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Abstract

Markov decision processes (MDPs) have proven to be popular models for decision-theoretic planning,

but standard dynamic programming algorithms for solving MDPs rely on explicit, state-based specifica-

tions and computations. To alleviate the combinatorial problems associated with such methods, we pro-

pose new representational and computational techniques for MDPs that exploit certain types of problem

structure. We use dynamic Bayesian networks (with decision trees representing the local families of con-

ditional probability distributions) to represent stochastic actions in an MDP, together with a decision-tree

representation of rewards. Based on this representation, we develop versions of standard dynamic pro-

gramming algorithms that directly manipulate decision-tree representations of policies and value func-

tions. This generally obviates the need for state-by-state computation, aggregating states at the leaves of

these trees and requiring computations only for each aggregate state. The key to these algorithms is a

decision-theoretic generalization of classic regression analysis, in which we determine the features rele-

vant to predicting expected value. We demonstrate the method empirically on several planning problems,�Some parts of this report appeared in preliminary form in “Exploiting Structure in Policy Construction,” Proc. of Fourteenth Inter-
national Joint Conf. on Artificial Intelligence (IJCAI-95), Montreal, pp.1550–1556(1995); and “Correlated Action Effects in Decision-
Theoretic Regression,” Proc. of Thirteenth Conf. on Uncertainty in Artificial Intelligence (UAI-97), Providence, pp.30–37 (1997).yCommunicating author
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showing significant savings for certain types of domains. We also identify certain classes of problems for

which this technique fails to perform well and suggest extensions and related ideas that may prove useful

in such circumstances. We also briefly describe an approximation scheme based on this approach.

Keywords: decision-theoretic planning, Markov decision processes, Bayesian networks, regression, decision trees,

abstraction

1 Introduction

Decision-theoretic planning (DTP) has attracted a considerable amount of attention recently as AI researchers

seek to generalize the types of planning problems that can be tackled in computationally effective ways.

DTP is primarily concerned with problems of sequential decision making under conditions of uncertainty

and where there exist multiple, often conflicting, objectives whose desirability can be quantified. Markov

decision processes (MDPs) have been adopted as the model of choice for DTP problems in much recent

work [12, 26, 28, 30, 61, 78], and have also provided the underlying foundations for most work in rein-

forcement learning [48, 76, 77, 84]. MDPs allow the introduction of uncertainty into the effects of actions,

the modeling of uncertain exogenous events, the presence of multiple, prioritized objectives, and the solu-

tion of nonterminating process-oriented problems.1

The foundations and the basic computational techniques for MDPs [3, 5, 44, 62] are well-understood

and in certain cases can be used directly in DTP. These methods exploit the dynamic programming princi-

ple and allow MDPs to be solved in time polynomial in the size of the state and action spaces that make up

the planning problem. Unfortunately, these classical dynamic programming methods are formulated so as

to require explicit state space enumeration. As such, AI planning systems that solve MDPs are faced with

Bellman’s so-called curse of dimensionality: the number of states grows exponentially with the number of

variables that characterize the planning domain. This has an impact on the feasibility of both the specifica-

tion and solution of large MDPs.

The curse of dimensionality plagues not only DTP, but also classical planning techniques. However,

methods have been developed that, in many instances, circumvent this problem. In classical planning one

typically does not specify actions and goals explicitly using the underlying state space, but rather “inten-

sionally” using propositional or variable-based representations. For instance, a STRIPS representation of

an action describes very concisely the transitions induced by that action over a large number of states. Sim-

ilarly, classical planning techniques such as regression planning [83] or nonlinear planning [22, 54, 58, 66]

exploit these representations to great effect, never requiring that one search (or implement “shortest-path”

dynamic programming techniques) explicitly through state space. Intuitively, such methods aggregate states

that behave identically under a given action sequence with respect to a given goal.

1One form of uncertainty cannot be handled in the framework we adopt, specifically, partial observability, or uncertain knowledge
about the state of the system being controlled. Partially observable MDPs (or POMDPs) [52, 53, 75, 73] can be used in such cases.
We will make further remarks on POMDPs at the end of this article.
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In this paper, we develop similar techniques for solving certain classes of large MDPs. We first describe

a representation for actions with stochastic effects that uses Bayesian networks (and decision trees to rep-

resent the required families of conditional probability distributions) to provide the same type of compact

representation of actions that, say, STRIPS affords in deterministic settings. We also use decision trees to

represent reward functions. This representation lays bare — indeed, exploits — certain structural regulari-

ties in transition probabilitiesand reward functions. We then describe algorithms that use this representation

to compute value functions and solve MDPs without generally requiring explicit enumeration of the state

space. Much like regression in classical planning, we focus attention on the variables that, under a par-

ticular action, influence the outcome of this action with respect to relevant variables. In addition, policies

and value functions will be represented compactly using decision trees, with the structure inherent in the

policy or value function being preserved to a large extent by our algorithmic operations. Indeed, under cer-

tain assumptions one can show that the degree of preserved structure is maximal (e.g., subject to variable

reordering in trees).

