Stochastic Dynamic Programming with Factored
Representations’

Craig Boutilierf Richard Dearden
Department of Computer Science Department of Computer Science
University of Toronto University of British Columbia
Toronto, ON, M5S 3H5, CANADA Vancouver, BC, V6T 174, CANADA
cebly@cs.toronto.edu dearden@cs.ubc.ca

Moisés Goldszmidt
Computer Science Department
Stanford University
Stanford, CA 94305-9010, USA

moises@robotics.stanford.edu

Abstract

Markov decision processes(M DPs) have proven to be popular modelsfor decision-theoretic planning,
but standard dynamic programming algorithms for solving MDPs rely on explicit, state-based specifica-
tions and computations. To alleviate the combinatorial problems associated with such methods, we pro-
pose new representational and computational techniquesfor MDPs that exploit certain types of problem
structure. We use dynamic Bayesian networks (with decision trees representing the local families of con-
ditional probability distributions) to represent stochastic actionsin an MDP, together with a decision-tree
representation of rewards. Based on this representation, we develop versions of standard dynamic pro-
gramming algorithms that directly manipulate decision-tree representations of policies and value func-
tions. This generally obviates the need for state-by-state computation, aggregating states at the leaves of
these trees and requiring computations only for each aggregate state. The key to these algorithms is a
decision-theoretic generalization of classic regression analysis, in which we determine the features rele-
vant to predicting expected value. We demonstrate the method empirically on several planning problems,

* Some parts of thisreport appearedin preliminary formin“ Exploiting Structurein Policy Construction,” Proc. of Fourteenth I nter-
national Joint Conf. on Artificial Intelligence(1JCAI-95), Montreal, pp.1550-1556(1995); and “ Correlated Action Effectsin Decision-
Theoretic Regression,” Proc. of Thirteenth Conf. on Uncertainty in Artificial Intelligence (UAI-97), Providence, pp.30-37 (1997).

t Communicating author

showing significant savingsfor certain types of domains. We also identify certain classesof problemsfor
which this techniquefails to perform well and suggest extensions and related ideas that may prove useful
in such circumstances. We also briefly describe an approximation scheme based on this approach.

Keywords: decision-theoretic planning, Markov decision processes, Bayesian networks, regression, decision trees,
abstraction

1 Introduction

Decision-theoreticplanning (DTP) hasattracted aconsi derableamount of attentionrecently asAl researchers
seek to generalize the types of planning problems that can be tackled in computationally effective ways.
DTP is primarily concerned with problems of sequentia decision making under conditions of uncertainty
and where there exist multiple, often conflicting, objectives whose desirability can be quantified. Markov
decision processes (MDPs) have been adopted as the model of choice for DTP problems in much recent
work [12, 26, 28, 30, 61, 78], and have also provided the underlying foundations for most work in rein-
forcement learning [48, 76, 77, 84]. MDPs alow theintroduction of uncertainty into the effects of actions,
the modeling of uncertain exogenous events, the presence of multiple, prioritized objectives, and the solu-
tion of nonterminating process-oriented problems.*

The foundations and the basic computational techniques for MDPs [3, 5, 44, 62] are well-understood
and in certain cases can be used directly in DTP. These methods exploit the dynamic programming princi-
ple and allow MDPsto be solved in time polynomia in the size of the state and action spaces that make up
the planning problem. Unfortunately, these classical dynamic programming methods are formulated so as
to require explicit state space enumeration. As such, Al planning systems that solve MDPs are faced with
Bellman’s so-called curse of dimensionality: the number of states grows exponentially with the number of
variablesthat characterize the planning domain. This has an impact on the feasibility of both the specifica
tion and solution of large MDPs.

The curse of dimensionality plagues not only DTP, but also classical planning techniques. However,
methods have been developed that, in many instances, circumvent this problem. In classical planning one
typically does not specify actions and goals explicitly using the underlying state space, but rather “inten-
sionally” using propositional or variable-based representations. For instance, a STRIPS representation of
an action describes very concisaly thetransitionsinduced by that action over alarge number of states. Sim-
ilarly, classica planning techniques such as regression planning [83] or nonlinear planning [22, 54, 58, 66]
exploit these representations to great effect, never requiring that one search (or implement “ shortest-path”
dynamic programming techniques) explicitly through state space. Intuitively, such methodsaggregate states
that behave identically under a given action sequence with respect to agiven goal.

10oneform of uncertainty cannot be handled in the framework we adopt, specifically, partial observability, or uncertain knowledge
about the state of the system being controlled. Partially observable MDPs (or POMDPs) [52, 53, 75, 73] can be used in such cases.
We will make further remarks on POMDPs at the end of this article.

In this paper, we devel op similar techniquesfor solving certain classes of large MDPs. Wefirst describe
arepresentation for actions with stochastic effects that uses Bayesian networks (and decision treesto rep-
resent the required families of conditional probability distributions) to provide the same type of compact
representation of actions that, say, STRIPS affordsin deterministic settings. We aso use decision trees to
represent reward functions. This representation lays bare — indeed, exploits— certain structural regulari-
tiesintransition probabilitiesand reward functions. We then describe a gorithmsthat use thisrepresentation
to compute value functions and solve MDPs without generally requiring explicit enumeration of the state
space. Much like regression in classical planning, we focus attention on the variables that, under a par-
ticular action, influence the outcome of this action with respect to relevant variables. In addition, policies
and value functions will be represented compactly using decision trees, with the structure inherent in the
policy or value function being preserved to alarge extent by our algorithmic operations. Indeed, under cer-
tain assumptions one can show that the degree of preserved structureis maximal (e.g., subject to variable
reordering in trees).

1.1 Decison-Theoretic Regresson

The key to each of our algorithmsis a process we call decision-theoretic regression. In classica planning
the regression of a set of conditions C' through an action « isthe weakest set of conditionsregr (C,) such
that performing action a under conditions regr (C, @) ensures that C' is made true [83].2 Thisis the key
step in any backchaining (or subgoaling) planner, including least-commitment planners [54, 58]. Given a
(sub)goal set ¢, regression of GG through a produces anew subgoal whose achievement with plan P’ assures
usof aplan P to achieve GG: simply append « to P’ toform P.

Decision-theoretic regression generalizes thisprocess in two ways. First, we can’t always speak of goal
achievement in MDPs; rather, we concern oursel veswith the val ue associated with certain conditions. Thus,
we regressa set of conditions, each associated with adistinct value, through an action. Assuch, thedecision
theoretic regression of such a set of conditionsthrough an action will result in anew set of conditions. Sec-
ond, stochastic actions rarely guarantee achievement of any particular condition—so rather than producing
the conditionsthat, when the action isapplied, lead to a specific “target” condition, we instead produce a set
of conditions under which the action will make each of the regressed conditions true with identical prob-
ability. It followsthat, since each condition in the regressed set is associated with a single value, the new
conditions produced by decision-theoretic regression each have the same expected value under action a.

With such an operationin hand, we can implement classical algorithmsfor solvingMDPs, such asvalue
iteration [3] or modified policy iteration [63] in a highly structured way. Our structured versions of these
algorithmswill cluster together states that at each stage in the computation have the same estimated value
or same optimal choice of action. This partitioning of state space into such regionswill be represented by
decision trees that test the values of specific variables. The computationa advantage provided by such an

2Regression is also a concept of fundamental importance in program synthesis and verification [24, 34].

approach isthat value need only be computed once for each region instead of once per state.

1.2 State Aggregation and Function Approximation

The approach wetaketo solving large M DPsisa specific state aggregation method. Other typesof state ag-
gregation techniques have been proposed, in which states with similar characteristics are grouped together.
Such methods are reported in, for instance, [4, 68, 81], and can vary as to whether states are statically or
dynamically aggregated (that is, do the groupings of states stay fixed or can they change during computa
tion). Other compact representations of value functions have also been proposed, such as linear function
representations or neural networks[1, 6, 80, 81]. These techniques do not seek to exploit regions of unifor-
mity in value functions, but rather compact functions of state features that reflect value. As such they are
distinguished from strict aggregation methods.

In much of this previous work, the goal is the approximate solution of large MDPs. Our proposal can
be di stinguished from other aggregation methods, and other compact representations of vauesfunctions, in
two major ways. First, our aggregations are determined dynamically using featuresthat are easily extracted
from the model. In thissense, the intuitionsthat underly our approach are much more closely aligned with
those exploitedin classical planning. Indeed, states are implicitly aggregated by a process of abstraction—
theremoving of certain variables from the state space description. Second, our methods are not (inherently)
approximation techniques—the basic procedures produce exact solutions and value functions.® We will,
however, describe modifications of our techniques that allow approximate solutionsto be constructed.

There are two approaches to state aggregation that bear similarity to our method. The first isthe model
mi nimization approach of Givan and Dean [26, 27, 39]. Inthiswork, the notion of automaton minimization
[42, 51] is extended to MDPs and is used to analyze abstraction techniques such as those presented in [30].
More closely related to the specific model we propose in the current paper isthat of Dietterich and Flann
[32, 33]. They apply regression methods to the solution of MDPs (and consider this problem in the context
of reinforcement learning in addition). Their original proposal [32] isrestricted to MDPs with goa regions
and deterministic actions (represented using STRIPS operators), thus rendering true goal-regression tech-
niques directly applicable. Thisisextended in [33] to allow stochastic actions, thus providing a stochastic
generalization of goa regression. We discuss these modelsin more detail in Section 4.7.

1.3 Outline

In Section 2 we describe the basic MDP model, various concepts that are used in the solution of MDPs, as
well as severd classica agorithmsfor solving MDPs.

In Section 3, wedefine aparti cular compact representati on of an M DP, using dynami c Bayesian networks
[25, 29]—aspecia form of Bayesian network [57]—to represent the dependence between variables before

3More accurately, they produce solutionsthat are identical to their standard state-based counterparts, which may be e-optimal.

and after the occurrence of actions. In addition, we use decision treesto represent the conditional probability
matrices quantifyingthe network to exploit context-specific independence[14], that is, independence given
a particular variable assignment. We note that this representation is somewhat related to the probabilistic
variants of STRIPS operatorsintroduced in [40] and augmented in [30]. We a so describe the decision-tree
representation of reward functions, value functionsand policies.

In Section 4, we describe the basi ¢ deci sion-theoreti c regression operator which, given a particular tree-
structured value function and action network, regresses the val ue function through that action to produce a
new valuefunction. Withthisoperationin hand, we devel op structured anal ogsof classica MDPa gorithms
likevalue and policy iteration. In Section 5 we present an empirical analysis of these methods and suggest
thetypesof problemsfor whichitislikely towork well, unlikely towork well, and what possi bl e approaches
may help with thelatter. In Section 6 we describe an extension of the algorithms presented in Section 4 to
deal with correlationsin action effects. We also briefly describe some work that leverages the structured
methods described in Section 4 to provide approximate solutions for structured MDPs. We conclude in
Section 7 with some brief discussion of recent work that isrelated to, or extends, these ideas, and describe
some promising directionsfor future research.

2 Markov Decision Processes

MDPs can be viewed as stochastic automata in which actions have uncertain effects, inducing stochastic
transitions between states, and in which the precise state of the system is known only with a certain proba-
bility. In addition, the expected value of a certain course of action isafunction of thetransitionsit induces,
allowing rewards to be associated with different aspects of the problem rather than with an al-or-nothing
goa proposition. Finaly, plans can be optimized over afixed finite period of time, or over an infinite hori-
zon, thelatter suitablefor modeling ongoing processes. These make MDPsidea modelsfor many decision-
theoretic planning problems (for further discussion of the desirable features of MDPs from the perspective
of modeling DTP problems, see [11, 17, 28, 35]).

In this section, we describe the basic MDP model and consider several classical solution procedures.
Primarily for reasons of presentation, we do not consider action costs in our formulation of MDPs. All
utilitiesare associated with states (or propositions). However, moregeneral cost/reward modelscould easily
beincorporated with our framework. Furthermore, werestrict our attention to finite state and action spaces.
Finally, we make the assumption of full observability: despitethe uncertainty associated with action effects,
the planning (or plan-executing) agent can observe the exact outcome of any action it has taken and knows
the precise state of the system at any time. Partially observable MDPs (POMDPs) [21, 53, 73] are much
more computationally demanding than fully observable MDPs. However, we will make afew remarks on
the application of our techniques to POMDPs at the conclusion of this article.

4See[16] for more detailed investigations of this type.

We refer the reader to [5, 11, 62] for further material on MDPs.

2.1 TheBasic Modd

A Markov decision process can bedefined asatuple(S, A, T, R), where S isafiniteset of statesor possible
worlds, A isafinite set of actions, 7" is a state transition function, and R isareward function. A stateisa
description of the system of interest that captures all information about the system relevant to the problem
at hand. Intypical planning applications, the state is a possible world, or truth assignment to the logical
propositionswith which the systemisdescribed. The agent can control the state of the system to some extent
by performingactionsa € .A that cause statetransitions, movement from the current stateto some new state.
Actionsare stochastic in that the actual transition caused cannot generally be predicted with certainty. The
transition function 7" describes the effects of each action at each state. 7'(s;, a) isaprobability distribution
over S: T'(s;, a)(s;) isthe probability of ending up in stete s; € S when action « is performed at state s;.
We will denote this quantity by Pr(s;, a, s;). Werequirethat 0 < Pr(s;, a,s;) < 1forall s;, s;, and that
forall si, >, cs
being controlled. We assume that each action can be performed at each state. In more genera models, each

Pr(s;,a,s;) = 1. The components S, .A and T' determine the dynamics of the system

state can have a different feasible action set, but thisis not crucia here.®

The states that the system passes through as actions are performed correspond to the stages of the pro-
cess. The system startsin astate s; at stage 0. After ¢ actions are performed, the systemisat staget. Given
afixed “course of action,” the state of the system a stage ¢ can be viewed as a random variable S*; simi-
larly, we denote by A the action executed at stage¢. Stages providearough notion of timefor MDPs. The
system is Markovian due to the nature of the transition function; that is,

PI'(St|At_1,St_l,At_z,St_z, . 'AO,SO) — PI'(St|At_1,St_1)

The fact that the system isfully observable means that the agent knows the true state at each stage ¢ (once
that stage is reached), and its decisions can be based solely on thisknowledge.

A stationary, Markovian policy = : & — .4 describes a course of action to be adopted by an agent con-
trolling the system and playsthe sameroleasaplanin classica planning. An agent adopting such a policy
performs action 7 (s) whenever it findsitself in state s. Such policiesare Markovian in the sense that action
choice at any state does not depend on the previous system history, and are stationary since action choice
does not depend on the stage of the decision problem. For the problems we consider, optimal stationary,
Markovian policiesawaysexist. Inasense, = isaconditional and universal plan [67], specifying an action

5We could model the applicability conditionsfor actions using preconditionsin away that fits within our framework below. How-
ever, we prefer to think of actions as action attempts, which the agent can execute (possibly without effect or success) at any state.
Preconditionsmay be useful to restrict the planning agent’s attention to potentially “useful” actions, and thus can be viewed as aform
of heuristic guidance (e.g., don’t bother considering attempting to open a locked door). This will not impact what followsin any im-
portant ways.

to performin every possible circumstance. An agent followingpolicy = can also be thought of as areactive
system.

A number of optimality criteriacan beadopted to measure thevalueof apolicy =. Weassume abounded,
real-valued reward function R : S — R. R(s) istheinstantaneous reward an agent receives for occupying
state s. Moregenera reward model s are possi bl e, though none of theseintroduce any special complications
for our algorithms. One common generalization allows R(s) to be a random variable—if thisis the case,
taking its expectation as the (deterministic) reward for state s has noimpact onvalue or policy calcul ations.®
Often one alowsreward E(s,) to depend on the action taken, so as to model the costs of various actions.
To keep the presentation simple, we will not consider this possibility in the development of our algorithms;
but we will point out the very minor adjustments one must make to account for action costs at appropriate
pointsin the presentation of our methods.

We take a Markov decision problem to be an MDP together with a specific optimality criterion. We
will use the abbreviation MDP to refer to the specific problem (process with optimality criterion) as well
as the process, with context distinguishing the precise meaning. Optimality criteria vary with the horizon
of the process being controlled and the manner in which future reward isvaued. In this paper, we focus
on discounted infinite-horizon problems: the current value of a reward received ¢ stages in the futureis
discounted by some factor 5*(0 < 2 < 1). Thisalows simpler computational methods to be used, as
discounted total reward will befinite.” The infinite-horizon model isimportant because, even if aplanning
problem does not proceed for an infinite number of stages, the horizon isusualy indefinite, and can only be
bounded loosealy. Furthermore, solving an infinite-horizon problem is often more computationally tractable
than solving a very long finite-horizon problem. Discounting has certain other attractive features, such as
encouraging plans that achieve goals quickly, and can sometimes be motivated on economic grounds, or
can be justified as modeling expected total reward in a setting where the process has probability 1 — 5 of
terminating (e.g., the agent breaks down) at each stage. We refer to [62] for further discussion of MDPsand
different optimality criteria.

Thevalueof apolicy = (under thisoptimality criterion) issimply the expected sum of discounted future
rewards obtained by executing . Since thisvalue depends on the state in which the process begins, we use
Vr (s) to denote the value of 7 at state s. A policy 7 is optimal if, for al s € S and all policies r, we
have V- (s) > Vx(s). We are guaranteed that such optimal (stationary) policies exist in our setting [62].
The (optimal) value of astate 1V*(s) isitsvalue V;« (s) under any optimal policy =*. We take the problem
of decision-theoretic planning to be that of determining an optimal policy (or an approximately optimal or
satisficing policy).

6Similarly, if rewards depend on the transition from s; to s; (i.e, taketheform R(s;, s;)) expectations can be used if we allow
reward to depend on actions, as we discuss below.

“Our methods apply directly to finite-horizon problems as well, and with suitable modification can be used in the computation of
average-optimal policies. We do not pursuethis here.

2.2 Solution Methods
Policy Evaluation and Successive Approximation

Givenafixed policy 7, thefunction V; can be computed using astraightforwarditerativeal gorithmknow as
successive approximation [5, 62]. We proceed by constructing a sequence of n-stage-to-go value functions
V. Thequantity V" (s;) istheexpected sum of discounted futurerewards received when = is executed for
n stages starting at state s;. We set V.%(s;) = R(s;) and recursively compute

Vit (si) = R(si) + 8) Pr(si, m(s:), 57) V7~ (s5) @
s;€8
Asn — oo, VP — Vi; and the convergence rate and error for afixed n can be bounded [62]. We note that
the right-hand side of this equation determines a contraction operator so that: (&) the a gorithm converges
for any starting estimate V.2; and (b) if we set V! = V., thenthe computed V" for any n isequal to V;, (i.e,
Vr isafixed-point of thisoperator). We can also compute thevalue function V. exactly using thefollowing
formula dueto Howard [44]:

Velsi) = R(si) + 8 Y Pr(s;, mw(s:),55) Ve (55) @)

SjES

We can find the value of = for all states by solving this set of linear equations V;:(s), Vs € S.

Value lteration

By solving an MDP, we refer to the problem of constructing an optimal policy. Valueiteration[3] isasim-
ple iterative approximation algorithm for optimal policy construction that proceeds much like successive
approximation, except that at each stage we choose the action that maximizes the right-hand side of Equa
tion 1:
V*(si) = R(Sz’)+I;leég{ﬁ;;f’r(%a,Sj)V"_l(Sj)} ©)

The computationof 17 (s) given V"~ ! isknown as aBelIman backup. The sequence of valuefunctionsV”
produced by value iteration converges linearly to VV*. Each iteration of valueiteration requires O(]S|?|.Al)
computation time, and the number of iterationsis polynomial in |S].

