs (see, e.g., [14]), as well as solving
POMDPs in a bounded-optimal way that takes into account
the fact that belief state monitoring will be approximate.
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