1.1 Decision-Theoretic Regression

The key to each of our algorithms is a process we call decision-theoretic regression. In classical planning

the regression of a set of conditionsC through an action a is the weakest set of conditions regr(C; a) such

that performing action a under conditions regr(C; a) ensures that C is made true [83].2 This is the key

step in any backchaining (or subgoaling) planner, including least-commitment planners [54, 58]. Given a

(sub)goal setG, regression ofG througha produces a new subgoal whose achievement with plan P 0 assures

us of a plan P to achieve G: simply append a to P 0 to form P .

Decision-theoretic regression generalizes this process in two ways. First, we can’t always speak of goal

achievement in MDPs; rather, we concern ourselves with the value associated with certain conditions. Thus,

we regress a set of conditions, each associated with a distinct value, through an action. As such, the decision

theoretic regression of such a set of conditions through an action will result in a new set of conditions. Sec-

ond, stochastic actions rarely guarantee achievement of any particular condition—so rather than producing

the conditions that, when the action is applied, lead to a specific “target” condition, we instead produce a set

of conditions under which the action will make each of the regressed conditions true with identical prob-

ability. It follows that, since each condition in the regressed set is associated with a single value, the new

conditions produced by decision-theoretic regression each have the same expected value under action a.

With such an operation in hand, we can implement classical algorithms for solving MDPs, such as value

iteration [3] or modified policy iteration [63] in a highly structured way. Our structured versions of these

algorithms will cluster together states that at each stage in the computation have the same estimated value

or same optimal choice of action. This partitioning of state space into such regions will be represented by

decision trees that test the values of specific variables. The computational advantage provided by such an

2Regression is also a concept of fundamental importance in program synthesis and verification [24, 34].
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approach is that value need only be computed once for each region instead of once per state.

1.2 State Aggregation and Function Approximation

The approach we take to solving large MDPs is a specific state aggregation method. Other types of state ag-

gregation techniques have been proposed, in which states with similar characteristics are grouped together.

Such methods are reported in, for instance, [4, 68, 81], and can vary as to whether states are statically or

dynamically aggregated (that is, do the groupings of states stay fixed or can they change during computa-

tion). Other compact representations of value functions have also been proposed, such as linear function

representations or neural networks [1, 6, 80, 81]. These techniques do not seek to exploit regions of unifor-

mity in value functions, but rather compact functions of state features that reflect value. As such they are

distinguished from strict aggregation methods.

In much of this previous work, the goal is the approximate solution of large MDPs. Our proposal can

be distinguished from other aggregation methods, and other compact representations of values functions, in

two major ways. First, our aggregations are determined dynamically using features that are easily extracted

from the model. In this sense, the intuitions that underly our approach are much more closely aligned with

those exploited in classical planning. Indeed, states are implicitly aggregated by a process of abstraction—

the removing of certain variables from the state space description. Second, our methods are not (inherently)

approximation techniques—the basic procedures produce exact solutions and value functions.3 We will,

however, describe modifications of our techniques that allow approximate solutions to be constructed.

There are two approaches to state aggregation that bear similarity to our method. The first is the model

minimization approach of Givan and Dean [26, 27, 39]. In this work, the notion of automaton minimization

[42, 51] is extended to MDPs and is used to analyze abstraction techniques such as those presented in [30].

More closely related to the specific model we propose in the current paper is that of Dietterich and Flann

[32, 33]. They apply regression methods to the solution of MDPs (and consider this problem in the context

of reinforcement learning in addition). Their original proposal [32] is restricted to MDPs with goal regions

and deterministic actions (represented using STRIPS operators), thus rendering true goal-regression tech-

niques directly applicable. This is extended in [33] to allow stochastic actions, thus providing a stochastic

generalization of goal regression. We discuss these models in more detail in Section 4.7.

1.3 Outline

In Section 2 we describe the basic MDP model, various concepts that are used in the solution of MDPs, as

well as several classical algorithms for solving MDPs.

In Section 3, we define a particular compact representation of an MDP, using dynamic Bayesian networks

[25, 29]—a special form of Bayesian network [57]—to represent the dependence between variables before

3More accurately, they produce solutions that are identical to their standard state-based counterparts, which may be �-optimal.
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and after the occurrence of actions. In addition, we use decision trees to represent the conditional probability

matrices quantifying the network to exploit context-specific independence [14], that is, independence given

a particular variable assignment. We note that this representation is somewhat related to the probabilistic

variants of STRIPS operators introduced in [40] and augmented in [30]. We also describe the decision-tree

representation of reward functions, value functions and policies.

In Section 4, we describe the basic decision-theoretic regression operator which, given a particular tree-

structured value function and action network, regresses the value function through that action to produce a

new value function. With this operation in hand, we develop structured analogs of classical MDP algorithms

like value and policy iteration. In Section 5 we present an empirical analysis of these methods and suggest

the types of problems for which it is likely to work well, unlikely to work well, and what possible approaches

may help with the latter. In Section 6 we describe an extension of the algorithms presented in Section 4 to

deal with correlations in action effects. We also briefly describe some work that leverages the structured

methods described in Section 4 to provide approximate solutions for structured MDPs. We conclude in

Section 7 with some brief discussion of recent work that is related to, or extends, these ideas, and describe

some promising directions for future research.