For somefiniten, the actionsa that maximize the right-hand side of Equation 3 form an optimal policy,
and V" approximatesitsvalue.

One simpl e stopping criterion requires termination when

e(1—5)

i+ _ || <
vt - Vi< 2o

(4)

(where|| X || = max{|xz| : # € X} denotesthe supremum norm). This ensures the resulting val ue function

Vit iswithin 5 of the optimal function V* a any state, and that the induced policy is c-optimal (i.e., its
vaueiswithine of VV*) [62]. Another stopping criterion uses the span seminorm, ||Vt — V||, where
[|X]||s = max{z : # € X} —min{x : € X}. Similar boundson the quality of theinduced policy can be
provided.®
A concept that will be useful later isthat of a@)-function. Given an arbitrary valuefunction 1, we define
QY (s) as
QY (si) = R(s:) + B Y Pr(si,a,s;)V(s)) ©)

SjES

Intuitively, QY (s) denotesthe value of performing action a at state s and then acting in amanner that has
value V' [84]. In particular, we define Q7 to be the Q-function defined with respect to /*, and ()7 to bethe
Q-function defined with respect to 1V ~L. In this manner, we can rewrite Equation 3 as:

V7 (s) = max{Qg(s)} (6)

acA
Policy Iteration

Policy iteration [44] isanother optimal policy construction a gorithmthat produces exact policiesand value
functions. It proceeds as follows:

1. Let ' beany policy on §
2. Whiler # 7’ do
@ 7=
(b) Foradl s e S, caculate V; (s) by solving the set of | S| linear equations given by Equation 2

(c) Fordls; € S, if thereissome action a € A such that

R(si)+ 8> Pr(si,a,s5;)Va(s;) > Vi (si)
SjES

then 7' (s;) := a; otherwise 7’ (s;) := m(s;)
3. Return

The agorithm begins with an arbitrary policy and alternates repeatedly (in Step 2) between an evaluation
phase (Step b) in which the current policy is evaluated, and an improvement phase (Step c) in which local
improvements are made to the policy. This continues until no local policy improvement is possible. The
algorithm converges quadratically and in practice tends to do so in relatively few iterations compared to

8\We refer to [62] for adetailed discussion of more refined stopping criteriaand error boundsfor valueiteration, and how assurances
of optimality (rather than =-optimality) can be provided using techniqueslike action elimination.

valueiteration [62]. However, each evaluation step requires roughly O(|S|3) computation (using the most
naive methods for solving the system of equations) and each improvement step is O(|S|?|.A|).

The policy evaluation step can also beimplemented using successive approximation rather than solving
the linear system directly.

Modified Policy Iteration

Whilepolicy iteration tendsto converge faster in practice than valueiteration, the cost per iterationis rather
high due to the system of linear equations that must be solved. Puterman and Shin [63] have observed that
the exact value of thecurrent policy istypically not needed to check for improvement. Their modified policy
iterationa gorithmisexactly like policy iteration except that the eval uation phase uses some (usually small)
number of successive approximation steps instead of the exact solution method. This algorithm tends to
work extremely well in practice and can be tuned so that both policy iteration and valueiteration are specia
cases [62, 63]. Few acceptable forma criteriaexist for choosing the number of successive approximation
steps to invoke, this quantity generally being determined empirically.

3 Bayesian Networ k Representations of MDPs

Whilethe MDP framework providesa suitable semantic and conceptual foundationfor DTP problems, the
direct representation of planning problems as MDPs—and the direct implementation of dynamic program-
ming algorithms to solve them—often proves problematic due to the size of the state spaces of many plan-
ning problems. Generally, planning problems are described in terms of a set of domain features sufficient
to characterize the state of the system. Unfortunately, state spaces grow exponentialy in the number of
features of interest. Because of Bellman's so-called “ curse of dimensionality,” both the specification of an
MDP—in particular, the specification of system dynamics and a reward function—and the computational
methods used to solve MDPs must be tailored to resolve this difficulty. 1n this section we focus on the rep-
resentation of MDPs in factored (or feature-based) problems. In the following section we describe how to
exploit our proposed representations computationally in dynamic programming algorithms.

To illustrate our representational methodol ogy, we will use the following example of a feature-based,
stochastic, sequential decision problem. We suppose a robot is charged with the task of going to acafé to
buy coffee and delivering the coffee to its owner in her office. It may rain on the way, in which case the
robot will get wet, unless it has an umbrella. The umbrellais kept in the office, and the robot is able to
move between the two locations (café and office), buy coffee, deliver (hand over) coffee to its owner, and
pick up theumbrella—all under suitable conditions. We have six bool ean propositionsthat characterize this
domain:

e O: therobotislocated at the office: O meansthe robot at the office, O meansit is at the café;
o IW: therobot is wet;
o U: therobot hasits umbrellg;

10

e R:itisraining;
e HCR: therobot has coffegin its possession; and

o HCO: therobot’s owner has coffee
We dso have four actions:

e Go: movesthe robot to the opposite (of the current) location;
e BuyC: buy coffee, which provides the robot with coffeeiif it is at the café
o DelC: the robot hands coffee over to the user, if it isin the office;

e GetU: theraobot picks up the umbrellaif it isin the office

The effect of these actions may be noisy (i.e., with a certain probability may not have the intended or pre-
scribed effect).

3.1 Bayesian Network Action Representation

It has long been recognized in the planning community that explicitly specifying the effects of actionsin
terms of state transitionsis problematic. The intuition underlying the earliest representational mechanisms
for reasoning about action and planning—the situation cal culus [55] and STRIPS [36] being two important
examples—is that actions can often be more compactly and more naturally specified by describing their
effects on state variables. For example, in the STRIPS action representation, the state transitionsinduced
by actions are represented implicitly by describing only the effects of actions on features that change value
when the action is executed. Factored representations can be very compact when individual actions affect
relatively few features, or when their effects exhibit certain regularities.

To deal with stochastic actions, we must extend these intuitions somewhat. Rather than stating what
value avariable takes when an action is performed, we must provide a distribution over the possiblevalues
avariable can take, perhaps conditional on properties of the state in which the action was performed. To
exploit the potential independence of an action’s effects, and regularitiesin these effects when the action is
performed in different states, we will adopt dynamic Bayesian networks as our representation scheme. We
note that other representations are possible, such as the stochastic STRIPS rules described in [40, 41, 50].
However, we will see below that the Bayesian network methodol ogy offers certain advantages.

3.1.1 TheBasic Graphical Mode

Formally, we assume that the system state can be characterized by a finite set of random variables X =
{X1, -+, X, }, eechwithafinitedomain val (X;) of possiblevaluesit can take. We often use propositional
or boolean variables in our examples, which can take the values T (true) or L (false). The possible states
of the system are simply the possibl e assignments of valuesto variables; that is:

S =val(Xy) xval(X3) x -+ x val(X,)

11

10 0.0

' 1
/OUHCR' HCO' |[HCOM™ g
________________ = T | 10 N o
; 10 .

10
10 é H(é\/ .
N 00

08 100.”

O — (W)
ﬁﬁ > 2
. F loo

Tree

Time t Time t+1 Matrix Representation

Figure 1: Action Network for DelC with three of six CPTs shown

Just as we use the random variable S* to denote the state of the system at stage ¢, so too we use X! to
denote that value taken by state variable X; at timet¢. In our example, HCR' isavariabletakingvalue T or
| depending on whether the robot has coffee at stage ¢ of the decision process.

A Bayesian network [57] is arepresentationa framework for compactly representing a probability dis-
tribution in factored form. Although these networks have most typically been used to represent atemporal
problem domains, we can apply the same techniques to capture temporal distributions[29], as well as the
effects of stochastic actions. Formally, a Bayes net is a directed acyclic graph with vertices correspond-
ing to random variables and an edge between two variables indicating a direct probabilistic dependency
between them. A network so constructed also reflects implicit independencies among the variables. The
network must be quantified by specifying a probability distribution for each variable (vertex) conditioned
on al possiblevalues of itsimmediate parentsin thegraph. 1naddition the network must includeamarginal
distributionfor each vertex that has no parents. Together with theindependence assumptionsdefined by the
graph, this quantification defines a unique joint distribution over the variables in the network. The proba
bility of any event over this space can then be computed using algorithmsthat exploit the independencies
represented in the graph structure. We refer to Pearl [57] for details.

We can use dynamic Bayesian networks (DBNS) [29] to represent the transition probabilities associated
with a specific action as illustrated in Figure 1. The nodes in the network correspond to state variables X,
and can be partitionedinto two sets: thoserepresenting the state of the system beforetheactionisperformed,
X!; and those representing the state after the action is executed, X} +1 Arcs between these nodes represent

12

direct probabilistic (or causal) influence among the corresponding variables under the action in question.
Arcs are only directed from pre-action variables to post-action variables—we call these diachronic arcs—
or from post-action variables to other post-action variables—we call these synchronic arcs. Note that the
network must, however, be acyclic. The network in Figure 1 represents the effects of the action DelC (de-
liver coffee). We see that the effect of that action on the variable HCO' ! depends directly on the variables
0!, HCO" and HCR' .°

The network for action « is quantified by providing a family of conditional probability distributions
for each post-action variable X! *'. More precisely, let IT(X!**) be the parents (i.e., the predecessors) of
X!*!, and partitionthe parentsintotwo sets: thoseparentsIT? (X! +!) that occur among the staget variables,
and those TT**+! (X *1) that occur among the stage ¢ + 1 variables. For any ingtantiationx of the variables
IT(X!*), we must specify a probability distribution Pr(X!*!|x). Thisfamily of distributionsis usually
referred to as the conditional probability table (CPT) for variable X! ™!, since these distributionsare often
represented in tabular form (see below). We write CPT(X;, «) to denote this family.

Let x = x' Ux't!, where x* (resp. x'*!) denotes the assignment x restricted to TT* (X} ') (resp.
'+ (X)), and let y* be any instantiation of the variables {X! : X! ¢ II*(X{*')}. The semantics of
thisfamily of conditional distributionsis given by:

PI'(XZ»H_l =zlx,y, x'"t A =a) = Pr(XZ»H'1 = z|x)

In other words, the distributiongoverning state variable X*+! when action « isperformed at staget depends
on its parents; furthermore, once the state variables TTI(X} *') are known, X!*! isindependent of other
variables at stage.

Figure lillustratesthese pointsin asimple case of the DelC action, where there are no synchronic arcs.
The family of conditional distributionsfor HCO’*! is given by atable: for each instantiation of variables
0!, HCO' and HCR', the probability that HCO'*! = T isprovided.’® This CPT can be explained by
observing that: if the owner has coffee prior to the action, she till has coffee after the action; if the robot
has coffee and isin the office, it will successfully hand over the coffee with probability 0.8; and if the robot
does not have coffee, or isin thewrong location, it will not cause its owner to have coffee. Noticethat this
representation allows one to specify the conditional effects of a stochastic action: the effect of an action on
a specific variable can vary with conditions on the pre-action state.

The effect of the action on W (wet) isalso shown, and is especially simple: therobot iswet (resp. dry)
with probability oneif it waswet (resp. dry) beforethe action was performed. Thisvariableissaid to persist
under theaction DelC. Theeffectson U/, O and R are captured by similar persistence relations(not shown).
Finally, the effect of DelC on HCRis explained as follows: if the robot attempts DelC when it isn’'t in the

SWhile this example has no synchronic arcs, we will see below an example where these occur.
10with boolean variables, we adopt the usual convention of specifying only the probability of truth, with the probability of falsity
given by one minusthis value.

13

@ ---------------- > @
- O'HCR'HCO! HCOM1| HCR*

@ ________________ >® CTTOTOOT 08
JETOTOT 03
T F T T 0.0
" FF T T 00 HCR!
TT F T 0.0 PN
FT F T 03 i
TF F T 0.0 /O\ 00!
F F F T 0.0 é Hco!
TT T F 08 SN\ 03
FT T F 03 08 HCOM
TF T F 0.0 P
FF T F 0.0
TT F F 08 00 08
F T F F 03
T F F F 0.0
F F F F 0.0

Time t Time t+1
Figure 2: A Modified Action Network for DelC with a Synchronic Arc

office, thereisa(.7 chance a passerby will takethe coffee; if therobot isin the office it will losethe coffee
with certainty. Since thereisa0.8 chance of the user getting coffee, the 0.2 chance of the user not getting
coffee can be attributed to spillage.

Because there are no synchronic arcs, the action’s effect on each of the state variables is independent,
given knowledge of the state S?. In particular, for any state S*, we have

Pr(Witl it R O HCRT! HCO't|St) =
Pr(WHH|SH) Pr(UPFE|SY) Pr(R SY) Pr(O'1|SY) Pr(HCR ™| S") Pr(HCO' 1t |St) (7)

Furthermore, thetermson theright-handsiderely only on theparent variablesat timet; for example, Pr(Wi+1|St) =
Pr(WHHII(WH)) = Pr(W!T W), Thus, we can easily determine state transition probabilities given
the compact specification provided by the DBN.

When action networks have synchronic arcs, the calculation of transition probabilitiesis complicated
dightly. Figure 2 shows a variant of the DelC action: a synchronic arc between HCR and HCO indicates
a dependence between the robot |osing the coffee and its owner getting her coffee when therobot isin the
office. Specifically, the probability with which the robot loses the coffee depends on whether the owner
successfully accepts the coffee: if the owner getsthe coffee, the robot losesit; but if the owner does not (or
if she already had coffee), the robot loses the coffee with probability 0.2. Such synchronic dependencies
reflect correlations between an action’s effect on different variables.

Theindependenceof thet+1 variablesgiven S* doesnot holdin DBNswith synchronicarcs. Determin-

14

ing the probability of aresulting state requires some simpl e probabilisti creasoning, for example, application
of the chain rule.! In thisexample, we can write

Pr(HCR*!' HCO™*!|S") = Pr(HCR'*' |HCO' !, ") Pr(HCO't[S")

The joint distributionover ¢ + 1 variables given S* can then be computed with aslightly modified version
of Equation 7:

Pr(WH Uttt R O HCRH HCOM ! |97) =
Pr(WHHHSH) Pr(UH ST Pr(R SY) Pr(O'1!|S") Pr(HCRTHHCO T, S*) Pr(HCO | SY(B)

Notice that only the two variables HCR and HCO are correl ated—the remaining independencies allow the
computation to be factored with respect to the other four variables.
We make afew observations about this representation.

1. Unlike norma Bayes nets or DBNSs, we do not provide a marginal distribution over the pre-action
variables. In solving fully observable MDPs, we are only concerned with the prediction of the re-
sulting state distribution under some action given knowledge of the current state. As such, an action
network provides a schematic representation of all |S| transition distributions: instantiating the pre-
action variablesto represent any state s allows the straightforward computation of Pr(-, a, s).

2. We must specify an action network for each action. In thisway, an action network can be seen as
a compact specification of atransition matrix for that action. It is sometimes convenient to provide
a single network with the choice of action represented as a variable, and the distributions over post-
action variables conditioned on this action node. This type of representation, common in influence
diagrams[69], can sometimes be more compact than a set of individual networksfor each action (for
example, when a variable's value persists for most or al actions); see [15] for a discussion of the
rel ative advantages of the two approaches. We will not consider the single network representation in
this paper.

3. Because of the Markov property, we need only specify the relationship between variables X! and
Xi+1: knowledge of variables Xf"“ (k > 0) isirrelevant to the prediction of the values of variables
X;“ given X¢. Furthermore, stationarity allows us to specify the dynamics schematically, with one
DBN for each action characterizing its effects given state S* for any ¢ > 0.

4. Typicaly, the DBN representation of an action is considerably smaller than the corresponding tran-
sition matrix. In the example above, the system has 26 = 64 states, hence each transition matrix

U Note that this rationale relies on the basic semantics Bayesian networks. Given two states s; and s;, determining Pr(s;, a, s5)
involves simple table lookup and multiplication, the presence of synchronic arcs notwithstanding.

15

requires the specification of 642 = 4096 parameters. The DBN in Figure 1 requires the specifica
tion of only 36 parameters, whilethat in Figure 2 has only 64 parameters.!> We will see below that
suitabl e representations of CPTs can make DBNs even more compact.

In the worst case, a “maximally connected” DBN will require the same number of parameters as a
transition matrix. However, when the effects of actions exhibit certain regularities (e.g., they have
the same effect on a given variable under a wide variety of circumstances) or when the effects on
subsets of variables are independent, DBNs will generally be much more compact. See [11, 15] for
amore detailed discussion of thispoint. This representation (when augmented with the CPT repre-
sentations described below) also compares favorably with probabilistic variants of STRIPS operators
with respect to representation size [11].

5. Inacertain sense, the DBN representation might be seen to fall prey to the frame problem[55]: one
must specify explicitly that avariablethat isintuitively “unaffected” by an action persistsinvalue. In
Figurel, for instance, an arc relating W and W+, together with the corresponding CPT for Wi+1,
arerequired so that one caninfer that W+ hasthe samevalueas W* (when Del C isexecuted). How-
ever, itisnot hard to allow the specification of an action’seffects to focus only on those variablesthat
change, leaving the distributions over unaffected variables unspecified. Such unspecified CPTs can
befilled in by default, and unspecified arcs (e.g., the dashed arcs in Figure 1) can be added automat-
ically. The frame problem in DBNSs (including aspects related to variables that change values under
some conditionsand not others) is discussed in detail in [15].

3.1.2 Structured Representations of Conditional Distributions

The DBN representation of an action a exploitscertain regularitiesin thetransition function induced by the
action. Specifically, theeffect of a on avariable X;, given any assignment of valuesto itsparentsH(Xi“rl),
isidentical no matter what values are taken by other state variables at timet (or earlier). However, thisrep-
resentation does not allow oneto exploit regularitiesin the distributions corresponding to different assign-
mentsto IT(X!T1).

We can view the CPT for variable X; inaDBN as afunction mapping val (IT(X! ™!))—the set of value
gnmentsto X;’'s parents—into A (val(X;))—the set of distributionsover X;. Thisfunctionistradition-
ally represented in atabular form: one explicitly lists each assignment in val(TI(X!™!)) in atable along
with the corresponding distributionfor X; (thetablesin Figures 1 and 2 are examples of this).

In many cases, this function can be more compactly represented by exploiting the fact that the distri-
bution over X; isidentical for several elements of val(TT(X!*')). For instance, in the CPT for HCO in

21t we exploit the fact that probabilities sum to one, we can remove one entry from each row of atransition matrix and one from
each row of aCPT (aswe havedoneinthe figures). In this case, atransition matrix would require 4032 entries, while the DBNs above
have only 18 and 32 parameters, respectively.

16

Figure 1, we see that only three distinct distributions are mapped to from the eight assignments of HCO's
parents. This suggests that a more compact function representation for this mapping might be useful.

In this paper, we consider the use of decision trees [64] to represent these functions. The CPT for a
variable X; in an action network will be represented as a decision tree: the interior nodes of the tree are
labeled with parents of X;; the edges of thetree are labeled with values of the parent variable from which
those edges emanate; and the leaves of the tree are |abeled with distributionsfor X ;. The semantics of such
atreeisstraightforward: the conditional distributionover X; determined by any assignment x to its parents
is given by the distribution at the leaf node on the unique branch of the tree whose (partial) assignment to
parent variablesis consistent with x.

Examples of such treesare shown in both Figures1 and 2, next to the corresponding CPTs. The mapping
from HCO’s parentsinto distributionsover HCO in Figure 1 isrepresented more compactly in the decision-
tree format than the usual tabular fashion. The structure of the tree corresponds to our intuitionsregarding
the effects of DelC. If HCO was true, it remains true;*® but if HCO was false, then it becomes true with
probability 0.8 if O istrue and HCRistrue; otherwiseit remainsfalse. Inasense, decision treesreflect the
“rule-like’ structure of action effects. The tree for HCRin Figure 2 relies on a synchronic parent.'4

We focus on decision trees in this paper because of their familiarity and the ease with which they can
be manipulated. Furthermore, they are often quite compact when used to describe actions. However, other
representations may be suitable, and more compact, in certain circumstances. CPTs could sometimes be
more compactly represented using rules[60, 64], decision lists[65] or boolean decision diagrams[19]. The
algorithms we provide in the next section are designed to exploit the decision-tree representation, but we
see no fundamental difficultiesin devel oping similar algorithmsto exploit these other representations. In-
deed, we will briefly point out extensions of thework described in this paper that exploit decision diagram
representations.®

We notethat thisrepresentation can be viewed as exploitingwhat is known as context-specific indepen-
dencein Bayesian networks[14]. Just astheindependence of two variablesgiven knowledge of some subset
of variables can be determined using the graphica structure of a Bayes net, additional independence can be
inferred given certain assignmentsto a subset of variables (or a specific context). Algorithmsfor detecting
these context-specific independencies using CPT representations such as decision trees and decision graphs
aredescribed in[14]. Related notionscan befoundin [38, 59, 70]. We notethat asymmetric representations
of conditional distributionsin influence diagrams have also been proposed and investigated in [74].

13We adopt the convention that, for boolean variables, |eft edges denote T and right edges denote L.

14Unless anode has synchronic parents, we will omit ¢ and ¢ + 1 superscriptsat the interior node labels of the decision-tree CPT;
all such nodeswill be understood to refer to variablesat time ¢, not ¢ + 1.

BDeterministic, goal-based regression algorithms have been developed for such representationsin many circumstances; e.g., see
[20] for adiscussion of regression using bool ean decision diagrams. Decision-theoretic generalizationsof these techniques, usingideas
developed in the following section, should prove useful.

17

w W
> A AN\
09 10 0001

Figure 3: The Reward Tree for the Coffee Example

3.2 Reward Representation

Reward functionscan be represented in asimilarly compact fashion. Rather than specify avector of reward
values R(s) of size|S|, we can exploit the fact that reward is generally determined by a subset of system
features. We represent the dependence of reward on specific state features using a diagram such as that
showninFigure3: hereareward node (thediamond inthefigure) dependsonly onthevaluesof thevariables
W and HCO. The matrix represents thisreward as function of the values taken by the two variables. Here
we seethat the best states are thosein which the owner has coffee and therobot is dry, whilethe worst states
are thosein which the variables take the opposite values. Note that thereisa preference for statesin which
the robot is wet and the owner has coffee over those where the robot stays dry and its owner is without
coffee: thus, delivering coffee is ahigher priority objectivefor the robot than staying dry.

Thereward nodeinthisexampleisrelated to theval ue nodes of influence diagrams[45, 69]. Ininfluence
diagrams, these nodes generally represent (long-term) value, whereas we use them to represent immediate
reward (note that we assume stationarity of the reward process). In both cases, theindependence of reward
and certain state variablesis exploited. Some work on influence diagrams has considered the use of reward
nodes such as these, which are combined using some function (e.g., summation) to determine overall value
(see, eg., [79]). If action costs need to be modeled (i.e., reward has theform R(s, a)), anode representing
the chosen action can beincluded, as they are in influence diagrams, or a separate reward function can be
specified for each action, just aswe specified adistinct DBN for each action to capture the process dynamics.

Aswith CPTsfor actions, thisconditional reward function can a so be represented using adecision tree.
In the example shown, the decision tree is no more compact than the full table; but in many instances, a
decision-tree representation can be considerably more compact.

The representation of reward functions can sometimes be more compact if the reward functionis com-
prised of a number of independent components whose values are combined with some simple function to
determine overal reward. Theseideas are common in the study of multi-attributeutility theory [49]. In our
example, the reward function can be broken into two additive, independent components: one component
determines the “sub-reward” determined by HCO—0.9 if HCO, 0 if HCO; and the other determines the

18

HCO .
~~ Hcr . w HCR
pdC /\ o = = /\
o o . 900 10.00 o) o
/\ AN
DdC Go W/E\ch S W/\W W/\W
Go R VAN 7.45 6.64 519 5.83

R R
' /\ /\
/\ Go AN . /\ 8.45 /U\ 7.64 /\ 6.19 /U\ 6.83

Go GetU 8.45 8.36 764 681 6.19 5.62 6.83 6.10
Figure 4: Examples of aPolicy Tree and a Value Tree

sub-reward for W— 0.1 of W and 0 if W. Thereward at any state is determined by summing the two sub-
rewards at the state. If there are a number of such component reward functions, specification of reward in
terms of these components (together with acombination function) can often be considerably more compact.

Whilewe permit anumber of “independent” decision treesto be specified, our algorithmsdo not exploit
the utility independenceinherent in such areward specification. Instead, we simply combinethe component
functionsinto asingledecision tree representing thetrue (global) reward function. How best to exploit such
utility independencein MDPsin general isstill an open question, thoughit hasreceived some attention. For
discussion of these issues, see[9, 37, 56, 71].

3.3 ValueFunction and Policy Representation

It isclear that value functions and policies can also be represented using decision trees (or other compact
function representations). Again, these exploit thefact that value or optimal action choice may not depend
on certain state variables, or may only depend on certain variables given that other variabl es take on specific
values.

The agorithms we develop in the next section construct tree-structured representations of value func-
tionsand policies. Both valuetrees and policy trees have internal nodes label ed by state variables and edges
label ed with (corresponding) variable values. The leaves of value trees are labeled with real values, denot-
ing the value of any state consistent with the labeling of the corresponding branch. The leaves of policy
trees are labeled with actions, denoting the action to be performed at any state consistent with the labeling
of the corresponding branch. Tree representations of policies are sometimes used in reinforcement learn-
ing aswdll [23], though in a somewhat different fashion. Examples of apolicy and value tree are givenin
Figure4.

In our implementation of decision-theoreticregression and structured dynamic programming al gorithms
described in the next section, we allow our treesto be dlightly more sophi sticated in the case of multi-valued
variables. When atree splits on avariable with more than two domain values, we require only that the do-

19

main be split into two or more subsets of values, with each subset 1abeling an edge directed from the corre-
sponding interior node. In thisway, if the distinctionsbetween thevalues, say, {«1, 25} and {z3, 24} from
the domain val (X) areimportant for value function or policy prediction, but the distinction between z; and
x5 (or 23 and z4) are not, we are not forced to create four distinct subtreesunder node X'. Wewill, however,
for ease of presentation describe our agorithmsas if splitsat any interior node of atree are exhaustive.

These vaue function and policy trees can understood as effecting a form of state aggregation; every
dtate satisfying the conditionslabeling a particular branch of the tree are assigned the same value or action
choice. In particular, thisform of aggregation can be viewed as state space abstraction, since at any state
we are generally ignoring certain features and using only the value of othersin predicting, say, thevaue or
optimal action choice at that state. It is clear that similar remarks can be applied to both the DBN action
representation, where states with similar dynamics under a specific action are grouped together, and to the
decision-tree reward representation.

Categorizing these types of abstraction aong the dimensions described in [11, 30], our methods use
nonuniform abstraction; that is, different features are ignored in different parts of the state space. In par-
ticular, these decision trees capture a conditional form of relevance, where certain variables are deemed to
be relevant to value function prediction under certain conditions, but irrelevant under others. Compared
to linear function approximators or neural network representations of value functions, our representations
aggregate statesin a*“ piecewise constant” fashion.

Aswewill see below, our abstraction scheme can a so be classified asadaptivein that the aggregation of
statesvaries over timeasour a gorithmsprogress. Finally, our main algorithmimplements an exact abstrac-
tion process, whereby states are aggregated only when they agree exactly on the quantity being represented
(eg., value, reward, optimal action or transition distribution). We will see in Section 6.2 an approximate
variant of this abstraction method.

4 Decision-Theoretic Regression

The decision-tree representations described in the previous section provide a means of representing value
functions and policies more compactly than the straightforward table-based representations. In particular,
if atree can be constructed to represent the optimal value function or policy in which the number of inter-
nal nodes|abeled by state variablesis polynomial in the number of variables, then this representation will
be exponentially smaller than the corresponding tabular representation. If we were given the structure of
such atreefor (say) the value function by an oracle, one might imagine partitioning state space into the ab-
stract states given by the structure of the tree, and performing dynamic programming—Iet’sassume value
iteration—over the reduced state space. In this case, each dynamic-programming iteration would require
only one Bellman backup per abstract state, thus, a number of backups which is a polynomia function of
the logarithm of the number of states.

Unfortunately, even if the true value function can be compactly represented using a decision tree, the

20

regions of state space over which an intermediate value function generated by value iteration is constant
need not match those of the optimal value function. Furthermore, we don’t usually have access to oracles
who provide us with suitable abstractions. What we need are algorithmsthat, for example, infer the proper
structure of the sequence of value functionsproduced by val ueiteration, and perform Bellman backupsonce
per abstract state once this structure has been deduced. One could use similar ideasin (regular or modified)
policy iteration.

In this section we develop methods to do just this. These techniques exploit the structure inherent in
the MDP that has been made explicit by the DBN and decisi on-tree representations of the system dynamics
and thereward function. Specifically, given atree-structured representation of avaluefunction V', wederive
algorithmsthat producetree-structured representations of thefollowingfunctions: Q-functionswith respect
to V; the value function obtained by performing a Bellman backup with respect to V'; the value function
obtai ned by successive approxi mationwithrespect to afixed policy =, where r isrepresented withadecision
tree; and the greedy policy with respect to V. These agorithmsinfer (to varying degrees) the appropriate
structure of the underlying value function or policy before performing any decision-theoretic calculations
(e.g., maximizationsor expected value cal cul ations). Inthisway, operationssuch as computing the expected
value of an action are computed only once per abstract state (or region of state space, or leaf of the tree),
instead of once per system state. If the size of the trees is substantially smaller than the size of the original
state space, the computational savings can aso be substantial.

The key to al of the operations mentioned above is the first—the computation of a Q-function Q" for
action a with respect to a given value function V. This operation can be viewed as the decision-theoretic
analog of regression, as described in Section 1.1.

In this section, we assume that none of the action networks describing our domain contain synchronic
arcs, that is, an action’seffects on distinct variables are uncorrel ated (given knowledge of the current state).
This assumption is valid in many domains, including those we experimented with, but may be unrealistic
in others. We do this primarily for reasons of exposition. Our agorithms are conceptually simple in the
case where correlations are absent. As described in Section 3.1.1, determining the probability of a state
variabletaking acertain value after an actionis performed is straightforward. When the action network has
no synchronicarcs, these can be combined by multiplicationto determine statetransition probabilitiesdueto
their independence; but thiscombination requires some simple probabilisticinference when synchronic arcs
are present. To avoid having theintuitionsget lost in the details of thisinference, we present our algorithms
under the assumption of uncorrel ated effects. We discuss the requisite amendmentsto the decision-theoretic
regression algorithm when correlations are present in Section 6.1.

In Section 4.1 we describe the basic decision-theoretic regression algorithm. We describe regression
of atree-structured value function through a (tree-structured) policy in Section 4.2 and the maximization
step needed for Bellman backups in Section 4.3. Section 4.4 treats the policy improvement step of policy
iteration and putsthe pieces above together to formthetree-structured version of (modified) policy iteration.
In Section 4.5 we use these component a gorithmsto implement structured value iteration.

21

O
e

A\ i fai

Figure5: A tree smplified by removal of redundant nodes (triangl es denote subtrees).

In the sequel we frequently use the following standard operations on decision trees:

o Tree Smplification: Thisrefersto the process of removing any redundant interior nodesin atree(i.e.,
meaningless splits). If two or more interior nodes lying on asingle branch b of treeI” are labeled by
thesame variable, al but thetopmost such nodeisremoved fromthetree.!® For any node so removed,
we retain exactly one of its subtrees: the subtree consistent with the edge label (on b) of the topmost
node (see Figure5). Inaddition, if aninterior node splitsatreeinto two or more subtrees, al of which
areidentical, that interior node can be removed, and the parent arc of the removed node redirected to
asingle“copy” of the subtree. We use Smplify(7") to denote the tree resulting from simplification.

o Appending Trees: By appendingtreeT; toleaf [of tree T}, werefer toextending 7} withthestructure
of 75 at theleaf I. The new leaves added to the tree (i.e., those leaves of T%) are labeled using some
function of thelabel of [and the labels of the corresponding leavesin 7, (see Figure 6). We primarily
consider thefollowing functions: the union of theinformationin two labels; the sum of two labels; or
the maximum of two labels. We denote by Append(71,{, T») thetree resulting from this process (the
label -combining function will always be clear from context). We denote by Append(77, 7%) thetree
obtained by appending 7 to each leaf of 73. In other words, Append(77, 7>) denotes atree whose
branches partition state space as determined by the intersection of the partitionsinduced by 7} and
T+. We usually assume the resulting trees are simplified without explicitly mentioning this fact.

¢ Merging Trees. By merging aset of trees {71, - - -, T,, }, werefer to the process of producing asingle
tree that makes all distinctionsoccurring in any of the trees, and whose | eaves are label ed using some
function of the labels of the corresponding leaves in the origina tree. This can be accomplished by
repeated appending of successive trees to the merge of the earlier trees in the sequence (any append
ordering will result in a semantically equivalent result, assuming the |abel-combination function is
associative and commutative). We refer to the resulting tree as Merge({Ty, - - -, 7,,}). We usually
assume the resulting trees are simplified.

16Tree simplification is only slightly more involved when multivalued variables are allowed to split nonexhaustively. In this case,
a certain variable may legitimately appear on a branch of a tree more than once, not unlike continuous splits in classification and
regression trees.

22

A\ A\ N

Il |2 I3 X /\ I>
Iy s fly13) Ty la)
T T Append (Tp,14.5)

Figure6: AppendingtreeT; toleaf /; of 77, with labelscombined using function f. Notethat theresulting
tree has been simplified.

4.1 Regression through a SingleAction

A key component in al dynamic programming algorithmsis the computation of the expected value of per-
forming action « at state s;, with respect to a given value function V. Recalling Equation 5:

Qu (s1) = R(si) + 8) Pr(si,a,s;)V(s))
s;€8

Notice that this computation can be divided into three phases: (@) the computation of the expected future
value of performing « at s, Zsjes Pr(si,a,s;)V (s;); (b) the discounting of this future value by 3; and
(c) the addition of the immediate reward R(s;). If V isrepresented compactly using Tree(V'), we would
like to produce a compact tree-structured representation Tree(Q)) of @Y itself. We can do thisby exploit-
ing structure in the reward function (given by Tree(R)), the structure in the action network for «, and the
structure given by Tree(V). Intuitively, QY takes the same value at states s; and s; if these states have the
same reward and the same expected discounted futurevalue.r” That s; and s; haveidentical reward can be
verified easily by examining Tree(R). We now focus on the | atter condition.

Recall that the branches of Tree(17) correspond to regions of state space in which V' is constant. Two
states s;, s; will have identical expected future value (with respect to V' and) if ¢ causes both states to
transitionto any “constant region of V" with the same probability. Thisisequivalentto saying that ¢, when
executed at either state, makes the conditions |abeling any branch & of Tree(1”) true with identical prob-
ability. Thus Tree(Q"') should (only) distinguish conditions under which action « makes some branch of
Tree(V) true with differing odds. These conditions can be determined by examining the conditions under
which theimpact of « on any variable X; occurring in Tree(V') varies, which in turn can be determined by
examining the action network for «, specificaly Tree(a, X;).

We illustrate the intuitions with an example before describing the algorithm in detail. Consider a do-
main with four boolean variables W, X, Y and 7, with action & shown in Figure 7(a) and reward function

"Thisis a sufficient condition, not a necessary condition; more on this below.

23

(b) Reward
(a) Action Network Tree

Figure 7: (a) A simple action network; and (b) areward function.

R showninFigure7(b). Action « has no influence on variables 1/ or X, but makes Y true with high prob-
ability if X istrue, and makes 7 truewith high probability if Y istrue (both Y and 7 are unaffected if they
aretrue before a is performed).

If we assumethat V° isthereward function R, then Tree(1/?) issimply thetree shownin the figure and
VY isrepresented very compactly asatreewith two leavesinstead of atablewith 16 entries. Figure8illus-
trates how a tree representing Q. (i.e, Q}{D) is constructed. Building Tree(Q}) requiresthat we delineate
the conditions under which a will have distinct expected future value with respect to V°. Because future
value(with0 stagesto go) dependsonly on thetruth of 7, expected future val uewith one stage to go depends
only on conditionsthat influence the probability of Z being true or false after a is performed. These con-
ditionsare given directly by the network for action a, specifically by thetree representing CPT(Z, a). The
action network in Figure 7 tellsusthat Z's post-action probability isinfluenced only by the pre-action truth
valuesof Y and 7 (and that it isindependent of Y if Z istrue). Each branch of thistree thus corresponds
to aset of conditionson the state with 1 stage-to-go under which action « will lead with fixed probability to
each of theregions of state space determined by Tree(V/?), and isdenoted in Figure 8(b) as PTree(Q.), the
“probability tree” for QL. We can view this as regressing the tree representing V° through the action a to
obtai n the conditions (with 1 stage-to-go) under which a hasidentical effects with respect to the conditions
relevant to prediction of V/°.

Each leaf of PTree(().) islabeled with adistributionover Z—thisof course dictates adistribution over
the branches of Tree(1/°). Assuch, we can compute the expected futurevalue of performing action a under
any of the conditionslabeling any branch of PTree(}), as shown in Figure 8(c). For example, when 7 is
faseand Y istrue, a makes Z truewith probability 0.9 and fal se with probability 0.1; so the expected future
value (as dictated by 1/%) of executing a under those conditionsis 9. We denote by FVTree(Q.) the“future
valuetree” obtained by converting the distributionsover branches of PTree(QL) into expected valueswith

24

(a) (b) () (d)

Figure 8: The variousintermediate trees constructed during the regression of Tree(1'°) through action a to
obtain Tree(Q) are shown here. (a) Tree(1/°): thetree representation of V°; (b) PTree(Q.): this denotes
the probability of making variable Z—the only variable mentioned in Tree(V/*)—true with zero stages-to-
go when action « is performed with one stage-to-go; (c) FVTree(Q.): this denotes the undiscounted ex-
pected future value associated with performing a with one stage-to-go; and (d) Tree(Q}): the tree repre-
sentation of), obtained by discounting FVTree(Q?) and adding to it the reward function (structured as
Tree(R).

z z z z
<10 9 19
09

z = zy zZYy 81 zZy 81
<10 7y ZY 00 ZY 00

VO PTree(Ql) FVTree(Q D) Q!
(discounted)

Figure 9: The state aggregation induced by the regression of Tree(1/?) through action a.

respect to V0.

Finally, since @} isgiven by immediate reward plus discounted expected future value, the final treeis
obtai ned by applying the discount factor to each leaf of FVTree(.) and appending thereward treeto there-
sulting tree (using additionto combinetheleaves). |nour example, sinceonly varigble 7 occursin Tree(R),
thefina Tree(Q}), illustrated in Figure 8(d), does not grow in size when Tree(R) is appended. In general,
however, this step can cause further growth of the tree. Notice that the algorithm is unchanged if action
costs are involved: areward function of theform R(s,) can easily be accommodated in the construction
of Tree(Q}).