2 Markov Decision Processes

MDPs can be viewed as stochastic automata in which actions have uncertain effects, inducing stochastic

transitions between states, and in which the precise state of the system is known only with a certain proba-

bility. In addition, the expected value of a certain course of action is a function of the transitions it induces,

allowing rewards to be associated with different aspects of the problem rather than with an all-or-nothing

goal proposition. Finally, plans can be optimized over a fixed finite period of time, or over an infinite hori-

zon, the latter suitable for modeling ongoing processes. These make MDPs ideal models for many decision-

theoretic planning problems (for further discussion of the desirable features of MDPs from the perspective

of modeling DTP problems, see [11, 17, 28, 35]).

In this section, we describe the basic MDP model and consider several classical solution procedures.

Primarily for reasons of presentation, we do not consider action costs in our formulation of MDPs. All

utilitiesare associated with states (or propositions). However, more general cost/reward models could easily

be incorporated with our framework. Furthermore, we restrict our attention to finite state and action spaces.

Finally, we make the assumption of full observability: despite the uncertainty associated with action effects,

the planning (or plan-executing) agent can observe the exact outcome of any action it has taken and knows

the precise state of the system at any time. Partially observable MDPs (POMDPs) [21, 53, 73] are much

more computationally demanding than fully observable MDPs. However, we will make a few remarks on

the application of our techniques to POMDPs at the conclusion of this article.4

4See [16] for more detailed investigations of this type.
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We refer the reader to [5, 11, 62] for further material on MDPs.

2.1 The Basic Model

A Markov decision process can be defined as a tuple hS;A; T;Ri, where S is a finite set of states or possible

worlds, A is a finite set of actions, T is a state transition function, and R is a reward function. A state is a

description of the system of interest that captures all information about the system relevant to the problem

at hand. In typical planning applications, the state is a possible world, or truth assignment to the logical

propositionswith which the system is described. The agent can control the state of the system to some extent

by performingactions a 2 A that cause state transitions, movement from the current state to some new state.

Actions are stochastic in that the actual transition caused cannot generally be predicted with certainty. The

transition function T describes the effects of each action at each state. T (si; a) is a probability distribution

over S: T (si; a)(sj) is the probability of ending up in state sj 2 S when action a is performed at state sj .

We will denote this quantity by Pr(si; a; sj). We require that 0 � Pr(si; a; sj) � 1 for all si; sj, and that

for all si,Psj2S Pr(si; a; sj) = 1. The components S, A and T determine the dynamics of the system

being controlled. We assume that each action can be performed at each state. In more general models, each

state can have a different feasible action set, but this is not crucial here.5

The states that the system passes through as actions are performed correspond to the stages of the pro-

cess. The system starts in a state si at stage 0. After t actions are performed, the system is at stage t. Given

a fixed “course of action,” the state of the system at stage t can be viewed as a random variable St; simi-

larly, we denote by At the action executed at stage t. Stages provide a rough notion of time for MDPs. The

system is Markovian due to the nature of the transition function; that is,Pr(StjAt�1; St�1; At�2; St�2; � � �A0; S0) = Pr(StjAt�1; St�1)
The fact that the system is fully observable means that the agent knows the true state at each stage t (once

that stage is reached), and its decisions can be based solely on this knowledge.

A stationary, Markovian policy � : S ! A describes a course of action to be adopted by an agent con-

trolling the system and plays the same role as a plan in classical planning. An agent adopting such a policy

performs action �(s) whenever it finds itself in state s. Such policies are Markovian in the sense that action

choice at any state does not depend on the previous system history, and are stationary since action choice

does not depend on the stage of the decision problem. For the problems we consider, optimal stationary,

Markovian policies always exist. In a sense, � is a conditional and universal plan [67], specifying an action

5We could model the applicability conditions for actions using preconditions in a way that fits within our framework below. How-
ever, we prefer to think of actions as action attempts, which the agent can execute (possibly without effect or success) at any state.
Preconditions may be useful to restrict the planning agent’s attention to potentially “useful” actions, and thus can be viewed as a form
of heuristic guidance (e.g., don’t bother considering attempting to open a locked door). This will not impact what follows in any im-
portant ways.

6



to perform in every possible circumstance. An agent following policy � can also be thought of as a reactive

system.

A number of optimalitycriteria can be adopted to measure the value of a policy�. We assume a bounded,

real-valued reward functionR : S ! <. R(s) is the instantaneous reward an agent receives for occupying

state s. More general reward models are possible, though none of these introduce any special complications

for our algorithms. One common generalization allows R(s) to be a random variable—if this is the case,

taking its expectation as the (deterministic) reward for state s has no impact on value or policy calculations.6

Often one allows reward R(s; a) to depend on the action taken, so as to model the costs of various actions.

To keep the presentation simple, we will not consider this possibility in the development of our algorithms;

but we will point out the very minor adjustments one must make to account for action costs at appropriate

points in the presentation of our methods.