A dightly more direct view of the state aggregation induced by this abstraction mechanism isshownin
Figure 9. Working from the left, we see the partitioning of state space induced by the series of operations
described above. To the |€eft, we have the original value function V°, which depends only on variable ~.
PTree(Q.) can beviewed as anew partitioningof state space: each regionin thispartitioning containsonly

25

/\ 2
Z:1.0 Y
2 /\
z1 /Z\ Y2 Y2
19 y1 ZZLO/YQ Z09 x2 200 x2
81 00 209 200 2:097:09 7:00Z:0.0
Y:09Y:0.0 Y:0.9Y:00
() (b) ()
ZZ 22 ZZ
— =2 — T2 — T=y2
Z:1.0 /\ 19.0 /{\ 271 /\
Z:09 X2 17.91 X2 16.12 X2
Y:1.0 AN AN
Z:0.0 Z:0.0 729 00 6.56 0.0
Y:0.9Y:0.0
(d) (e) U]

Figure 10: Regression of Tree(1/!) through a to obtain Tree(Q?): (a) Tree(V'!); (b) Partial completion of
PTree(Q2); (c) Unsimplified version of PTree(Q?); (d) PTree(Q?2); (6) FVTree(Q?2); and (f) Tree(Q?).

statesthat have identical probability of reaching the different regions of 17° under action a, as suggested by
the figure. Within these regions of PTree((Q.), each state has the same expected future value (in the figure
the discounted futurevalue is shown). Thefinal step involvesadding theimmediate reward R to each state
to obtain Tree(QL). Inthisexample, thiscauses no further state splitting, since 12 depends only on variable
Z (and the partition already reflects the 7, — 7 distinction).

Moreinteresting aspects of the regressi on operation emerge when the val ue tree being regressed through
a has more structure. Imaginethat V1 (s) = QL (s), so that Tree(Q),) as produced above is now Tree(1'!)
(e.g., suppose a has maximum expected valuewith 1 stageto go at each stateduring aval ueiteration compu-
tation). To obtain Tree(Q?2), we perform the steps shown in Figure 10. In order to predict expected future
value, we must predict the probability of making any branch in Tree(V'!) true. Thus we must know the
probability of making Z true and—if 7 is possibly false—the probability of making Y true. To do this,
we “regress’ the individual variables occurring in Tree(1'!) through a and piece together the appropriate
conditions.

In Step 1, the variable 7 isregressed through a as above, producing atree (smply the tree representing
CPT(Z, a)) whose leaves are |abeled with distributionsover 7 (see Figure 10(b)). In Step 2, we regress
the variable Y through «, which returns CPT(Y,,) from the DBN with leaves labeled with distributions
over Y. Thistree is gppended to thefirst tree (that in Figure 10(b)) at every leaf where Pr(7) < 1.0; at
leaves where 7 is certain to become true, the value of Y isirrelevant to prediction of V1. The leaves of
the appended tree are labeled by the union of the original |abel s—each leaf is now labeled by a distribution
over Y and oneover 7 (see Figure 10(c)). Of course, thistree can be simplified by redundant node removal
to give PTree(Q?) as shown in Figure 10(d).

26

1.0
It
09 :: 0.9
7y ol 7y 7y 0.1 7y
:: 0.9
01

A

|

[— '_ — — —

zYy : 10 ZY ZY ZYX|ZYX
I

o W

vi PTree* vi : PTree

Figure 11: The state aggregation induced by the construction of PTree(@?) from V.

Once again, an aternativeperspectiveonthe constructionof PTree(@?) isillustratedin Figure 11. Regressing

V1 through « first requiresregressing 7 through a and then Y through «. Theregression of 2 producesthe
state partitioning shown at the left of Figure 11, PTreex: thisis sufficient to determine the probability of
ending up in either the “ Z-half” or “~7-haf” of V1. Given that we end up in the —=Z-half, we must then
determine the probability of making Y true or fase (i.e, ending up in the =7 Y -quarter, or the -7 Y-
quarter of V). Thisis achieved by regressing Y through a. The conditions relevant to predicting Y are
“overlayed” on top of the -7 region just created to produce the more refined partitioning at the right of
Figure 11, PTree. Notice that the prediction of Y is not relevant for the Z region of PTree(Q?) since all
states where 7 istrue will move, with probability one, to the Z-region of V1.

Note that each leaf of PTree(2) induces a joint product distribution over Y and Z. The semantics
of our DBNSs, under our assumption that there are no synchronic arcs, ensures that the probabilitiesof YV
and Z becoming true under action a are independent given relevant aspects of the state. Specificaly, the
conditions|abeling the branches of PTree((Q?) are sufficient to ensure thisindependence. Thus, the product
of these two distributionsprovidesan accurate prediction of the probability of making any of the conditions
labeling the branches of Tree(V'!) come about. For example, PTree(Q?) tells us that if 7 isfase and Y/
is true, then « will make 7 true (and leave Y true) with probability 0.9 and make Z fase (and leave Y
true) with probability 0.1. Each of these conditionsis sufficient to “navigate” Tree(V'!). Thus, expected
future value can be easily determined for each branch of PTree(?), giving riseto FVTree(Q?) as shown
in Figure 10(e). Discounting the future value tree and adding the immediate reward, we obtain the final
form of Tree(Q?), as shown in Figure 10(f).

This example illustrates the main intuitions underlying our regression agorithm. Given Tree(V'), the
tree Tree(QY') is congtructed in three stages. The most important phase is the first, the construction of
PTree(QY), which provides a tree whose leaves are |abeled with a set of distributionsover a subset of the
variables occurring in Tree(1/).18 The corresponding joint distribution (smply the product di stribution ob-

18|n general, not all variableswill occur at the leaves. A distribution over X is needed only in those conditions under which X

27

Input: Tree(V'), action a; Output: Tree(QY)
1. LetPTree(Q)) bethetreereturned by PRegress(Tree(V), a); we assume PRegress(Tree(V'), a) is simplified (containsno redundant nodes).
2. Congtruct FVTree(QY) asfollows. For each branch b € PRegress(Tree(V), a) (with leaf nodel,):

(@ Let Pr® bethejoint distribution obtained fromthe product of theindividual variable distributionslabeling 5.

(b) Computevy = 32,/ cTree(v) Pr®(b")V (b'). (Hereb’ arebranchesin Tree(V'), Pr? (b') isthe probability of the conditions
labeling that branch as given by the distribution Pr?, and V (b') isthevalue labeling the leaf I} in Tree(V/)).

() Re-label leaf I}, with vy,

3. Discount FVTree(Q Y') with discount factor 8 (multiply each leaf label by 3).

4. Append (and simplify) thereward tree, Tree(R), to FVTree(Q Y), using addition as the combination function. Theresulting treeis Tree(Q Y).
Figure 12: Algorithm Regress(Tree(V), a)

tained from the individual distributions) will fix a probability distribution over the branches of Tree(V'),
and thus over the values occurring in value function V. Thistreeis constructed by regressing each of the
variables occurring in Tree(V) through «, in turn, and piecing together the resulting trees. Thetreesfor the
individual variables are themselves taken directly from the DBN for a.

The second phase of theal gorithm simply involvesusing thejoint distributionat each leaf of PTree(QY)
to compute FVTree(Q}'), the expected futureval ue tree with respect to V. Thefinal phaseinvolvesadding
the reward function to the discounted version of FVTree(QY) to obtain Tree(QY'). Thislast step may in-
volve expanding FVTree(Q") by appending Tree(R) to it and doing some simplification.

Thealgorithm Regress(Tree(V'), «)—which acceptsasinput Tree(V') and action a, and returns Tree(Q Y)—
is detailed in Figure 12. The bulk of the tree structure is produced in the cal to the recursive agorithm
PRegress(Tree(V'), a), which produces PTree(Q"). PRegress(Tree(V'), a) is described in Figure 13.

Both agorithms are described in reasonably straightforward terms; and each could be implemented in
dlightly more complicated ways to minimize repeated operations and tree traversals. For instance, Steps 3
and 4 of Regress need not wait until FVTree(Q}') iscompletely constructed in Step 2. Opportunitiesfor op-
timization of PRegress include; exploiting shared substructurein the subtrees of Tree(V), thusintertwining
the (currently) independent recursive callsto PRegress in Step 3(b); and combining the merging operations
at different leavesin Step 4(b) so that leaves labeled by distributionswith overlap in their support sets can
share computation. We note that several other ways of constructing PTree(Q}) may also prove useful. In
what follows, we will not discussin detail the fine-tuning of these tree-manipul ation algorithms.°

The soundness of the algorithm is ensured by the following result.

Theorem 4.1 LetPTree((Q}) bethetree produced by thealgorithmPRegress(Tree(V/),). For any branch

isrelevant to future value. In our example, a distribution over ¥~ was not needed when the distribution over Z was concentrated on
Z=T.

19The specific performanceof different approachesto tree manipulationwill likely be closely tied to many domain specific features,
suchasthenoisein actions' effects, the ordering of variablesin theinput representation, the problem specific structure, and soon. Until
more empirical experienceis obtained with these algorithms, we are unable to offer deep insights into these factors.

28

Input:

1

2.

Tree(V), action a; Output: PTree(QY)
If Tree(V') containsasingle (leaf) node (necessarily labeled with avalue), return an empty tree PTree(Q Y).

Let X bethe variablelabeling the root of Tree(V). Let TX bethe tree-structured CPT for X inthe DBN for a (with leaveslabeled by distri-
butions over val(X)).

. Foreachz; € val(X) that occurswith positive probability in the distribution at some leaf in 7% :

(a) Let T;/, bethe subtreein Tree(V') attached to theroot X by arc«;.

(b) LetTF bethetree producedby calling PRegress(T) | a).

For each leaf [€ T% , labeled with distribution Pr!:
(@ Letval;(X) ={xz; € val(X) :Prl(x,) > 0}
(b) LetT; = Merge({Tfl : x; € val;(X)}), using union to combine the leaf labels (which are distributions over sets of

variables).

() Revise T)}? by appending 7T to leaf {, using union to combine the leaf labels (distributions) of T'; with the label (distribution
over X) of leaf I.

Return PTree(QY) = T%.

Figure 13: Algorithm PRegress(Tree(V'), a)

b of PTree(QY), let B denote the event determined by its edge labels, and assume the | eaf of b is labeled by
distributions P;(X;) for 1 < ¢ < k. Let pr? denotethejoint product distributionover X = {X;, -+, Xi }
induced by { Py, - - -, Py }. Then:

(a) Any x € val(X) such that Pr’(x) > 0 corresponds to a unique branch of Tree(V'). That
is, any assignment to X that has positive probability is sufficient to “ traverse” Tree(V) to a
unique leaf node.

(b) Let x € val(X) and s; be any state satisfying 3. Then

Z{Pr(si, a,s5) : s; =x} = Prl(x)

In other words, Pr(S'*! £ x | S' £ B, A = a) = Pr’(x).

Proof We provepart (&) inductively on the depth of tree Tree(1). The base case for atree of depth 0—i.e,

when Tree(V) consists of a single leaf |abeled with a value—is immediate, since PRegress returns
an empty tree, which is sufficient to traverse Tree(1) to aleaf. Now assume that the result holdsfor
all valuetreeswith depth lessthan d. Let Tree(V') have depth d with root labeled by variable X and
subtrees Tree(z;) for each z; € val(X). Since al subtrees Tree(x;) have depth less than d, by the
inductive hypothesis PRegress will return a probability tree PTree(x;) capturing ajoint distribution
over the variablesin Tree(x;) such that any assignment to those variables given nonzero probability
alows subtree Tree(z;) to be traversed to aleaf. Now PTree(Q)') is constructed by appending to
each leaf | of thetree CPT(X, a) those trees PTree(z;) for which the distribution over X labeling !/

29

gnsPr(x;) > 0, and maintaining the subsequent product distributionat each resulting leaf. If this
resulting product distributionat any leaf of PRegress(Tree(1'),) assigns Pr(x;) > 0, then we may
traversethe z; arc from theroot of Tree(V'). The fact that thisdistribution must include information
from PTree(x;) meansthat any event with nonzero probability permits the navigation of the subtree
Tree(x;) of Tree(V). If the resulting product distribution assigns Pr(z;) = 0, then we will never
traverse the z; arc, and the fact that the distributionsfrom PTree(z;) are not included in the product
distributionisirrelevant.

To prove part (b), let leaf [, of PTree(QY) be labeled by adistribution over the set of variables X =
{Xy,- -, Xx} and the corresponding branch b 1abeled with conditions 3. By construction, the con-
ditionslabeling b entail the conditionslabeling exactly onebranch bx, of thetreefor CPT(X;, a), for
each X;. Denote these conditions 5x,. The semantics of the DBN, given the absence of synchronic
arcs, ensures that

Pr(X; B, A = a) = Pr(X{*!|B,, A = a,C"*!, ()

where C* is any event over the variables X} consistent with By, and C**' is any event over the
varigbles X+, j # i. Since, for each X; thedistribution labeling; isexactly Pr(X;*![BY , A" =
a), the corresponding product distributionis

Pr(XIH B A" = o) Pr(XET B, A" = a) - - - Pr(X[T B, AT = q)
Sincethe X! areindependent given 5!, thisis exactly:
Pr(X{th x4t X B AT = a)
Sincethe X! areindependent of any event C'* consistent with 3¢, the result follows. W
It follows almost immediately that the algorithm Regress(Tree(V'), a) is sound, sinceit uses PTree(Q)') to
thedeterminethedistributionover valuesin Tree(17), and the conditionsunder which to usethat distribution

to computethe expected futureval ueof performinga. Adding theimmediate reward to thediscounted future
valueis straightforward.

Corollary 4.2 Let Tree(QY) be the tree produced by the algorithm Regress(Tree(V'), a). For any branch
b of Tree(QY), let B denote the event determined by its edge labels, and assume the leaf of b islabeled by
thevaluev,. For any states; = 3, wehave QY (s;) = v,. Inother words, Tree(Q}') accurately represents

Qu-

30

Input: Tree(V'), Tree(r); Output: Tree(QY)
1. For each action a occurringin Tree(w), call Regress(Tree(V), a) to produce Tree(QY).

2. Ateachleaf of Tree(n) labeled by a, append Tree(QY') to Tree(), retaining theleaf labels (values) from Tree(Q ') (deletingthe action labels
from Tree(r)).

3. Returnthe (smplified) resulting tree, Tree(Q Y).

Figure 14: Algorithm Regress(Tree(V'), Tree(r))

X
X x1 X2
e
Y
a1 Y AN %
m Tree(QY) ¥2
a2 al a3

Tree(QY) Tree(QYp) Tree(QY)
(@) (b)

Figure 15: Regression of Tree(V/) through Tree() to obtain Tree(QY): (a) Tree(n); and (b) Tree(QY).

4.2 Regression through a Policy

The algorithm for regressing a val ue function through an action can be generalized to regress avalue func-
tion through a policy. Specificaly, given value function V', we wish to produce a new value function QY
that represents the value of executing policy 7 for one step and receiving terminal value V. Thisis, for
instance, the key step in successive approximation for policy evaluation: given V.5, VA+! isjust QZ: .

Given atree Tree(1/) representing V' and a tree Tree(r) representing , our goal is to produce a tree
Tree(QY) capturing QY . The algorithm Regress(Tree(V'), Treg()) that does thisis conceptually similar
to Regress(Tree(V'), a), thekey difference being that different actions are performed in different regions of
state space, as dictated by Tree(rr). Our algorithm, detailed in Figure 14, reflects the most straightforward
approach to producing Regress(Tree(V'), Tree()). The agorithm Regress(Tree(V'), «) is applied to each
action occurring in Tree(r), and the resulting tree is appended to Tree(r) at each leaf where a occurs (see
Figure 15 for an illustration). The treeis then suitably simplified.

Since QY (s) isjust QY (s) at any statewhere 7(s) = a, it is quite obviousthat the algorithm produces
a sound representation of QY .

Proposition 4.3 Let Tree(()Y) be thetree produced by the algorithm Regress(Tree(V'), Treg()). For any
branch b of Tree(QY), let B denote the event determined by its edge labels, and assume the leaf of b is
labeled by the value v,,. For any state s; = B, wehave QY (s;) = v,. Inother words, Tree(QY) accurately

31

X X

e
9/\10 g/\ 4

Tree(QK{D) Tree(Q¥3Y) Tree(vk+1)

X
2 Z 12
8 7

Figure 16: Merging two Q-trees Tree(@%+') and Tree(QF*"') to obtain an improved value function,
Tree(VA+1).

represents QV .

Asin the previous subsection, our algorithmis reasonably straightforward, and could be optimized some-
what towork moreefficiently under certain conditions. For example, if actiona occursin Tree(r) only under
specific conditions C', these conditions could be passed to Regress(Tree(1/), «) to incrementally prune the
subtrees generated by that algorithm.

4.3 Merging Q-trees

A fundamental step in both valueiteration and policy iteration isthe maximization step involvedin aBell-
man backup. In value iteration, V*+! is computed by setting VA1 (s) = max, Q%*!, where Q%+ is
itself computed with respect to V*. In policy iteration, an improved policy n’ is constructed by setting
7'(s) = argmax QY= . Given treerepresentations of the appropriate Q-functions, these maximization steps
can beimplemented by merging these ()-trees and using maximization as the | eaf-1abel -combining function
(substituting the maximizing action names for values in the case of policy improvement).

In the case of valueiteration, assume we have been given Tree(Q**!) for each action « (thisis obtained
by regressing Tree(V'*) through action a). Tree(V**1) can then be obtained by merging these trees and
simplifying (i.e., obtaining Merge({ Tree(Q%*+1) : a € A})), taking each leaf label in Tree(V*+1) to be
the maximum over the corresponding labels in the treesin {Tree(Q%+1) : a € A}. Thisisillustrated in
Figure 16.

As mentioned earlier, there are a number of ways in which this merge operation can be implemented.
Our approach is straightforward, implemented via repeated appending and simplification. Another possi-
bility would beto reorder al ¢)-treesto have acommon variable ordering (e.g., the ordering of thetree with
highest “average’ value could be retained), and simultaneously traversing all trees to find the maximizing
values (and tree structure).

With policy improvement, wearegiven Tree(QY =) for each a, and must produce Tree(r'), atree-structured
representation of somepolicy =’ that isgreedy with respect to V.. Thisisachievedinanearly identical fash-

32

9 10 10 6 10 10 a2 al
Tree(QKTD) Tree(QK$D) Tree(VK+]) Tree(T0)

Figure 17: Merging two Q-trees Tree(Q%*1) and Tree(Q; ™) to obtain an improved policy, Tree(r’).

Input: Tree(R), Tree(n); Output: Tree(V,)
1. SetTree(V?) to be Tree(R) (immediate reward).
2. Until termination, compute Tree(V * 1) = Regress(Tree(V X), Tree(n)).

3. Returnthefinal tree Tree(V,) = Tree(V,*).

Figure 18: The Structured Successive Approximation (SSA) Algorithm

ion, by merging the @-trees; but rather than labeling leaves with the maximizing (-values, we label them
with the corresponding (i.e., maximizing) action names. Once these merged values are replaced with ac-
tion labels, the trees may be further simplified, since a subtree with distinct (maximizing) value labels on
the leaves may have identical action labels at these leaves. Figure 17 illustratesthis process. We note that
the merged tree (as it exists before the maximizing (Q-values are replaced by action |abels) should not be
simplified by collapsing identical subtrees. Inthe exampleillustrated, both leaves under node Y haveiden-
tical values in the intermediate merged value tree; but these values are produced by different maximizing
actions. Hence, the split of Y isrelevant to the representation of 7.

4.4 Structured Successive Approximation

With the tree-structured implementations of basic operations such as expected value computation, maxi-
mization, and Bellman backups, we can now implement standard dynamic programming algorithmsin a
structured fashion. Thefirst such algorithmisthe successive approximation algorithm, which, given afixed
policy =, computes the value function V.

We assume we have been given atree-structured policy , represented as Tree(r). Structured succes-
sive approximation (SSA), described in Figure 18, proceeds by constructing a sequence of value functions
VO Vvl ... each represented asatree, Tree(V,¥). Theinitia value functionis simply the reward function
Tree(R) itself, while successive value approximations Tree(V#+1) are produced by regressing Tree(VF)
through Tree(r).

Termination is determined by some standard criterion, such as supremum norm or span seminorm. In

33

T/\F HCO HCO HCO

SN /N /N

w o 000 w 0

w o
HCO /T w /T w /T w
/\ 1.71/\9 HCR /\ 2.44/>71 HCR /\ 8.96/>96 HCR /\
/\ .19 W/\W 0.0 271 W/\W 0.0 .996
/\ /N A /\ PAWAN YANWAN
10 00 01 648 84 00 .19 123 150 00 271 645 74500 .99
VO vi V2 V50

Figure 19: Fifty iterationsof SSA with fixed policy DelC.

our implementation, we use span seminorm. To determine convergence, we must compute ||V — VE||
at each iteration. Wedothishby first merging Tree(V,5+1) and Tree(V*'), using difference as the combination
function, to obtain Tree(Vf*+1 — V¥). The span of thistree is determined by one tree traversal to find its
maximal and minimal elements, denoted m™ and m~, respectively. Given a termination threshold ¢, if
mt — m~ < ¢, then Tree(V*+1) isreturned as Tree(V), the approximate value of the policy m, with
bounds given by the usual formulae.?°

Since the termination test clearly reproduces the classical test in our tree-structured setting, it follows
immediately from Proposition 4.3 that Tree(1;) accurately reflects V.

Theorem 4.4 Let Tree(1V;) be thetree produced by the SSA algorithm. For any branch b of Tree(17;)), let
BB denotetheevent determined by itsedgelabel's, and assumetheleaf of b islabeled by thevalue v,. For any
states; = B, wehave V; (s;) = vs = f(e), where f(¢) isthe standard error introduced by the termination
criterion. In other words, Tree(1;) accurately represents V.

Note that the approximation error is due to the nature of successive approximation itself, not the use of
the decision-tree representation. The usua error terms for either the span seminorm or supremum norm
stopping criteria, as described in Section 2.2, apply here directly.

Figure 19 illustrates the sequence of value trees produced by fifty iterations of SSA using our running
example, where the policy being used is, for simplicity, the uniform application of action DelC at every
state. After fifty iterations, the estimated value V™ (s) iswithin 0.04 of itstrue value. The SSA agorithm
has discovered that there are only eight distinct values in this value function, and has abstracted the state
space appropriately.?* Thus, it performs eight expected val ue computations, or backups, per iteration, rather
than the 64 required by the standard state-based successive approximation a gorithm.

One thing we notice immediately about the sequence of value trees in thisexample isthat its structure
stabilizes very quickly. How quickly this occurs depends on a number of specific problem characteristics,

20 Again, span semi-norm is generally used for early stopping with a good policy, not for accurate estimation of the value function.
2L|n fact, this value function has only six distinct values, but the minimal decision-tree representation requires eight leaves. A rep-
resentation such as a decision graph, or ADD, would be able to represent this value function more concisely still.

34

but we can be assured that once the structure of thetree stabilizesinthisfashion— that is, oncethestructure
persists in two successive iterations— its structure will not change in any subsequent iteration.??

Theorem 4.5 Let Tree(V,F) and Tree(V,* 1) betwotrees produced by successive iterationsof SSA. If Tree(VF)
and Tree(V**!) have identical structure (i.e., are identical except possibly for the value labels at their
leaves), then Tree(V,*+7) will have the same structure for any j > 0.

Proof SupposeTree(V*) and Tree(V,**!) havethesame structure. Thea gorithm Regress(Tree(V,F), Tree(r))
produces the structure of Tree(V,**1) based on the structure of Tree(V,*) without regard to the val-
ues at the leaves. Since Tree(V,*+1) hasidentical structure (it differs from Tree(V,*) only inits leaf
values), the algorithm will produce Tree(V,*+?) to haveidentical structureto Tree(V5+1). A simple
inductive argument provestheresult. B

Thesignificanceof thisresult liesinthefact that, oncethedecision treestructurestabilizes, SSA can proceed
exactly as standard successive approximation. Specifically, thereis no need to recompute the structure of
the decision tree at subsequent iterations. SSA can reuse the same decision tree and simply perform one
expected value cal cul ation per leaf (in contrast to the standard one cal cul ation per state) without additional
overhead.

45 Structured Policy Iteration

Policy iteration can be implemented in a way that exploitstree structure by simply piecing together some
of the components described above. Structured policy iteration (SPI) isdetailed in Figure 20 and works by
alternating phases of SSA and structured policy improvement. Policy improvement isimplemented using
the “ maximization merge” described in Section 4.3, where action names replace valueslabeling the leaves.
Termination istested by comparing Tree(r) and Tree(n') to seeif the policiesare identical .2

The soundnessof the component algorithmsensuresthat the SPI a gorithm producestreesthat accurately
reflect the optimal policy and value function.

Theorem 4.6 Let Tree(n™) and Tree(V'*) bethetrees produced by the SPI algorithm. For any branch b of
Tree(V*), let B denote the event determined by its edge labels, and assume the |eaf of 4 is labeled by the
valuev,. For any states; = 8, wehave V*(s;) = v, + f(¢), where f(e) isthe standard error introduced
by thetermination crtierion. Smilarly, the policy =* represented by Tree(r*) is f(<)-optimal.

2|f identical valuesare collapsed at subtrees, the structure can in fact become simpler. The following result ignoresthis possibility.
It seemsto rarely occur in practice except at the earliest stages of dynamic programming. Such collapsing can beignored until the end
of aseguenceof iterationsin any case, thus the practical import of the results remains.

2 Asis usual with policy iteration, if more than one action can be chosen for the greedy policy =/ during policy improvement and
one of the candidate actionsis the same as the action taken in , the action used by = is retained.

35

Input: Tree(R), Tree(w) for randominitial «; Output: Tree(w*) and Tree(V ").

1. SetTree(n’) = Tree(w).

2. Repeat
(a) SetTree(n) = Tree(n’).
(b) Compute Tree(V) using SSA.
(c) ComputeTree(QY™) = Regress(Tree(V,), a) for each action a.
(d) Mergethetrees Tree(Q ¥~) to obtain Tree(n’) (wheren’ isthegreedy policy w.rt. V).

Until 7’ = 7.

3. ReturnTree(n*) = Tree(w) and Tree(V ™) = Tree(V,).

Figure 20: The Structured Policy Iteration (SPI) Algorithm

HCO HCO HCO
~~ THCR ~~ THCR ~~ TTHCR ~~ HCR
ac pdc DelC

DelC _—>~._ Db

O DeC O O 0] O O O
R N N A N R /\
DelC Go DelC Go DelC BuyC DelC Go Go BuyC DelC Go W BuyC
7\
Go R
U\
/\ Go
Go GetU

Figure 21: The sequence of improved policies produced by SPI.

Notice that the potential approximation error introduced in policy iteration is due to the fact that policy
evaluation is obtained by means of successive approximation. Procedures such as action elimination [62]
can be used to ensure that the obtained policy isin fact optimal .2

Figure21 illustratesthe sequence of four policy trees produced by SPI using our running example (with
aninitial policy that uniformly delivers coffee at each state). A fifth policy treeis created and compared to
the fourth, but isfound to be identical; thusthe final (fourth) tree is the optimal policy for this problem.?
Thefinal valuefunctionisshownin Figure22. Noticethat thefinal policy consistsof atreewitheight leaves
showing that SPI is capable of discovering inherent structurein optimal policies. Furthermore, the optimal
value function consists of 18 distinct leaves. Thus each policy evaluation and improvement computation
involvesno more (and generally fewer) than 18 expected value or maximization computations, rather than
the 64 required in the standard, state-based version of policy iteration.

24Optimality can also be assured if policy evaluation is performed exactly by solution of the corresponding linear equations. We
conjecture that ameans of doing so in away that exploits structure may be possible, but have not explored this possibility.

STheaction DelCisessentially a“ no-op” for this domain when therobot doesnot havecoffee. Thusit remainsastheaction selected
(since it wasthe sole action in the initial policy) when nothing of interest is to be done. If DelC incurred some cost and a no-op were
included in the set of actions, the no-op would be optimal at all brancheswhere DelC occurs other than {HCO, HCR, O).

36

/\ 8.45 /\ 7.64 /\ 6.19 /\ 6.83

8.45 8.36 764 6.81 6.19 5.62 6.83 6.10

Figure 22: The optimal value function produced by SPI.
Input: Tree(R). Output: Tree(n*) and Tree(V'*).

1. SetTree(V?) = Tree(R).
2. Repest

(@ ComputeTree(Q;/k) = Regress(Tree(V'*), a) for each action a.

(b) Merge (viamaximization) thetre%Tree(Q;/k) to obtain Tree(V *+1).

Until termination criterion holds (w.r.t. Tree(V*11), Tree(V *)).

3. SetTree(V*) = Tree(V*+1).
4. ComputeTree(Q;/*) = Regress(Tree(V*), a) for each action a.
5. Mergethetre%Tree(Q;/*) toobtain Tree(w*) (where* isthegreedy policy w.rt. V' *).

6. ReturnTree(r") and Tree(V *).

Figure 23: The Structured Value Iteration (SVI) Algorithm

Finally, we point out that modified policy iteration can beimplemented in exactly the samefashion. The
only change required of the SPI agorithm as presented isthat one would perform a fixed number of steps
of SSA in order to evaluate a policy rather than implementing SSA until convergence.

46 Structured Valuelteration

For completeness, we al so describe a structured value iteration (SV1) algorithm. The results described be-
low are al based on SPI, but SVI plays an important role in approximation, as we discuss in Section 6.2.
SVI is shown in Figure 23 and works by repeatedly constructing Q-trees for the current estimated value
function and performing a maximization merge to obtain an improved estimate of the value function. Once
convergence according to sometermination criterionisattained, the greedy policy with respect to that value
functionis produced viaanother maximization merge (where values are replaced by action names). The al-
gorithmis obvioudy sound given the soundness of its components.

37

4.7 Related Work

We have already pointed out a number of techniques for solving large MDPs, but two approaches to state
aggregation warrant further discussion dueto their similarity to our method.

Dietterich and Flann [32, 33] a so consider theapplication of regression methodsto the solutionof MDPs
inthecontext of reinforcement learning. Their original proposal [32] isrestricted to MDPswithgoal regions
and deterministic actions (represented using STRIPS-like operators), thus rendering true goa-regression
techniques directly applicable. They extend their approach in [33] to allow stochastic actions, thus pro-
viding a stochastic generalization of goal regression. One key difference between their model and oursis
that they deal exclusively with goal-based problems whereas we allow general reward functions. Thus we
might classify their work as stochastic regression and ours as decision-theoretic regression. The general
motivation and spirit of their proposal is very similar to ours, but focuses on different representations. In
the abstract, Dietterich and Flann simply require operators (actions) that can be inverted, and they develop
grid-world navigation and chess end-games as exampl es of deterministic regression. In the stochastic case,
Dietterich and Flann place an emphasi sison al gorithmsfor mani pul ating rectangul ar regionsof gridworlds.
In contrast, our approach deals with general DBN/decision-tree representations of discrete, multi-variable
systems. Our decision-tree representation has certain advantages in multi-variable domains (e.g., we will
see below that it provides leverage for approximation). In navigation domains (to take one example), the
region-based representation is clearly superior as they offer very little structure that can be exploited by a
decision tree. Both approaches can be seen as particul ar instances of amore general approach to regression
in MDPs.

The model minimization approach of Givan and Dean [26, 27, 39] is also related to our model. In this
work, the notion of automaton minimization[42, 51] isextended to MDPs and isused to analyze abstraction
techniques such as those presented in [30]. As such this technique can be viewed as providing a more ab-
stract view of thetype of work we describe here. The emphasisis not on specific agorithmsfor regression,
but rather a development of a theoretical framework in which abstraction methods such as those proposed
here, as well as others, are viewed as minimization agorithms for stochastic automata. Intuitively, amin-
imized automaton is one in which states are aggregated if they agree on a certain property of interest. For
example, before solvingan MDP, it can be minimized by discovering blocks of states such that each statein
agiven block agrees on reward, and agrees on the transition probabilitiesfor each action with respect to the
block structure. Specifically, when an action istaken, each state in a block must have the same probability
of moving to any other block (not necessarily any other state). An aggregate MDP formed thisway (i.e., by
replacing states with blocks) can be solved optimally, but more quickly due to the reduction in state space
size. Lee and Yannikakis[51] describe an algorithm for for minimizing stochastic automata, though it re-
lies on state space enumeration and is not directed toward decision processes. As pointed out by Dean and
Givan [26], the MDP abstraction method of [30] can be viewed directly in thisway, explicitly minimizing
the MDP before solving it.

38

Of course, minimization can involve abstraction with respect to weaker properties, such as value func-
tion differences [26]. The SPI algorithm can be viewed in thislight: it dynamically constructsa “minimal
model” based on the current estimate of the value function. For instance, Theorem 4.4, pertaining to the
stabilization of the value function structure, can be interpreted as confirming the discovery of a minimal
model (with respect to value of afixed policy).

5 Analysis

In this section we describe some empirical results with our structured dynamic programming algorithms.
We focus on the SPI agorithm, show its performance on severa problemswith slightly different features,
and attempt to characterize the types of problems for which SPI will and will not work well. Some of the
reasons for poor performance will suggest directions for future development of MDP decomposition and
abstraction techniques.

In the following, we describe a series of problems and compare the running time of SPI with that of
flat (state-based) modified policy iteration (MPI). In all comparisons, we use the same number of iterations
for policy evaluation or the same termination criterion for both the structured and unstructured algorithms.
The MPI agorithm is optimized to exploit any sparseness in the transition matrices. sparse matrix repre-
sentations are used for probability matrices and the sparseness is used to avoid “ state enumeration” of zero
probability states in expected value computations. In this sense, we compare SPI to the “(conceptualy)
best” implementation of a general-purpose unstructured algorithm. We al so describe the size of the result-
ing structured policies and value function in terms of the number of leaves the corresponding tree contain,
and compare thisto the state space size.®

5.1 Synthetic MDPs: Best and Worst Cases

SPI was tested on two sets of synthetic MDPs designed to illustrate its performance under best-case and
worst-case scenarios, as compared to unstructured M Pl, which enumerates the state space explicitly. Worst-
case behavior was tested on a series of MDPs whose tree-structured value function requires a full tree.
Specifically, the MDP is designed so that the optimal value function has a distinct value at each state. The
MDP consistsof n booleanvariables, X1, X», - - - X,,, and n deterministicactionsay , as, - - - a,,. A positive
reward r is associated with the single state where each X, istrue, while areward of zero is assigned to all
other states. The problem is discounted with discount factor 5. The kth action aj, setsthe kth variable Xy,
trueif all preceding variables X; (i < k) aretrue, otherwiseit has no effect; but it also makes al preceding
variablesfalse. The DBN for the kth action isillustrated schematically in Figure 24(a).

Al of our results were obtained using an implementation written in C++ running under Linux on a Pentium || 400 MHz with
640M B of memory.

39

)
00
o
/N
/
e

%) o
o LA X3 X3 X3 X3

L4 AVAVAYA
@ _________ - @w/xn\oo

@ (b)

Figure 24: (a) The DBN for the kth action a; in the worst-case examples; and (b) the worst-case value
function for the three-feature (n = 3) version of thisMDP.

If the state space is viewed as a binary number, the optimal policy requires choosing an action to set
the highest bit (largest variable X) whose predecessors are aready set. Since this setsthe predecessors to
fase, the optimal policy induces a path from any given starting state that enumerates all binary numbers
in order until the number 11 -- -1 isreached (i.e., dl variables are true). Because of discounting, the state
corresponding to number j has vaue 32" ~7~1r. Thus, each state has a unique value. Though this MDP
can be represented using DBNs and decision treesin O(n?) space, itsvalue function requires O(2") space
when represented as a decision tree.?” An example of the optimal value function with three variables (n =
3,7 = 10,5 = 0.9) isillustrated in Figure 24(b). This, then, represents something of a “worst case” for
SPI: it must enumerate the entire state space, exactly like MPI, yet pays the additional overhead associated
with constructing trees before doing the expected value ca cul ations.

Figure 25 compares the performance of the SPI algorithm with unstructured MPI on a series of four
worst-case problems with six to twelve variables (64 to 4096 states).?® From the plot on the right of Fig-
ure 25 we see that the overhead associated with the SPI a gorithm causes the algorithm to run roughly one
hundred times slower than the corresponding flat dynamic programming algorithm. The roughly constant

2ZIThisisn't to say the value function can’t be represented compactly in some other way: the functional expression above offers a
compact representation!

28The data corresponding to al of the problems described in Section 5 can be found at the SPI web site,
http://wwmv. cs. ubc. cal/ spi der/ dearden/ spi . htm .

40

100000 100

MPI — ‘
SPI--- MPl —
- SPI ---
10000 t .
)
=3
@ 1000 | %
[}
g &
= 100 5 10
] g
= 2
13 10 ¢ g
£
()
=
1F
0.1 1 L
6 7 8 9 10 11 12 6 7 8 9 10 11 12
Number of Variables Number of Variables

Figure 25: Time and space performance for SPl and MPI on the worst-case series

overhead isto beexpected given that the compl etetree representing ava uefunctionisroughly twiceaslarge
as the corresponding flat (tabular) value function. Thus the number of operationsrequired to construct the
tree-structured value function is bounded by the size of the tree and the number of operations required to
traverse (partial) trees while building it.°

Note that asthe number of variablesinthistype of problem increases, the space required to compute the
optimal policy increases at asignificantly greater rate with SPI, as seen in the plot on theright of Figure 25.
Again, thisisdueto thefact that atree representation of the val ue function requires storage of interior nodes
inthevauetree.

Whilethe overhead for SPI is quitelarge in the worst-case examples, such examples are designed in an
adversaria fashion to illustrate the worst-case. The constant-factor overhead in computation time may not
be aserious priceto pay if worst-case bahavior isunlikely to arisein practice, aslong asthere are benefitsin
the best or typical cases. We have designed adifferent set of abstract, synthetic examplestoillustrate” best-
case” behavior. The best-case examples are designed so that the optimal value function, when represented
as atree, has sizelinear in the number of problem variables; specifically, each variable occurs exactly once
inthetree. Thisis“best-case” in the sense that no problem in which all variables play arole in the final
value function can be smaller.*

Each best-case MDP consistsof n booleanvariables, X, X, - - - X,;, and n deterministicactionsay , as, - -

A positivereward r is associated with the single state where each X, istrue, whileareward of zero isas-
signedto all other states, much likethe worst-case problems. The problemisagain discounted with discount
factor 5. The kth action a;, setsthe kth varigble X, trueif al preceding variables X; (i < k) aretrue, oth-
erwise it has no effect; but it also makes al succeeding variables X (j > k) false. The DBN for the kth

2The dlight separation of the log plots as the number of variables increases is due to some slight inefficiencies in our prototype
implementation, not due to the decision-theoretic regression approach itself. We discussthis further at the end of this section.

300f course, if there are completely irrelevant variables, SPI will recognizethis ashave an even greater advantage over unstructured
agorithms, as we discuss below.

41

Uy,

(@) (b)

Figure26: (a) The DBN for the kth action a;, inthe best-case examples; and (b) the best-case valuefunction
for the three-feature (n = 3) version of thisMDP.

actionisillustrated schematically in Figure 26(a).