We take a Markov decision problem to be an MDP together with a specific optimality criterion. We

will use the abbreviation MDP to refer to the specific problem (process with optimality criterion) as well

as the process, with context distinguishing the precise meaning. Optimality criteria vary with the horizon

of the process being controlled and the manner in which future reward is valued. In this paper, we focus

on discounted infinite-horizon problems: the current value of a reward received t stages in the future is

discounted by some factor �t(0 � � < 1). This allows simpler computational methods to be used, as

discounted total reward will be finite.7 The infinite-horizon model is important because, even if a planning

problem does not proceed for an infinite number of stages, the horizon is usually indefinite, and can only be

bounded loosely. Furthermore, solving an infinite-horizon problem is often more computationally tractable

than solving a very long finite-horizon problem. Discounting has certain other attractive features, such as

encouraging plans that achieve goals quickly, and can sometimes be motivated on economic grounds, or

can be justified as modeling expected total reward in a setting where the process has probability 1 � � of

terminating (e.g., the agent breaks down) at each stage. We refer to [62] for further discussion of MDPs and

different optimality criteria.

The value of a policy� (under this optimality criterion) is simply the expected sum of discounted future

rewards obtained by executing �. Since this value depends on the state in which the process begins, we useV�(s) to denote the value of � at state s. A policy �� is optimal if, for all s 2 S and all policies �, we

have V�� (s) � V�(s). We are guaranteed that such optimal (stationary) policies exist in our setting [62].

The (optimal) value of a state V �(s) is its value V�� (s) under any optimal policy ��. We take the problem

of decision-theoretic planning to be that of determining an optimal policy (or an approximately optimal or

satisficing policy).

6Similarly, if rewards depend on the transition from si to sj (i.e., take the form R(si; sj)) expectations can be used if we allow
reward to depend on actions, as we discuss below.

7Our methods apply directly to finite-horizon problems as well, and with suitable modification can be used in the computation of
average-optimal policies. We do not pursue this here.
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2.2 Solution Methods

Policy Evaluation and Successive Approximation

Given a fixed policy�, the functionV� can be computed using a straightforward iterative algorithm know as

successive approximation [5, 62]. We proceed by constructing a sequence of n-stage-to-go value functionsV n� . The quantityV n� (si) is the expected sum of discounted future rewards received when � is executed forn stages starting at state si. We set V 0� (si) = R(si) and recursively computeV n� (si) = R(si) + � Xsj2S Pr(si; �(si); sj)V n�1� (sj) (1)

As n!1, V n� ! V� ; and the convergence rate and error for a fixed n can be bounded [62]. We note that

the right-hand side of this equation determines a contraction operator so that: (a) the algorithm converges

for any starting estimate V 0� ; and (b) if we set V 0� = V� , then the computed V n� for any n is equal toV� (i.e.,V� is a fixed-point of this operator). We can also compute the value functionV� exactly using the following

formula due to Howard [44]:V�(si) = R(si) + � Xsj2S Pr(si; �(si); sj)V�(sj) (2)

We can find the value of � for all states by solving this set of linear equations V�(s); 8s 2 S.

Value Iteration

By solving an MDP, we refer to the problem of constructing an optimal policy. Value iteration [3] is a sim-

ple iterative approximation algorithm for optimal policy construction that proceeds much like successive

approximation, except that at each stage we choose the action that maximizes the right-hand side of Equa-

tion 1: V n(si) = R(si) + maxa2Af� Xsj2S Pr(si; a; sj)V n�1(sj)g (3)

The computation of V n(s) givenV n�1 is known as a Bellman backup. The sequence of value functionsV n
produced by value iteration converges linearly to V �. Each iteration of value iteration requires O(jSj2jAj)
computation time, and the number of iterations is polynomial in jSj.

For some finiten, the actions a that maximize the right-hand side of Equation 3 form an optimal policy,

and V n approximates its value.

One simple stopping criterion requires termination whenkV i+1 � V ik � "(1� �)2� (4)

(where kXk = maxfjxj : x 2 Xg denotes the supremum norm). This ensures the resulting value function
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V i+1 is within "2 of the optimal function V � at any state, and that the induced policy is "-optimal (i.e., its

value is within " of V �) [62]. Another stopping criterion uses the span seminorm, kV i+1 � V iks, wherekXks = maxfx : x 2 Xg �minfx : x 2 Xg. Similar bounds on the quality of the induced policy can be

provided.8

A concept that will be useful later is that of aQ-function. Given an arbitrary value functionV , we defineQVa (s) as QVa (si) = R(si) + � Xsj2S Pr(si; a; sj)V (sj) (5)

Intuitively, QVa (s) denotes the value of performing action a at state s and then acting in a manner that has

value V [84]. In particular, we define Q�a to be the Q-function defined with respect to V �, and Qna to be the

Q-function defined with respect to V n�1. In this manner, we can rewrite Equation 3 as:V n(s) = maxa2AfQna(s)g (6)

Policy Iteration

Policy iteration [44] is another optimal policy construction algorithm that produces exact policies and value

functions. It proceeds as follows:

1. Let �0 be any policy on S
2. While � 6= �0 do

(a) � := �0
(b) For all s 2 S, calculate V�(s) by solving the set of jSj linear equations given by Equation 2

(c) For all si 2 S, if there is some action a 2 A such thatR(si) + � Xsj2S Pr(si; a; sj)V�(sj) > V�(si)
then �0(si) := a; otherwise �0(si) := �(si)

3. Return �
The algorithm begins with an arbitrary policy and alternates repeatedly (in Step 2) between an evaluation

phase (Step b) in which the current policy is evaluated, and an improvement phase (Step c) in which local

improvements are made to the policy. This continues until no local policy improvement is possible. The

algorithm converges quadratically and in practice tends to do so in relatively few iterations compared to

8We refer to [62] for a detailed discussion of more refined stopping criteria and error bounds for value iteration, and how assurances
of optimality (rather than "-optimality) can be provided using techniques like action elimination.
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value iteration [62]. However, each evaluation step requires roughly O(jSj3) computation (using the most

naive methods for solving the system of equations) and each improvement step is O(jSj2jAj).
The policy evaluation step can also be implemented using successive approximation rather than solving

the linear system directly.

Modified Policy Iteration

While policy iteration tends to converge faster in practice than value iteration, the cost per iteration is rather

high due to the system of linear equations that must be solved. Puterman and Shin [63] have observed that

the exact value of the current policy is typically not needed to check for improvement. Their modified policy

iteration algorithm is exactly like policy iteration except that the evaluation phase uses some (usually small)

number of successive approximation steps instead of the exact solution method. This algorithm tends to

work extremely well in practice and can be tuned so that both policy iteration and value iteration are special

cases [62, 63]. Few acceptable formal criteria exist for choosing the number of successive approximation

steps to invoke, this quantity generally being determined empirically.

3 Bayesian Network Representations of MDPs

While the MDP framework provides a suitable semantic and conceptual foundation for DTP problems, the

direct representation of planning problems as MDPs—and the direct implementation of dynamic program-

ming algorithms to solve them—often proves problematic due to the size of the state spaces of many plan-

ning problems. Generally, planning problems are described in terms of a set of domain features sufficient

to characterize the state of the system. Unfortunately, state spaces grow exponentially in the number of

features of interest. Because of Bellman’s so-called “curse of dimensionality,” both the specification of an

MDP—in particular, the specification of system dynamics and a reward function—and the computational

methods used to solve MDPs must be tailored to resolve this difficulty. In this section we focus on the rep-

resentation of MDPs in factored (or feature-based) problems. In the following section we describe how to

exploit our proposed representations computationally in dynamic programming algorithms.

To illustrate our representational methodology, we will use the following example of a feature-based,

stochastic, sequential decision problem. We suppose a robot is charged with the task of going to a café to

buy coffee and delivering the coffee to its owner in her office. It may rain on the way, in which case the

robot will get wet, unless it has an umbrella. The umbrella is kept in the office, and the robot is able to

move between the two locations (café and office), buy coffee, deliver (hand over) coffee to its owner, and

pick up the umbrella—all under suitable conditions. We have six boolean propositions that characterize this

domain:� O: the robot is located at the office: O means the robot at the office,O means it is at the café;� W : the robot is wet;� U : the robot has its umbrella;
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� R: it is raining;� HCR: the robot has coffee in its possession; and� HCO: the robot’s owner has coffee

We also have four actions:� Go: moves the robot to the opposite (of the current) location;� BuyC: buy coffee, which provides the robot with coffee if it is at the café� DelC: the robot hands coffee over to the user, if it is in the office;� GetU: the robot picks up the umbrella if it is in the office

The effect of these actions may be noisy (i.e., with a certain probability may not have the intended or pre-

scribed effect).

3.1 Bayesian Network Action Representation

It has long been recognized in the planning community that explicitly specifying the effects of actions in

terms of state transitions is problematic. The intuition underlying the earliest representational mechanisms

for reasoning about action and planning—the situation calculus [55] and STRIPS [36] being two important

examples—is that actions can often be more compactly and more naturally specified by describing their

effects on state variables. For example, in the STRIPS action representation, the state transitions induced

by actions are represented implicitly by describing only the effects of actions on features that change value

when the action is executed. Factored representations can be very compact when individual actions affect

relatively few features, or when their effects exhibit certain regularities.

To deal with stochastic actions, we must extend these intuitions somewhat. Rather than stating what

value a variable takes when an action is performed, we must provide a distribution over the possible values

a variable can take, perhaps conditional on properties of the state in which the action was performed. To

exploit the potential independence of an action’s effects, and regularities in these effects when the action is

performed in different states, we will adopt dynamic Bayesian networks as our representation scheme. We

note that other representations are possible, such as the stochastic STRIPS rules described in [40, 41, 50].

However, we will see below that the Bayesian network methodology offers certain advantages.

3.1.1 The Basic Graphical Model

Formally, we assume that the system state can be characterized by a finite set of random variables X =fX1; � � � ; Xng, each with a finite domain val(Xi) of possible values it can take. We often use propositional

or boolean variables in our examples, which can take the values > (true) or ? (false). The possible states

of the system are simply the possible assignments of values to variables; that is:S = val(X1)� val(X2) � � � � � val(Xn)
11



U U

HCR HCR

HCO

T

T

T

T

F

F

F

F

HCR

T

F

F

T

T

F

F

T

O O

HCO

T

F

1.0

0.0
1.0 0.0

W W

RR

W W W

HCO

O

T

F

T

F

HCR

T

F

F

T

HCR

1.0

1.0

1.0

1.0

t+1t

t

T

F

T

F

O

T

F

T

F

t t HCO

1.0

1.0

1.0

1.0

0.8

0.0

0.0

0.0

t+1

t+1t t

HCO

O

HCR

1.0

0.8 0.0

0.0

O

0.0 HCR

0.3 0.0

Matrix
Tree

RepresentationTime  t+1Time  t

Figure 1: Action Network for DelC with three of six CPTs shown

Just as we use the random variable St to denote the state of the system at stage t, so too we use Xti to

denote that value taken by state variableXi at time t. In our example, HCRt is a variable taking value> or? depending on whether the robot has coffee at stage t of the decision process.

A Bayesian network [57] is a representational framework for compactly representing a probability dis-

tribution in factored form. Although these networks have most typically been used to represent atemporal

problem domains, we can apply the same techniques to capture temporal distributions [29], as well as the

effects of stochastic actions. Formally, a Bayes net is a directed acyclic graph with vertices correspond-

ing to random variables and an edge between two variables indicating a direct probabilistic dependency

between them. A network so constructed also reflects implicit independencies among the variables. The

network must be quantified by specifying a probability distribution for each variable (vertex) conditioned

on all possible values of its immediate parents in the graph. In addition the network must include a marginal

distribution for each vertex that has no parents. Together with the independence assumptions defined by the

graph, this quantification defines a unique joint distribution over the variables in the network. The proba-

bility of any event over this space can then be computed using algorithms that exploit the independencies

represented in the graph structure. We refer to Pearl [57] for details.

We can use dynamic Bayesian networks (DBNs) [29] to represent the transition probabilities associated

with a specific action as illustrated in Figure 1. The nodes in the network correspond to state variables Xi,
and can be partitioned into two sets: those representing the state of the system before the action is performed,Xti ; and those representing the state after the action is executed, Xt+1i . Arcs between these nodes represent
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direct probabilistic (or causal) influence among the corresponding variables under the action in question.

Arcs are only directed from pre-action variables to post-action variables—we call these diachronic arcs—

or from post-action variables to other post-action variables—we call these synchronic arcs. Note that the

network must, however, be acyclic. The network in Figure 1 represents the effects of the action DelC (de-

liver coffee). We see that the effect of that action on the variable HCOt+1 depends directly on the variablesOt, HCOt and HCRt.9
The network for action a is quantified by providing a family of conditional probability distributions

for each post-action variable Xt+1i . More precisely, let �(Xt+1i ) be the parents (i.e., the predecessors) ofXt+1i , and partitionthe parents into two sets: those parents�t(Xt+1i ) that occur among the stage t variables,

and those �t+1(Xt+1i ) that occur among the stage t+ 1 variables. For any instantiationx of the variables�(Xt+1i ), we must specify a probability distribution Pr(Xt+1i jx). This family of distributions is usually

referred to as the conditional probability table (CPT) for variable Xt+1i , since these distributions are often

represented in tabular form (see below). We write CPT(Xi; a) to denote this family.

Let x = xt [ xt+1, where xt (resp. xt+1) denotes the assignment x restricted to �t(Xt+1i ) (resp.�t+1(Xt+1i )), and let yt be any instantiation of the variables fXtj : Xtj 62 �t(Xt+1i )g. The semantics of

this family of conditional distributions is given by:Pr(Xt+1i = xjxt;yt;xt+1; At = a) = Pr(Xt+1i = xjx)
In other words, the distributiongoverning state variableXt+1 when action a is performed at stage t depends

on its parents; furthermore, once the state variables �(Xt+1i ) are known, Xt+1i is independent of other

variables at stage t.
Figure 1 illustrates these points in a simple case of the DelC action, where there are no synchronic arcs.

The family of conditional distributions for HCOt+1 is given by a table: for each instantiation of variablesOt, HCOt and HCRt, the probability that HCOt+1 = > is provided.10 This CPT can be explained by

observing that: if the owner has coffee prior to the action, she still has coffee after the action; if the robot

has coffee and is in the office, it will successfully hand over the coffee with probability 0:8; and if the robot

does not have coffee, or is in the wrong location, it will not cause its owner to have coffee. Notice that this

representation allows one to specify the conditional effects of a stochastic action: the effect of an action on

a specific variable can vary with conditions on the pre-action state.

The effect of the action on W (wet) is also shown, and is especially simple: the robot is wet (resp. dry)

with probabilityone if it was wet (resp. dry) before the action was performed. This variable is said to persist

under the action DelC. The effects onU , O andR are captured by similar persistence relations (not shown).