If the state space is viewed as a binary number, the optimal policy requires choosing an action to set
the highest bit (largest variable X) whose predecessors are aready set. Thisturns off higher bits, each of
which must in turn be set by subsequent actions. Thus for any state whose lowest false variable is Xy, a
sequence of n — k + 1 actions (setting variables X, through X,,) isrequired to reach the goa; the value
of such astateis 5" ~*+1+. Thus the value function contains only n + 1 distinct values and is represented
as atree with n internal nodes, one for each variable. An example of the optimal vaue function with three
variables(n = 3,r = 10, 5 = 0.9) isillustratedin Figure 26(b). ThisMDP can berepresented using DBNs
and decision treesin O(n?) space, and itsvalue function requires O(n) space.

Figure 27 shows acomparison of SPl and MPI on thisseries of examples, rangingfrom 6to 20 variabl es.
Asexpected, the time and space requirementsfor MPI grow exponentially with number of variables (and is
unableto solvethe 20 variabl e problem dueto memory demands), while SPI outperformsMPI considerably
with respect to both time and space. For example, SPI solvesthe 18-variable problemin 1.4 seconds, while
MPI requires 2923 seconds to solve the same problem.

We note that it is largely the inherent structure of the problems above that dictates the differences in
performance between SPI and MPI. Whilethe problems are deterministic, the performance differences are
virtually identical when noise of varioustypesis added to both the best- and worst-case problems. We il-
lustrate this with one simple form of noise (though similar phenomena arise with other noise models). In

42

10000 T T T T T T 1000 T
MPI MPI ——
SPI ---
1000 ¢ s
)
=3
— L %)
% 100 g
£ £
[= S
10 =
j=2) =}
£ g
IS o 2
2 1t z
£
()
=
0.1
0.01 1 !
6 8 10 12 14 16 18 20 6 8 10 12 14 16 18 20
Number of Variables Number of Variables
Figure 27: Time and space performance for SPl and MPI on the best-case series
. — 10000 - —
SPI: 0% noise SPI: 0% noise
100 SPI: 10% noise -------- s 4 SPI: 10% noise --------
SPI: 20% noise - A SPI: 20% noise -
MPI: 0% noise s MPI: 0% noise
MPI: 10% noise ----- 1000 MPI: 10% noise -----
MPI: 20% noise ----- MPI: 20% noise -----
~ 10 } —
< 2 100}
() ()
£ £
c <
2 2
k=3 k=3 10 t
o 1+ o
1k
0.1
. 01 i
4 6 8 10 12 14 16 18 20 5 6 7 8 9 10 11
Number of variables Number of variables

Figure28: Solutiontimefor SPI and MPI with various noiselevels, on best-case problems (left) and worst-
case problems (right).

our worst-case problems, a k% noiselevel indicatesa k% chance that action a, failsto set variable X}, true
(otherwisethe effect isexactly asabove). Inthe best-case problems, a k% noiselevel indicatesa k% chance
that action a; will make the variable X, _; false (otherwise the effect is unchanged). In the noisy variants
of these problems, the structure of the value function and optimal policy is identical; but noise generally
causes longer convergence times. Figure 28 compares the effect of noisefor £ = 10 and & = 20, on both
SPI and MPI, on best- and worst-case exampl es of varioussizes. While noise makes both types of problems
harder to solve, the increase in difficulty is noworse for SPI than for unstructured MPI.

43

| Problem | Algorithm || States [Actions | SPI Leaves | Time(s) | Memory (M)]

Manufacturingl MPI 55,296 14 349 78
SPI 5786 650 22

Manufacturing2 MPI 221,184 14 1775 160
SPI 14,117 1969 54

Manufacturing3 MPI 1,769,472 14 >9000 -
SPI 40,278 5155 129

Figure 29: Comparison of SPl and MPI on process-planning problems

5.2 Process-Planning Problems

The results above illustrate the extreme points of SPI’s performance. To test more “typical case” perfor-
mance, we ran SPI on a set of process-planning problems from a synthetic manufacturing domain. These
domains are based on a manufacturing problem in which a product is produced by attaching finished com-
ponent parts. The parts must be milled, polished, painted, and attached by either bolting or gluing them
together. There are two types of finished product, high-quality and low-quality, and the policiesfor produc-
ing then are quite different. For example, high-quality products should be hand-painted, drilled and bolted
together, which requires skilled labour, a drill-press, and a supply of bolts. This process istoo expensive
for producing low-quality products, which should be spray-painted and glued, thus requiring a spray gun,
glue, and clamps. The reward function is designed to capture the need for high-quality versus low-quality
products: specificaly, if high-quality is required, then little reward is given for producing a low-quality
product; and if low-quality is all that is necessary, high-quality productionis given a small added reward,
but generally not enough to pay for the cost of producing high-quality.

Figure 29 showsthe comparison of SPl and MPI on three such problems (again, full descriptionscan be
found at the Web site mentioned above), with size ranging from 55,000 states to 1.8 million states. In the
largest of these problems, MPI isunableto run to completion due to memory limitations, but SPI solvesthe
problem inwhat we extrapol ate to be roughly one-third the time required by MPI. In the smallest problem,
thereisnot enough structurein thevalue function to permit the tree-construction overhead of SPI to pay off.
In the medium-sized problem the methods are roughly comparable with respect to solution time. Because
of SPI's ability to ignore irrelevant variables, new variables can be added to these problems that have no
impact on optimal actions, thusincreasing state space size without having anything but a trivia impact on
SPI’s running time. Each new boolean variable added to the problem effectively doublesthe running time
of MPI.

Noticethat SPI discovers considerableregularity inthe val uefunctionsfor these problems. For instance,
in the largest problem SPI produces a val ue function tree with roughly 40,278 distinct |eaves, thus discov-
ering that there are only (no more than) that many distinct values in the optimal value function among the

1.8 million states3' This regularity has a strong impact on the memory requirements for SPI, which are
considerably lower than those for MPI.

A key feature of thisproblem classthat allows SPI to performwell isthefact that in certain parts of the
state space certain variablesare compl etely irrelevant to the prediction of value. For instance, if high-quality
products are required, then a number of variables, such as the availability of glue, are irrelevant to value
function prediction. Similarly, low-quality products do not require the availability of skilled labour. This
iswhere SPI gainsits computational and space advantages, since it discoversthis conditional irrelevance,
effectively abstracting the state space by ignoring certain variables conditional on other variables taking
certain values. Thistype of irrelevance will hold in many types of domains. For example, in any domain
where there are several methods of achieving various objectives, but only one should be chosen under any
specific set of circumstances, the variables relevant to the execution of those methods that are not optimal
will beignored by SPI (under the given circumstances).

5.3 Taskable Robot Problems and Exogenous Events

We have a so run SPI on more elaborate versions of the robot coffee-delivery scenario. We report on these
here because they point out certain problemsfor SPI when dealing with event-driven processes. More specif-
ically, they point out conditionsunder which thetypeof “irrelevance’ exploited by SPI islesslikelyto exist.

The problem domain is onein which the robot can move among five different locations, can pick up and
delivery coffee, can pick up and deliver mail and can tidy alab. Penalties are imposed in states where there
isan outstanding request for coffee, thereisundelivered mail, or thelab isuntidy (there are several degrees
of untidiness).3 The problem is not designed to have any irrelevant features—for example, all features
relating to a specific objective are relevant to the value function if that objective needs to be filled. Thus
therearefew irrelevant detail sthat can be exploited by SPI. However, onefeature of the problem makesthe
problem especially difficult for SPI, namely, the presence of exogenous events.

Without exogenous events to drivethe process, at any state there is some subset of the three objectives
that needsto be satisfied. However, once the objectiveis satisfied, it will never need to be considered again;
and if the objectivewas not relevant it will never becomerelevant. For instance, if thereisno coffee request
outstanding in theinitial state, no future coffee requests will be issued and no variables relevant to coffee
delivery are needed to predict value. In such an MDP, under the optimal policy the robot will reach an
absorbing state (or class of states) where all objectives are satisfied and never need to be considered again.
A moreredlisticversion of the problem contai nsexogenous eventsthat continually drivetherobot to achieve
objectivesthat arise over time. For example, even if there is no outstanding coffee request, a coffee request
event can occur withsome small probability. Thisrequiresthat therobot constantly assessit ability todeliver
coffee, even when in states where no coffee request is outstanding. Similarly, the realistic model contains

31The optimal policy treeis much smaller than the value function treein all problemswe consider.
32This domain is described in some detail in [11] and can be found at the Web site mentioned above.

45

exogenous events that cause mail to arrive and the lab to become messier.

The problem domain has six variables (four of which are five-vaued, hence 400 states) and eight ac-
tions. Without exogenous events, SPI runsto completionin 11.9 seconds, producing afinal value tree with
291 leaves and a policy tree with 196 leaves, arequires 1.85Mb of memory. Notice that the value tree does
not contain significantly fewer entries than the flat, tabular representation. Thisisbecause al variables are
relevant under most circumstances. For comparison, MPI runsin 0.31 seconds and requires 1.5Mb of mem-
ory.

When we add the three exogenous events to the domain, SPI produces slightly larger value and policy
treeswith 300 and 219 leaves, respectively, and requires 2.0Mb of memory. Though not substantially larger
than without exogenous events, the trees become larger because variabl es associated with varioustasks are
now relevant even in states where thetask is not “active.” For example, in a state with no outstanding cof-
fee requests, the variables relevant to coffee delivery are now relevant to predicting value—thisis because
the exogenous “ coffee request” event could, at some future point, make the task active, and the speed with
which it is accomplished depends on the status of coffee-delivery variables. Thus, exogenous events tend
to make treeslarger by rendering variablesrelevant because of future possibilities.®3 Even worse, SPI takes
nearly ten times aslong (100.6 seconds) to runin the presence of the three exogenous events. Thisisnot so
much because thefina trees are much larger, but because the val ue trees produced in early phases on policy
iteration get much more complex; that is, the trees get larger earlier.

We note that these exogenous events cause difficulty primarily in cases where all variables are relevant
to the (optimal) performance of some task, and where these tasks can each arise a any time. When certain
problem variables are irrel evant—for example, because we discover, while solving the MDR, that they are
irrelevant to suboptimal (hence, unselected) methods of task achievement under certain conditions—SPI
il discovers these irrelevancies and can take advantage in the usua way, even in the presence of exoge-
nous events. Although exogenous events do increase the degree of (stochastic) connectedness of an MDP,
thisis not the primary contributor to the difficultiesfaced by SPI in such domains. Rather it isthe fact that
the complexity of the “abstract state description” required to predict the val ue function and optimal action
choice can depend on variables relevant to any task that could arise. This suggests that a form of task de-
scomposition could be used to help alleviate these difficulties (we return to this possibility in Section 7).

5.4 Discussion

In a some loose sense, SPI can be viewed as preserving as much structure in the value function represen-
tation as possible, subject to certain restrictions. For example, given the DBN for action a and the tree
representation of value function V', theregression of 1/ through « will produce aregressed tree that makes
distinctionsthat could all be necessary given the structure of theinputs V' and «. Whether the distinctions

3The effect on tree size is not dramatic in this example, but it is very easy to construct realistic scenarios where the effect is con-
siderably more severe.

46

actually are necessary depends in large part on the specific values and probabilities |abeling the leaves of
the input structures. But SPI produces output of minimal size for an agorithm that use only the structure
of input trees to make abstraction decisions.

Of course, theuse of treesrestrictshow compactly certainly reward functions, valuefunctions, and CPTs
can be represented. The smallest tree representation of a given value function may be exponentially larger
than the smallest representation using some other technique (like an ordered decision diagram, which can
handle disjunction much more effectively, or adecision list, or a set of Horn clauses). Variable ordering
also plays an important role in just how small adecision treeis. Since no representation can represent all
polynomial-sized functions (i.e., those with only polynomially-many distinct val ues) over aset of variables
compactly (i.e., with polynomial size), the potential blowup isunavoidable. Furthermore, no representation
is universally more compact than another; for instance, with some functions the best decision tree will be
exponentially smaller than the best ordered decision diagram, and for othersit will be exponentialy larger.
The choice of appropriate representation will generally depend on the structure of agiven domain. We con-
jecture that decision trees offer a suitable choice for many problems. However, the basic conception of
decision-theoretic regression can be applied to any representation: one simply needs algorithmsto manip-
ulate that representation, as in the region-based approach of Dietterich and Flann [32, 33] or the decision
diagram moddl of Hoey et al. [43].

The empirical resultsabove suggest some possible directionsfor enhancing SPI and suggest conditions
under which SPI may and may not work well. Results on the process-planning domain suggest that the
overhead associated with SPI will pay off if we are able to eliminate the equivaent of roughly four to five
variables from the description of the value function. That is the tree representation of the value function
should have 15to 30timesfewer leavesthan thereare states of the system. We expect that for large problems
such areductionfactor isvery easy to aobtain. Notethat we refer only to computation time above; SPI offers
more dramatic savingsin memory usage even when the time savings are minimal.

This time reduction estimate is based on the simple implementation described here. We notice that the
overhead in theworst-case examplesisroughly constant at first glance. However, upon closer examination,
the overhead factor isincreasing slowly with problem size. Thissuggeststhat theimplementationtested has
certain inefficiencies. It also suggests that improved agorithms for manipulating the structured represen-
tations of value functions and policies could greatly improve the applicability of SPI. Both of these facts
have been confirmed in subsequent work [43] that extends SPI using algebraic decision diagrams (ADDs)
[2]. Thisimproved structured representati on and implementation (SPUDD) has been tested on the problems
described above and has proven the benefit of decision-theoretic regression to be more substantial than sug-
gested here.®* For example, SPUDD solves the 12-variable worst-case problem in just over 1500 seconds,
reducing worst-case overhead to afactor of 15 (from afactor of better than 100 with SPI), and actually shows
adecrease in overhead factor with problem size. On the largest process-planning problem (with 1.8 million

34SPUDD is based on structured value iteration rather than modified policy iteration; a version based on modified policy iteration
would show even better performance.

47

states), SPUDD runsin 462 seconds, 12 times faster than SPI (and we conjecture about 35-40 times faster
than MPI). Inthe smaller process-planning examples, where SPI failsto beat MPI, SPUDD runsmuch faster
than MPI as well (in 78 seconds and 111 seconds, compared to 349 seconds and 1775 seconds for MPI).
We take these resultsto confirm the intuitionthat decision-theoretic regression can pay off even with much
smaller variable reduction factors.

Thedifficulty with exogenouseventsis something that cannot be addressed directly withinthe SPI model.
There are two methods we can use to deal with this however. Thefirst isto use aform of approximation.
We di scuss approxi mation withing the SPI framework in the foll owing section; but we simply note herethat
it may be a suitable way to handle the specific problem with exogenous events in certain situations. If the
events have reasonably small probability, knowledge of variables relevant to the corresponding objective
will have a small impact on value. The approximation scheme outlined later can ignore such distinctions.

This problem arises in the taskabl e robot domain largely because there are multiple objectives that may
be simultaneoudly active (or may become activein the future). Oneway to deal with thisproblemistotreat
the different obj ectives separately and construct optimal policiesor valuefunctionsfor theindividual objec-
tives. This might be appropriate in the domain described above since each objective makes an independent
contributionto the reward function. A deeper discussion of such amodel takes us beyond the scope of this
paper, and SPI specificaly. However, we note that there have been several models of MDPs that exploit
this type of independence [9, 56, 71]. Decision-theoretic regression methods such as SPI can be used in
conjunction with such techniquesto great effect since they are largely orthogonal.

6 Extensionsof the Basic Algorithm

6.1 Handling Synchronic Constraints

Thekey operation defined in Section 4, namely thedeci sion-theoreticregression operator Regress(Tree(V'), a),
was jugtified by assuming that the effects an action has on different post-action variables are independent.
Specificaly, the joint distributions produced by the agorithm PRegress(Tree(V'), a) (see Figure 13) are
product distributions. These independence assumptions are valid in DBNs without synchronic arcs (arcs
between post-action variables); thisfact in used in the proof of Theorem 4.1.

Unfortunately, this independence assumption no longer holds when action networks have synchronic
arcs. Inanetwork representing an action a likethat shown in Figure 30(a), the effect of ¢ on variable Y*+!
is not independent of its effect on X**! given the previous state. This causes two distinct problems for
decision-theoretic regression.

Regression involves computing Tree(QY) = Regress(Tree(V),), where Tree(Q}) denotes the value
of executing a with & + 1 stages-to-go assuming V' represents k-stage-to-govalue. Thefirst problem that oc-
cursinour standard regression algorithmisaresult of thefact that it piecestogether CPT-treesfromthe DBN
for a for each of the variables occuring in Tree(V'). When there are synchronic constraints, these CPT-trees

48

xt

(i)%(?i\//\
°L 09 0.2
Y
X
<H\g/>\ A/\ O
07 04
\ - wt 9 8
W@ /<\0.1
@ (b)

Figure 30: (&) An action network with synchronic arcs denoting a correl ation between the effects on vari-
ables X and Y'; (b) An example vauetree over the same domain

may have post-action variables occurring in them (e.g., X**! occursinthe CPT for Y*+! in Figure 30(a)),
leading to the occurrence of post-action variablesinthetree Tree(Q"). Thismeansthat Tree(Q"') nolonger
representstheval ue of executing a with k4 1-stages-to-goas afunction of the state at that time (it now refers
to propertiesof the state with k-stages-to-go). This can be fixed rather easily by summing out the influence
of X*+!, replacing the dependence of Yi+! on X‘*+! with a direct dependence on the parents of X¢*1.

The second problem that occurs when constructing Tree(@Q}') from Tree(V/) arises because the effect
of a on the variables occuring in Tree(V') may be correlated. For example, if the variables X and Y both
occur on a single branch of Tree(17), the probability of attaining the value in that branch (using action
from Figure 30) cannot be specified by the independent probabilitiesof making X trueand making Y true.
Unlike our earlier agorithm, where the lack of synchronic arcs ensured independence, we must keep track
of thejoint distribution over X*+! and Y*+! explicitly when constructing Tree(QY).

We illustrate how one deal s with these issues by means of simple examples, and describe the intuitions
needed to extend our decision theoretic regression algorithmto deal with synchronic constraints. We do not
provide aformal agorithm, or proof of correctness; instead we refer to [8] for a more detailed description
of the necessary amendments.

6.1.1 Summing out Post-Action Influences

Consider action a in Figure 30(a) and the example value tree Tree(V') in Figure 30(b). Using thea gorithm
PRegress(Tree(V'), a) from Section 4 to produce Tree()}), we would first regress Y through « to obtain
the tree shown in Figure 31(a). Continuation of the algorithm will not lead to a legitimate Q-tree, since it
involves a post-action variable X*+1. Our revised agorithm will establish the dependence of Pr(Y¢*1)
on the previous state s by “summing out” the influence of X?*+! on Y*+!, |etting the probability of Y*+!