Finally, the effect of DelC on HCR is explained as follows: if the robot attempts DelC when it isn’t in the

9While this example has no synchronic arcs, we will see below an example where these occur.
10With boolean variables, we adopt the usual convention of specifying only the probability of truth, with the probability of falsity

given by one minus this value.
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Figure 2: A Modified Action Network for DelC with a Synchronic Arc

office, there is a 0:7 chance a passerby will take the coffee; if the robot is in the office it will lose the coffee

with certainty. Since there is a 0:8 chance of the user getting coffee, the 0:2 chance of the user not getting

coffee can be attributed to spillage.

Because there are no synchronic arcs, the action’s effect on each of the state variables is independent,

given knowledge of the state St. In particular, for any state St, we havePr(W t+1; U t+1; Rt+1; Ot+1;HCRt+1;HCOt+1jSt) =Pr(W t+1jSt) Pr(U t+1jSt) Pr(Rt+1jSt) Pr(Ot+1jSt) Pr(HCRt+1jSt) Pr(HCOt+1jSt) (7)

Furthermore, the terms on the right-handside rely onlyon the parent variables at time t; for example, Pr(W t+1jSt) =Pr(W t+1j�(W t+1)) = Pr(W t+1jW t). Thus, we can easily determine state transition probabilities given

the compact specification provided by the DBN.

When action networks have synchronic arcs, the calculation of transition probabilities is complicated

slightly. Figure 2 shows a variant of the DelC action: a synchronic arc between HCR and HCO indicates

a dependence between the robot losing the coffee and its owner getting her coffee when the robot is in the

office. Specifically, the probability with which the robot loses the coffee depends on whether the owner

successfully accepts the coffee: if the owner gets the coffee, the robot loses it; but if the owner does not (or

if she already had coffee), the robot loses the coffee with probability 0:2. Such synchronic dependencies

reflect correlations between an action’s effect on different variables.

The independence of the t+1 variables givenSt does not hold in DBNs with synchronic arcs. Determin-
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ing the probabilityof a resulting state requires some simple probabilistic reasoning, for example, application

of the chain rule.11 In this example, we can writePr(HCRt+1;HCOt+1jSt) = Pr(HCRt+1jHCOt+1; St) Pr(HCOt+1jSt)
The joint distribution over t+ 1 variables given St can then be computed with a slightly modified version

of Equation 7:Pr(W t+1; U t+1; Rt+1; Ot+1;HCRt+1;HCOt+1jSt) =Pr(W t+1jSt) Pr(U t+1jSt) Pr(Rt+1jSt) Pr(Ot+1jSt) Pr(HCRt+1jHCOt+1; St) Pr(HCOt+1jSt)(8)

Notice that only the two variables HCR and HCO are correlated—the remaining independencies allow the

computation to be factored with respect to the other four variables.

We make a few observations about this representation.

1. Unlike normal Bayes nets or DBNs, we do not provide a marginal distribution over the pre-action

variables. In solving fully observable MDPs, we are only concerned with the prediction of the re-

sulting state distribution under some action given knowledge of the current state. As such, an action

network provides a schematic representation of all jSj transition distributions: instantiating the pre-

action variables to represent any state s allows the straightforward computation of Pr(�; a; s).
2. We must specify an action network for each action. In this way, an action network can be seen as

a compact specification of a transition matrix for that action. It is sometimes convenient to provide

a single network with the choice of action represented as a variable, and the distributions over post-

action variables conditioned on this action node. This type of representation, common in influence

diagrams [69], can sometimes be more compact than a set of individual networks for each action (for

example, when a variable’s value persists for most or all actions); see [15] for a discussion of the

relative advantages of the two approaches. We will not consider the single network representation in

this paper.

3. Because of the Markov property, we need only specify the relationship between variables Xt andXt+1: knowledge of variables Xt�ki (k > 0) is irrelevant to the prediction of the values of variablesXt+1j givenXt. Furthermore, stationarity allows us to specify the dynamics schematically, with one

DBN for each action characterizing its effects given state St for any t � 0.

4. Typically, the DBN representation of an action is considerably smaller than the corresponding tran-

sition matrix. In the example above, the system has 26 = 64 states, hence each transition matrix

11Note that this rationale relies on the basic semantics Bayesian networks. Given two states si and sj , determining Pr(si; a; sj)
involves simple table lookup and multiplication, the presence of synchronic arcs notwithstanding.
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requires the specification of 642 = 4096 parameters. The DBN in Figure 1 requires the specifica-

tion of only 36 parameters, while that in Figure 2 has only 64 parameters.12 We will see below that

suitable representations of CPTs can make DBNs even more compact.

In the worst case, a “maximally connected” DBN will require the same number of parameters as a

transition matrix. However, when the effects of actions exhibit certain regularities (e.g., they have

the same effect on a given variable under a wide variety of circumstances) or when the effects on

subsets of variables are independent, DBNs will generally be much more compact. See [11, 15] for

a more detailed discussion of this point. This representation (when augmented with the CPT repre-

sentations described below) also compares favorably with probabilistic variants of STRIPS operators

with respect to representation size [11].