49

x'[+1 Xt Xt Xt

yt*lpg vt xtlpg xtlp 2 9+ STree(X'*) .2*STree(X*) vt Yt
+ +
y*o.7 Yt*loa 1*STree(X) 8+ STree(X*) v1o.79 Y*10.76 Y*10.72 Y*10.48
@ (b) (© (d)

Figure 31: Summing out the influence of post-action parents: (a) The (partia) tree obtained by the original
PRegress algorithm; (b) The effect of « on X**!; (c) A conceptual view of how the influence of X! is
summed out; and (d) The resulting (partial) PRegress-tree.

depend directly on the parents of X**! instead of on X**! itsalf. Specifically, we compute

Pr(Y'Hsy= Y Pr(Y'Ms) Pr(@/|XY) = Y Pr(Y' 2 YY) Pr(af|XY)
ereval(xt+1) eleval(xt+1)

This computation can exploit the tree structure as follows. Once we have regressed Y through «, we
will replace thenode X ¢+ by thetree representing CPT(.X, a). Thisdictates Pr(X +II(X**+1)), and this
treeisduplicated in Figure 31(b). Denotethe subtree of the replaced node corresponding to each value «; of
X'*1 by STree(x;). In Figure 31(a), STree(z’) isthe singleleftmost leaf node, while STree(z’) istheright
subtree rooted at variable Y. At each leaf [of CPT(X,), we have the label Pr(x;). For those values of
z; that have positive probability, we merge the trees STree(x;) and copy these at [. Specifically, the merge
operation proceeds asillustrated in Figure 31(c): we weight each subtree STree(x;) by Pr(z;) labeling the
leaf of CPT(X, a), and merge these weighted subtrees using addition as the combination operation. The
resulting tree, shownin Figure 31(d), showsthe probability of Y*+! asafunction of the previousstate only,
with dependence on X¢*! removed completely. Once completed, it is easy to see that regression of W
through « can proceed unhindered asin Section 4.

We now consider a second example (see Figure 32) that illustrates that the order in which these post-
action variables are replaced in atree can be crucial. Suppose that we have an action a similar to the one
just described, except now we have that variable Y?+! depends on both X**! and Z**! (i.e., a’s effect on
X,Y and Z iscorrelated). When weregressY through a, wewill introduceatreein which both X**! and
Z'+1 gppear, and weassume that X! and Z*+! appear together on at least onebranch of CPT(Y, a) thatis
presentin Tree(QY'). Now let ussupposethat Z!+! also dependson X**!, asinFigure32. Insuch acase, it
isimportant to subgtitute CPT(Z, a) for Z**! before substituting CPT(X, a) for X**+*. If wereplace X'*!
first, we will compute

PI'(Yt+1|Zt+1,H(Xt+1)): Z PI'(Yt+1|l‘/’Zt+1) Pr(x/|H(Xt+1))
ereval(xt+1)

50

O—=(x
© O
@O—@

Figure 32: Ordering variablesfor replacement

(we suppress mention of other parents of Y?+!, if any). Subsequently, we would replace occurrences of
Z'+1 with CPT(Z, a) and compute

Pr(YHUI(Z), (X)) = 30 Pr(Y L T(X) Pr(s | 274))
zeval(zt+1)

This ordering has two problems. First, since X’*! isa parent of Z*!, this approach would reintroduce
X1 into the tree, requiring the wasted computation of summing out X**+! again. Even worse, for any
branch of Tree(Z, @) onwhich X+! occurs, thecomputation aboveisnot valid, for Y+ isnot independent
of X!*1 (an element of I1(Z**1)) given Z!** and T1(X*+1) (since X**+! directly influences Y¢+1).

Because of this, we require that when avariable Y is regressed through a, if any two of its post-action
parents lie on the same branch of CPT(Y,, «), these variablesin CPT(Y, a) must be replaced by their trees
in an order that respects the dependence among post-action variablesin a’s network. More precisely, let a
post-action ordering O p for action a be any ordering of variables such that, if X**! isaparent of 7:+!,
then Z+! occurs before X**! inthisordering (so the ordering goes against the direction of the synchronic
arcsinthe DBN for «). Post-action varigblesin CPT(Y, a), or any tree obtained by recursive replacement
of post-action variables, must be replaced according to some post-action ordering Op.

6.1.2 Computing Local Joint Distributions

Consider again Tree(17) showninFigure 30(b) and itsregression throughtheaction ¢ shownin Figure33(a).
Figure 33(b) shows thefirst step of thisregression, the regression of Y through «. The second step of the
regression appends CPT(1V, a) to each leaf of thispartial tree; but since Y*+! occursin CPT(W, a), were-
place Y+ withCPT(Y, a) asdescribed inthe previoussubsection, resultingin atree PRegress(Tree(V'), a)
that has the structure of the tree shown in Figure 33(c).

51

<> - @ /ot X!
/ /\ /\ X
/ t+l t
\ /100 Yt xt N Y 2\
% /\ /\ /\ | Y
----.. 09 02 vyt vt W wt PN
/\ /\
W w
,ooywl vtlogytlgy ywtlosl ywtlosi ywtlois yw'*lo.s NN
S 2N y=w 009 y-w 009 y-w 002 y-w 002
" 09 t ~yw 008 ~yw 003 -~yw 064 -~yw 024 I J 1 3J
/\ ~y~w 0.02 ~y~w 007 -~y~w 016 -~y~w 0.56
(:) 9@*».; 08 03
@ (b) © (d)

Figure 33: Capturing correlationsin PTree(Q}): (a) An action network with synchronic arcs; (b) The first
stage of regression; (c) Thefinal version of PTree(QY') withjoint distributionsover certain effects labeling
the leaves; (d) An aternative structure for PTree(QY).

Once we havethis structure, if we were to proceed as above, we would simply sum out the influence of
Y+ on Wit to determine Pr(W'+1) at each leaf. That is, we would compute

Pr(WH W XY = YT Pr(W W) Pr(y/ X YY)
yreval(yt+1)

and obtain PTree(Q"'). This, unfortunately, does not providean accurate pictureof the probability of attain-
ing the conditionsb |abeling the branches of Tree(V'). If welabeled theleaves of PTree(QY) in Figure 33(c)
with Pr(Y**1) and Pr(W**!) so computed, these probabilities, while correct, are not sufficient to deter-
mine Pr(Y'T Wit yi+! and W+ are not independent given X*, Y* and W*'. The synchronic arc
between Yi+! and W +! means that the effect of « on these two variablesis correlated, even given knowl-
edge of the prior state.

To ensure correct expected futureval uesare computed when constructing FVTree(QY), we must instead
maintain the correlation between Y *+! and W**! inthe construction of PTree(QY). To do this, we explic-
itly label the leaves of PTree(QY') with the joint distribution Pr(Y?*+* W+1), as shown in Figure 33(c).
We note that thisjoint is obtained in a very simple fashion. At each leaf of PTree(QY), we have easy ac-
cess to the labels both Pr(Y**+!) and Pr(W+!|y*+1) (given the conditions on the previous state |ead-
ing to that leaf). Instead of summing out the influence of Y+ on Wi+l we explicitly store the terms
Pr(Yi+H witl) we compute.®

This approach—explicitly representing the joint probability of different action effects instead of sum-
ming out theinfluence of synchronic parents—allowsusto accurately capturethe correl ationsamong action

35\\e should emphasizethat thislocal joint distribution doesnot need to be computed or represented explicitly. Any factored repre-
sentation, e.g., storing directly Pr(Y't+1) and Pr(Wt+1|Y t+1), can be used. In fact, when anumber of variables are correlated, we
generally expect this to be the approach of choice. However, we will continueto speak as if the local joint were explicitly represented
for ease of exposition.

52

Yt

PN vyt
O—=QO) w w= t —
PN)\ vtl1g wt
0.9 0.2 Yt+1]_0 Wt+l — T
. th+lO.63 th+lO.36
2\ y-w 006 y-w 012
wt y*lo9vy®lo2 ~yw 007 -~yw 004
@ PN ~y-w 024 ~y~w 048
07 04
€Y (b) (©

Figure 34: Deciding which correlationsto record PTree(Q)): (&) An action network with synchronic arcs;
(b) The first stage of regression; (c) The fina version of PTree(Q}) with joint distributions labeling the
leaves.

effects that directly impact the value function. It is important to note, however, that we need only com-
pute the joint distribution between two relevant variables in those contexts in which they are actually cor-
related. For instance, suppose that we switched the locations of variables Y+ and W* in CPT(W, a) in
Figure 33(a). We see then that W*+! only depends on Y+! when W isfase. Inthiscase, PTree(Q))
would have a similar structure, but we could maintain independent estimates of Pr(Y*+!) and Pr(W'+1)
at certain leaves. In particular, referring to Figure 33(d), independent distributions could be maintained at
those leaves labeled I (since Yi+! and Wit! are independent given w?), whilejoint distributions must be
maintained at thoseleaves labeled J (since Y+! and Wi+! are not independent given w?). Since represent-
ing ajoint distribution explicitly requires a number of parameters exponential in the number of variables
involved (and is strongly impacted by the domain size of those variables), maintaining the (independent)
product form of the joint wherever possibleisimportant.

The last piece in the puzzle pertains to the decision of when to sum out a variabl€' s influence on one
of its synchronic descendents and when to retain the (local) joint representation of the distributionover the
two variables. Consider again the value tree from Figure 30(b) and suppose action a has theform shown in
Figure 34(a); noticethat thedependence of Wi*! onY ¢+ hasbeen reversedin thisaction. When regressing
Tree(V') through e, thefirst stagewhere Y1 isregressed leadsto thetreein Figure 34(b). When removing
the influence of variable IW+! on Y*+!, we obtain the tree shown in Figure 34(c). Using the ideas above,
we would be tempted to sum out the influence of W*! on Y*!, computing

Pr(YHyt why = > Pr(Y T, YY) - Pr(w W)
w'eval (wi+1)

However, if we“look ahead,” we seethat the second stage of the regression algorithm requires usto regress
W through« aswell, since T/ also occursin Tree(V'). Specifically, wewill haveto regress 1V at both of the

53

O—@Q O

®
@)
@

=00

(b)
Figure 35: Detecting future need for parents

leaf nodes for which we are attempting to compute Pr(Y¢*1) as function of the parents of W*+!. Clearly,
since W'*! and Y'*+! are correlated, we should leave Pr(Y ') uncomputed (explicitly), leaving thejoint
representation of Pr(Y ‘1 1Wi+1) asshownin Figure 34(c). When subsequently regressing Wi+ a each
leaf where Pr(Y‘*1) > 0, our work is already done at these points.

This leads to an obvious question: when removing a post-action variable Z**' from the tree produced
when regressing another variable Y*+! which depends on it, under what circumstances should we sum out
theinfluence of Z**+! onY**!, and under what circumstances should we retain the explicit joint representa-
tionof Pr(Z!+1, Y¢*+1)? Intuitively, wewant toretainthe “expansion” of Y!*! intermsof Z!*! (i.e, retain
thejoint) if we will need to worry about the correlation between Y?+! and Z**! later on. Aswe saw above,
this notion of need is easily noticed when one of the variables in directly involved in the value tree, and
will be regressed explicitly afterward (under the conditionsthat label the current branch of course). How-
ever, variablesthat may be needed subsequently are not restricted to thosethat haveto be regressed directly
(i.e., they needn’'t be part of Tree(V)); instead, variables that influence thosein Tree(V') can sometimes be
retained in expanded form.

Consider the actionin Figure 35(a) (we again use the same valuefunction). When weregress Y through
a, weobtainatree containingnode Z+1, which subsequently getsreplaced by CPT(Z, a). Theterm Pr(Y+1)
should be computed explicitly by summing the terms Pr(Y+1|z’) - Pr(2’|Z) over values z'. However,
looking at Tree(V/), we see that W will be regressed wherever Pr(Y+1) > 0, and that 1¥*! also depends
on Zt+1, Thismeans that (ignoring any specific structure in the CPT-trees) Wi+! and Y+! are correlated
given the previous state s. Thisdependenceis mediated by Z*+!, so wewill need to explicitly usethejoint
probability Pr(Y¢+! Z!+1) to determinethejoint probability Pr(Y¢*+* Wi+1). Insuch acase, wesay that
Z'*+1 isneeded and we do not sum outitsinfluenceon Y?+!. In an examplelikethis, however, oncewe have
determined Pr(Y‘*! Z¢+1 Wi+1) we can decide to sumout Z‘*! to obtain the reduced joint distribution
Pr(Y+ Wity if Zt+1 will not be needed further.

Finally, supposethat W**! dependsindirectly on Z¢*1, but that this dependence is mediated by Y+1,

54

asin Figure 35(b). Inthis case, we can sum out Z**! and claim that Z**' isnot needed: Z+! can only
influence W*+! through its effect on Y'+!. This effect is adequately summarized by Pr(Y+!1|Z*); and
theterms Pr(Y‘*! Z!+1]Z") are not needed to compute Pr(Y!T! Wi+l Zt) since Wi*! and Z!+! are
independent given Y +1,

These considerationsare formalized in detail in[8]. Specifically, therewe providethe formal definitions
and algorithms needed to operationalize the intuitions described in this section.

Theuseof actionswith correl ated effectsleadsto two difficulties. First, theoverhead of tree construction
isincreased. Essentially, certain minimal probabilistic inference must be performed in order to accurately
predict the effects of an action and to compute expected future value of performing an action with respect to
agiven vaue function. The second difficulty lies in maintaining the PTrees themselves. Certain leaves of
these trees must be labeled by explicit (local) joint distributions. However, two considerations suggest that
thismay not be problematic in practice. The first isthe possibility that these joint distributions can them-
selves be factored in certain ways and computed as needed. The second lies in the fact that while many
actions will exhibit correlationsin their effects, these correlationstend to involve a small number of vari-
ables. Our agorithm requires only that a joint be maintained over variablesthat are actually correlated. It
is clear, however, that practical experience is needed with this agorithm before a realistic assessment can
be made.

6.2 Approximation within SVI

One advantage of using decision trees to structure value functions is the ease with which one can spec-
ify approximation schemes. The tree Tree(V') representing a value function V' reflects dl conditionsrele-
vant to differences in value at different states. However, some of these distinctions may have a small im-
pact onvalue. That is, certain leaves of the tree may correspond to (clusters of) states whose values differ
only marginally. For example, referring to the optimal value tree produced by SPI in our running example
(Figure 22), we see that the states abstracted by the three branches of the tree (HCO, HCR O, W, R, U),
(HCO,HCR O, W, R, U}, and (HCO,HCR O, W, R) al have valuesthat differ by at most 0.09 (as com-
pared to the total range of values of 5.19 t0 10.0). If we include the fourth branch (HCO, HCR, O, W), the
values differ by at most 1.0. Tree-structured value functions make it easy to detect such regions of similar
value.

If we arewilling to live with a certain amount of approximation error, a val uetree can be made smaller
by pruning the tree in order to coa esce regions of similar value. More precisely, by replacing a subtree
whose leaves are labeled with value all within some small factor 6 of one another with a single leaf, we
obtain an approximation of the original value tree, but one which is (perhaps considerably) smaller.

There are several ways to label the leaves of a pruned value tree. We could label each leaf with the
(possibly weighted) average of the values within the subtree it replaced, or possibly with the midpoint of
the range of values it replaced. 1n our work, we have opted to label these |eaves with the range of values

55

/\ /\
w HCR 9.0, 10.0 HCR
9.00 10.00 o) fe) o) e}
w N " w N w N N
N\ o\ N\ N\ [7.45, 8.45] [6.64, 7.64] [5.19, 6.19] [5.83, 6.83]

7.45[8.36, 8.45) 6.64 [6.81,7.64] 5.19[5.62, 6.19] 5.83 [6.10, 6.83]

@ (b)
Figure 36: Two ranged valuetrees: (a) A more cautious pruning; and (b) a more aggressive pruning.

itself. Specifically, if a subtree is pruned, the replacing lesf is labeled with the maximum and minimum
values labeling the leaves of the pruned subtree. Two such ranged value trees, or R-trees, areillustratedin
Figure 36. Thefirst tree corresponds to pruning the tree of Figure 22 by removing all distinctionsreferring
to variables R and U (i.e., removing subtrees rooted at R). The maximum range of values at any ledf is
0.83, thus little error can be introduced by acting “optimally” with respect to the pruned value function.
The second tree is produced by the more aggressive pruning of al subtrees rooted at variable IV, giving a
smaller tree with dightly larger ranges at the leaves.

There is no immediate computationa utility in constructing avalue tree and then pruning it—all of the
computational effort has already been expended to construct a larger tree. However, if the pruned tree is
oneisaseguence of valuetrees constructed by, say, structured successive approximation or structured value
iteration (SV1), this pruning can be computationally beneficial. For instance, suppose we use SV1 to solvea
structured MDP and Tree(V*) has been generated. By pruning Tree(V*) to obtain an approximate version
of V¥, say Tree(f/’“) , the pruned tree will be smaller, containing fewer interior nodes. Subsequent decision-
theoretic regression used to generate Tree(f/’“ *+1)—the approximate version of V**! generated from the
approximation of V*—uwill proceed more quickly dueto the fact that the tree being regressed in smaller.

In [13] we develop an approximate variant of SVI in which each value tree in the sequence produced
by SVI ispruned before the next tree in the sequence in constructed. The result is an algorithm that solves
structured M DPs approximately but generally does so considerably more efficiently than exact SVI or SPI.
The value functions that are regressed are, in fact, ranged trees, not just simple value trees. The basic op-
erations defined in Section 4 are extended to deal with value ranges: backing up maximum and minimum
values through the basic Regress operator and merging R-trees to keep track of upper and lower bounds.
The result is an algorithm that produces a sequence of R-trees with a guarantee that the true value at any
state lies within the range labeling the appropriate leaf of the R-tree.

Apart from extending the algorithms to deal with value ranges, a number of other issues must be dealt
with to satisfactorily implement such an approximate version of SVI [13].

1. Wemust decide how best to prunearanged tree. Wemay opt for themost accurate pruned tree of some
fixed maximum size or the smallest pruned tree of afixed minimum accuracy. In[13] we present an

56

algorithm for finding the optimal pruning sequence for a given R-tree; that is, an agorithm in which
each pruning step introduces the least error. This allows one to adopt whatever pruning criterion is
most suitable. The problemisstrongly related to work on pruning decision treesin classification, and
our algorithm draws ideas from the work of Bohanec and Bratko [7].%6 We are able to provide error
boundsfor the algorithmaswell in away that alows on-line, anytime tradeoffs between tree size and
solution quality [13].37

2. Theability to pruneis strongly influenced by the variable ordering inthetree. Again thisissue arises
in research on classification [64, 82]. Finding the smallest decision tree representing a given function
isNP-hard [46], but in [13] we discuss certain feasible heuristics suitable for reordering an R-tree to
make it smaller and/or more amenable to pruning.

3. Termination of SVI requires care when approximations are introduced. While value iteration is as-
sured to terminate due to the contraction property of the Bellman backup operator, this property fails
to hold when approximationsare introduced (in fact, we can easily construct examples where pruning
with midpoint replacement causes nontermination). Fortunately, sincetheranged valuetrees we con-
struct are guaranteed to bracket thetrue value function, we can adopt rather cautious stopping criteria
based on the closeness of the ranges.

We refer to [13] for further details on approximation within these structured decision-theoretic regres-
sionoperations. Therewe discusstheseissuesinmore detail, present thevariousal gorithms, describeresults
on error bounds, and provide empirical evidence suggesting that approximate SVI can provide significant
computational savings over SVI, SPI and standard dynamic programming techniques with minimal intro-
duction of error in avariety of problems. For instance, on the worst-case MDPs described in Section 5.1,
approximate SV provides significant savings over exact SVI with very littleintroduction of error, at many
levels of pruning. As one example, on the 10-variable worst-case domain approximate SVI at a cautious
level of pruning solvesthe problem inless than 1% of the time required by SVI (roughly the same amount
of time required by MPI), but introduces an average error in the value function of under 0.47%. At amore
aggressive pruning level it solvesthe problem in less than 0.01% of thetime required by SVI (roughly one
one-hundredth the time required by MP1), yet introduces an average error of 0.77%. Similar results obtain
on other problems, such as the taskable robot problems (with and without exogenous events).

7 Concluding Remarks

We have proposed the notion of decision-theoretic regression as a generalization of classica regression
planning that deals with stochastic domains with conflicting objectives. Viewed as a form of state-space

36This work is concerned with pruning for the sake of simplifying the resulting decision tree with little loss in accuracy, in contrast
to pruning for the purpose of preventing overfitting [64].
37 The approximation is thus careful enough to avoid the problemsof approximation described in [18].

57

abstraction, decision-theoretic regression groups together states that have identical value or policy choice
at various pointsin the dynamic programming computationsrequired to solve an MDP. We have designed a
specific decision-theoreti c regression operator that workswith DBNs and decision trees representing transi-
tion and reward functions and that uses decision treesto represent value functionsand policies. Thisopera
tion exploitsuniformity in the value function and policy, specificaly, thefact that certain variables—under
certain conditions—are not relevant to the optimal choice of action or the prediction of value.

Our SPI agorithm was shown to offer some significant advantages in certain problems, both in terms
of time and space requirements, compared to unstructured dynamic programming. We a so described some
problems where the overhead of SPI failsto pay off. Generally, speaking, the larger the problem the more
likely that overhead of tree construction associated with SPI will be more than compensated by the reduc-
tionin the number of expected val ue and maximization computationsinduced by abstraction. We discussed
certain problem propertiesthat are likely to benefit SPI, with our best- and worst-case examples giving us
some sense of the boundaries of performance. Even in the worst case, SPI's overhead is not overwhelm-
ing. Our tests suggest that the overhead will be compensated by (the equivalent of) the remova of only
afew variables. Finaly, SPI lendsitself readily to approximation, which offers additional computational
benefits—often with only asmall introduction of error—providingthe ability to construct error boundsthat
can be used to make anytime computationa decisions.

We note that decision-theoretic regression is a general concept whose applicability is not restricted to
decision-treerepresentationsof transitionfunctions, value functionsand thelike. The same principlesapply
to any structured representation as long as one can devel op a suitabl e regression operator for that represen-
tation. To wit, the SPUDD system [43] applies the same decision-theoretic regression techniques to the
solution of MDPs by value iteration, but does so using algebraic decision diagrams [2] to represent inputs
and output. Because these representations are often more compact than decision trees, the performance of
SPUDD isconsiderably better thanthat of SPI; but it adoptsthe same genera conceptualization of the prob-
lem described here. Wenotethat much SPUDD’ simproved performanceisdueto the use of optimized code.
On the worst-case examples, SPUDD outperforms SPI from two- to twelve-fold (with larger performance
differences on larger problems). This occurs despite the fact the the decision diagram representation of the
value functionsin the worst-case problem set is exactly afull decision tree. This providesfurther evidence
of the utility of decision-theoretic regression.

There are many interesting directions in which the work described here can be extended. Oneis the
integration of decision-theoretic regression with other concepts that can be used to solve MDPs effectively.
Thisincludesthe use of reachability analysis, other abstraction methods, and other structured valuefunction
representations (e.g., those that support some typeof functional decomposition of thevaluefunction such as
neural networks[6, 80] or additivestructure[9, 31, 37, 47, 56, 72, 71]). This should prove possible because
the structure assumed by SPI can be exploited in away that is orthogonal to thetypes of structure assumed
by many other solution methods. One example of thisistheintegration of abstraction methodslike SPI with
reachability analysis[10].

58

SPI and other decision-theoretic regression methods need to be tested empirically on more realistic do-
mains. Further testing will givean ideaasto thetypesof problem structure that exist in naturally-occurring
MDPs. Thiswill also suggest the types of representations (and associated regression agorithms) that can
best exploit thisstrcuture.

Finally, we hope to extend our decision-theoretic regression al gorithmsto more sophisticated forms of
MDPs that lend themselves to more realistic modeling of domains. This includes consideration of first-
order representations of stochastic decision problemsthat allow objects and rel ations over them to be spec-
ified. Such an extension is crucia in the modeling of real-world planning problems. Also of interest isthe
extension of these methods to semi-Markov and hybrid (continuous-discrete) models. The application of
decision-theoretic regression to partially observable settingsisimportant for reaistic modeling aswell. In-
vestigationsinto the application of SPl to POMDPsisreported in [16], where vectors corresponding to the
usua piecewise linear representation of val ue functionsfor POMDPs are treated as decision trees, produced
by decision-theoretic regression. Further investigationsinto compatible structured belief state representa-
tionsis needed to make the approach more practical .

References

[1] Christopher G. Atkeson, Andrew W. Moore, and Stefan Schaal. Locally weighted learning for control. Artificial
Intelligence Review, 11:75-113, 1997.

[2] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico Macii, Abelardo Pardo, and Fabio
Somenzi. Algebraic decision diagrams and their applications. In International Conference on Computer-Aided
Design, pages 188-191. |EEE, 1993.

[3] Richard E. Bellman. Dynamic Programming. Princeton University Press, Princeton, 1957.

[4] D. P. Bertsekas and D. A. Castanon. Adaptive aggregation for infinite horizon dynamic programming. 1EEE
Transactionson Automatic Control, 34:589-598, 1989.

[5] Dimitri P. Bertsekas. Dynamic Programming: Deterministic and Stochastic Models. Prentice-Hall, Englewood
Cliffs, 1987.

[6] Dimitri P. Bertsekasand John. N. Tsitsiklis. Neuro-dynamic Programming. Athena, Belmont, MA, 1996.

[7] Marko Bohanic and Ivan Bratko. Trading accuracy for simplicity in decision trees. Machine Learning, 15:223—
250, 1994.

[8] Craig Boutilier. Correlated action effects in decision theoretic regression. In Proceedingsof the Thirteenth Con-
ference on Uncertainty in Artificial Intelligence, pages 30-37, Providence, RI, 1997.

[9] Craig Boutilier, Ronen |. Brafman, and Christopher Geib. Prioritized goal decomposition of Markov decision
processes. Toward a synthesis of classical and decision theoretic planning. In Proceedings of the Fifteenth Inter-
national Joint Conferenceon Artificial Intelligence, pages 11561162, Nagoya, 1997.

[10] Craig Boutilier, Ronen I. Brafman, and Christopher Geib. Structured reachability analysis for Markov decision
processes. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pages 24-32,
Madison, WI, 1998.

59

[11]

[12]

[13]

[14]

[19]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
(23]

[24]

[29]

Craig Boutilier, Thomas Dean, and Steve Hanks. Decision theoretic planning: Structural assumptions and com-
putational leverage. Journal of Artificial Intelligence Research, 11:1-94, 1999.

Craig Boutilier and Richard Dearden. Using abstractionsfor decision-theoretic planning with time constraints. In
Proceedings of the Twelfth National Conferenceon Artificial Intelligence, pages 1016-1022, Seattle, 1994.

Craig Boutilier and Richard Dearden. Approximating value trees in structured dynamic programming. In Pro-
ceedings of the Thirteenth International Conference on Machine Learning, pages 54-62, Bari, Italy, 1996.

Craig Boutilier, Nir Friedman, Moisés Goldszmidt, and Daphne Koller. Context-specific independence in
Bayesian networks. In Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence, pages
115-123, Portland, OR, 1996.

Craig Boutilier and Moisés Goldszmidt. The frame problem and Bayesian network action representations. In
Proceedingsof the Eleventh Biennial Canadian Conferenceon Artificial Intelligence, pages69-83, Toronto, 1996.

Craig Boutilier and David Poole. Computing optimal policies for partially observable decision processes using
compact representations. In Proceedings of the Thirteenth National Conference on Artificial Intelligence, pages
1168-1175, Portland, OR, 1996.

Craig Boutilier and Martin L. Puterman. Process-oriented planning and average-reward optimality. In Proceedings
of the Fourteenth International Joint Conference on Artificial Intelligence, pages 1096—1103, Montreal, 1995.

Justin A. Boyan and Andrew W. Moore. Generalizationin reinforcement learning: Safely approximating the value
function. In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances in Neural Information Processing
Systems 7. MIT Press, Cambridge, 1995.

Randal E. Bryant. Graph-based algorithms for boolean function manipulation. | EEE Transactionson Computers,
C-35(8):677-691, 1986.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model checking: 10%° states
and beyond. In Conferenceon Logic in Computer Science, pages 428—439, 1990.

Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L. Littman. Acting optimally in partially observable
stochastic domains. In Proceedings of the Twelfth National Conference on Artificial Intelligence, pages 1023—
1028, Seattle, 1994.

David Chapman. Planning for conjunctive goals. Artificial Intelligence, 32(3):333-377, 1987.

David Chapman and Leslie Pack Kaelbling. Input generalization in delayed reinforcement learning: An algo-
rithm and performance comparisons. In Proceedings of the Twelfth International Joint Conference on Artificial
Intelligence, pages 726731, Sydney, 1991.

E. M. Clarke, E. A. Emerson, and A.P. Sistla. Automatic verification of finite state concurrent systems using
temporal logic specifications: A practical approach. In Symposium on Principles of Programming Languages,
pages 117-126. ACM, 1983.

Adnan Darwiche and Moisés Goldszmidt. Action networks: A framework for reasoning about actionsand change
under uncertainty. In Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence, pages 136—
144, Sezttle, 1994.

60

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(39]

[36]

(37]

(38]

[39]

[40]

[41]
[42]

Thomas Dean and Robert Givan. Model minimization in Markov decision processes. In Proceedingsof the Four-
teenth National Conferenceon Artificial Intelligence, pages 106111, Providence, 1997.

Thomas Dean, Robert Givan, and SoniaL each. Model reduction techniquesfor computing approximately optimal
solutionsfor Markov decision processes. In Proceedingsof the Thirteenth Conferenceon Uncertainty in Artificial
Intelligence, pages 124131, Providence, RI, 1997.

Thomas Dean, Leslie Pack Kaelbling, Jak Kirman, and Ann Nicholson. Planning with deadlinesin stochastic do-
mains. In Proceedingsof the Eleventh National Conferenceon Artificial Intelligence, pages574-579, Washington,
D.C., 1993.

Thomas Dean and Keiji Kanazawa. A model for reasoning about persistence and causation. Computational In-
telligence, 5(3):142—-150, 1989.

Richard Dearden and Craig Boutilier. Abstraction and approximate decision theoretic planning. Artificial Intelli-
gence, 89:219-283, 1997.

ThomasG. Dietterich. TheMAXQ method for hierarchical reinforcement learning. In Proceedingsof the Fifteenth
International Conferenceon Machine Learning, pages 118-126, Madison, WI, 1998.

Thomas G. Dietterich and Nicholas S. Flann. Explanation-based learning and reinforcement learning: A unified
approach. In Proceedingsof the Twelfth International Conference on Machine Learning, pages 176-184, Lake
Tahoe, 1995.

Thomas G. Dietterich and Nicholas S. Flann. Explanation-based learning and reinforcement learning: A unified
view. Machine Learning, 28(2):169-210, 1997.

Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs. Communications
of the ACM, 18(8):453-457, 1975.

Jerome A. Feldman and Robert F. Sproull. Decision theory and artificial intelligence 11: The hungry monkey.
Cognitive Science, 1:158-192, 1977.

Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of theorem proving to problem
solving. Artificial Intelligence, 2:189-208, 1971.

Zoltan Gabor, Zsolt Kalmar, and Csaba Szepesvari. Multi-criteria reinforcement learning. In Proceedingsof the
Fifteenth International Conference on Machine Learning, pages 197205, Madison, WI, 1998.

Dan Geiger and David Heckerman. Advancesin probabilistic reasoning. In Proceedingsof the Seventh Conference
on Uncertainty in Artificial Intelligence, pages 118-126, Los Angeles, 1991.

Robert Givan and Thomas Dean. Model minimization, regression, and propositional STRIPS planning. In Pro-
ceedings of the Fourteenth International Joint Conference on Artificial Intelligence, pages 1163-1168, Nagoya,
Japan, 1997.

Steve Hanks and Drew V. McDermott. Modeling a dynamic and uncertain world i: Symbolic and probabilistic
reasoning about change. Artificial Intelligence, 1994.

Steven John Hanks. Projecting Plans for Uncertain Worlds. PhD thesis, Yale University, 1990.

J. Hartmanis and R. E. Stearns. Algebraic Sructure Theory of Sequential Machines. Prentice-Hall, Englewood
Cliffs, 1966.

61

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[59]

[56]

[57]

(58]

[59]
[60]

JesseHoey, Robert St-Aubin, Alan Hu, and Craig Boutilier. SPUDD: Stochastic planning using decision diagrams.
In Proceedingsof the Fifteenth Conference on Uncertainty in Artificial Intelligence, pages 279288, Stockholm,
1999.

Ronald A. Howard. Dynamic Programming and Markov Processes. MIT Press, Cambridge, 1960.

Ronald A. Howard and James E. Matheson, editors. Readings on the Principles and Applications of Decision
Analysis. Strategic Decision Group, Menlo Park, CA, 1984.

L. Hyafil and R. L. Rivest. Constructing optimal binary decision treesis NP-complete. Information Processing
Letters, 5:15-17, 1976.

Leslie Pack Kaelbling. Hierarchical reinforcement learning: Preliminary results. In Proceedings of the Tenth
International Conferenceon Machine Learning, pages 167-173, Amherst, MA, 1993.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement learning: A survey. Journal
of Artificial Intelligence Research, 4:237-285, 1996.

R. L. Keeney and H. Raiffa. Decisionswith Multiple Objectives: Preferencesand Value Trade-offs. Wiley, New
York, 1976.

Nicholas Kushmerick, Steve Hanks, and Daniel Weld. An algorithm for probabilistic planning. Artificial Intelli-
gence, 76:239-286, 1995.

D. Leeand M. Yannakakis. Online miminization of transition systems. In Proceedingsof the 24th Annual ACM
Symposium on the Theory of Computing (STOC-92), pages 264274, Victoria, BC, 1992.

Michael Lederman Littman. Algorithms for sequential decision making. Ph.D. Thesis CS-96-09, Brown Uni-
versity, Department of Computer Science, March 1996.

William S. Lovejoy. A survey of algorithmic methods for partially observed Markov decision processes. Annals
of Operations Research, 28:47—-66, 1991.

David McAllester and David Rosenblitt. Systematic nonlinear planning. In Proceedingsof the Ninth National
Conferenceon Artificial Intelligence, pages 634—639, Anaheim, 1991.

John McCarthy and P.J. Hayes. Some philosophical problems from the standpoint of artificial intelligence. Ma-
chine Intelligence, 4:463-502, 1969.

Nicolas Meuleau, Milos Hauskrecht, Kee-Eung Kim, Leonid Peshkin, Leslie Pack Kaelbling, Thomas Dean, and
Craig Boutilier. Solving very large weakly coupled Markov decision processes. In Proceedingsof the Fifteenth
National Conferenceon Artificial Intelligence, pages 165-172, Madison, W1, 1998.

JudeaPearl. Probabilistic Reasoningin Intelligent Systems: Networ ksof PlausibleInference. Morgan Kaufmann,
San Mateo, 1988.

J. Scott Penberthy and Daniel S. Weld. UCPOP: A sound, complete, partial order planner for adl. In Proceedings
of the Third Inter national Conferenceon Principlesof Knowledge Representationand Reasoning, pages 103114,
Cambridge, MA, 1992.

David Poole. Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence, 64(1):81-129, 1993.

David Poole. Theindependent choicelogic for modelling multiple agentsunder uncertainty. Artificial Intelligence,
94(1-2):7-56, 1997.

62

[61]

[62]

[63]

[64]
[69]
[66]

[67]

[68]

[69]
[70]

[71]

[72]

[73]

[74]

[79]

[76]

[77]

(78]

Doina Precup, Richard S. Sutton, and Satinder Singh. Theoretical results on reinforcement learning with tempo-
rally abstract behaviors. In Proceedingsof the Tenth European Conferenceon Machine Lear ning, pages382—393,
Chemnitz, Germany, 1998.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New York,
1994,

Martin L. Puterman and M.C. Shin. Modified policy iteration algorithms for discounted Markov decision prob-
lems. Management Science, 24:1127-1137,1978.

J. Ross Quinlan. C45: Programsfor Machince Learning. Morgan Kaufmann, San Mateo, 1993.
Ronald L. Rivest. Learning decision lists. Machine Learning, 2:229-246, 1987.

Earl D. Sacerdoti. The nonlinear nature of plans. In Proceedingsof the Fourth International Joint Conferenceon
Artificial Intelligence, pages 206-214, 1975.

M. J. Schoppers. Universal plansfor reactive robots in unpredictable environments. In Proceedingsof the Tenth
International Joint Conferenceon Artificial Intelligence, pages 10391046, Milan, 1987.

Paul L. Schweitzer, Martin L. Puterman, and Kyle W. Kindle. Iterative aggregation-disaggregation procedures
for discounted semi-Markov reward processes. Oper ations Research, 33:589-605, 1985.

Ross D. Shachter. Evaluating influence diagrams. Operations Research, 33(6):871-882, 1986.

Solomon E. Shimony. Therole of relevancein explanation |: Irrelevance asstatistical independence. International
Journal of Approximate Reasoning, 8(4):281-324, 1993.

Satinder P. Singh and David Cohn. How to dynamically merge Markov decision processes. In Advancesin Neural
Information Processing Systems 10, pages 1057-1063. MIT Press, Cambridge, 1998.

Satinder Pal Singh. Transfer of learning by composing solutions of elemental sequential tasks. Machine Learning,
8:323-339, 1992.

Richard D. Smallwood and Edward J. Sondik. The optimal control of partially observable Markov processesover
afinite horizon. Operations Research, 21:1071-1088, 1973.

James E. Smith, Samuel Holtzman, and James E. Matheson. Structuring conditional relationships in influence
diagrams. Operations Research, 41(2):280-297, 1993.

Edward J. Sondik. The optimal control of partially observable Markov processesover the infinite horizon: Dis-
counted costs. Operations Research, 26:282—-304, 1978.

Richard S. Sutton. Integrated architectures for learning, planning, and reacting based on approximating dynamic
programming. In Proceedings of the Seventh International Conference on Machine Learning, pages 216-224,
Austin, 1990.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA,
1998.

Jonathan Tash and Stuart Russell. Control strategies for a stochastic planner. In Proceedingsof the Twelfth Na-
tional Conferenceon Artificial Intelligence, pages 1079-1085, Seattle, 1994.

63

[79]

(80]

(81]

(82]

(83]

(84]

Joseph A. Tatman and Ross D. Shachter. Dynamic programming and influence diagrams. |EEE Transactionson
Systems, Man and Cyber netics, 20(2):365-379, 1990.

Gerald J. Tesauro. TD-Gammon, a self-teaching backgammon program, achieves master-level play. Neural Com-
putation, 6:215-219, 1994.

John H. Tsitsiklis and Benjamin Van Roy. Feature-based methodsfor large scale dynamic programming. Machine
Learning, 22:59-94, 1996.

Paul E. Utgoff. Decision tree induction based on efficient tree restructuring. Technical Report 9518, University
of Massachusetts, March 1995.

Richard Waldinger. Achieving several goals simultaneously. In E. Elcock and D. Mitchie, editors, Machine In-
telligence 8: Machine Representations of Knowledge, pages 94-136. Ellis Horwood, Chichester, England, 1977.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8:279-292, 1992.

Acknowledgements

Thanks to Tom Dean, David Poole and Marty Puterman for discussions and comments on various aspects

of thisresearch. We a so thank thereferees for their suggestions. Craig Boutilier was supported by NSERC
Research Grant OGP0121843, IRIS Phase 11 Project IC-7 and IRIS Phase |11 Project BAC. Thiswork was
done in part while Boutilier was at the University of British Columbia. Richard Dearden was supported
by a UBC University Graduate Fellowship, a Killam Predoctoral Scholarship, IRIS Phase Il Project IC-7
and IRIS Phase |11 Project BAC. This work was done in part while Moisés Goldszmidt was a Rockwell
International Science Center and supported by DARPA contract F30602-95-C-0251.

64