5. In a certain sense, the DBN representation might be seen to fall prey to the frame problem [55]: one

must specify explicitly that a variable that is intuitively“unaffected” by an action persists in value. In

Figure 1, for instance, an arc relatingW t and W t+1, together with the corresponding CPT for W t+1,

are required so that one can infer thatW t+1 has the same value asW t (when DelC is executed). How-

ever, it is not hard to allow the specification of an action’s effects to focus only on those variables that

change, leaving the distributions over unaffected variables unspecified. Such unspecified CPTs can

be filled in by default, and unspecified arcs (e.g., the dashed arcs in Figure 1) can be added automat-

ically. The frame problem in DBNs (including aspects related to variables that change values under

some conditions and not others) is discussed in detail in [15].

3.1.2 Structured Representations of Conditional Distributions

The DBN representation of an action a exploits certain regularities in the transition function induced by the

action. Specifically, the effect of a on a variableXi, given any assignment of values to its parents�(Xt+1i ),
is identical no matter what values are taken by other state variables at time t (or earlier). However, this rep-

resentation does not allow one to exploit regularities in the distributions corresponding to different assign-

ments to �(Xt+1i ).
We can view the CPT for variable Xi in a DBN as a function mapping val(�(Xt+1i ))—the set of value

assignments toXi’s parents—into�(val(Xi))—the set of distributions over Xi. This function is tradition-

ally represented in a tabular form: one explicitly lists each assignment in val(�(Xt+1i )) in a table along

with the corresponding distribution for Xi (the tables in Figures 1 and 2 are examples of this).

In many cases, this function can be more compactly represented by exploiting the fact that the distri-

bution over Xi is identical for several elements of val(�(Xt+1i )). For instance, in the CPT for HCO in

12If we exploit the fact that probabilities sum to one, we can remove one entry from each row of a transition matrix and one from
each row of a CPT (as we have done in the figures). In this case, a transition matrix would require 4032 entries, while the DBNs above
have only 18 and 32 parameters, respectively.
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Figure 1, we see that only three distinct distributions are mapped to from the eight assignments of HCO’s

parents. This suggests that a more compact function representation for this mapping might be useful.

In this paper, we consider the use of decision trees [64] to represent these functions. The CPT for a

variable Xi in an action network will be represented as a decision tree: the interior nodes of the tree are

labeled with parents of Xi; the edges of the tree are labeled with values of the parent variable from which

those edges emanate; and the leaves of the tree are labeled with distributions for Xi. The semantics of such

a tree is straightforward: the conditional distributionover Xi determined by any assignment x to its parents

is given by the distribution at the leaf node on the unique branch of the tree whose (partial) assignment to

parent variables is consistent with x.

Examples of such trees are shown in both Figures 1 and 2, next to the corresponding CPTs. The mapping

from HCO’s parents into distributions over HCO in Figure 1 is represented more compactly in the decision-

tree format than the usual tabular fashion. The structure of the tree corresponds to our intuitions regarding

the effects of DelC. If HCO was true, it remains true;13 but if HCO was false, then it becomes true with

probability 0:8 if O is true and HCR is true; otherwise it remains false. In a sense, decision trees reflect the

“rule-like” structure of action effects. The tree for HCR in Figure 2 relies on a synchronic parent.14

We focus on decision trees in this paper because of their familiarity and the ease with which they can

be manipulated. Furthermore, they are often quite compact when used to describe actions. However, other

representations may be suitable, and more compact, in certain circumstances. CPTs could sometimes be

more compactly represented using rules [60, 64], decision lists [65] or boolean decision diagrams [19]. The

algorithms we provide in the next section are designed to exploit the decision-tree representation, but we

see no fundamental difficulties in developing similar algorithms to exploit these other representations. In-

deed, we will briefly point out extensions of the work described in this paper that exploit decision diagram

representations.15

We note that this representation can be viewed as exploiting what is known as context-specific indepen-

dence in Bayesian networks [14]. Just as the independence of two variables given knowledge of some subset

of variables can be determined using the graphical structure of a Bayes net, additional independence can be

inferred given certain assignments to a subset of variables (or a specific context). Algorithms for detecting

these context-specific independencies using CPT representations such as decision trees and decision graphs

are described in [14]. Related notions can be found in [38, 59, 70]. We note that asymmetric representations

of conditional distributions in influence diagrams have also been proposed and investigated in [74].

13We adopt the convention that, for boolean variables, left edges denote > and right edges denote ?.
14Unless a node has synchronic parents, we will omit t and t+ 1 superscripts at the interior node labels of the decision-tree CPT;

all such nodes will be understood to refer to variables at time t, not t+ 1.
15Deterministic, goal-based regression algorithms have been developed for such representations in many circumstances; e.g., see

[20] for a discussion of regression using boolean decision diagrams. Decision-theoretic generalizationsof these techniques,using ideas
developed in the following section, should prove useful.
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Figure 3: The Reward Tree for the Coffee Example

3.2 Reward Representation

Reward functions can be represented in a similarly compact fashion. Rather than specify a vector of reward

values R(s) of size jSj, we can exploit the fact that reward is generally determined by a subset of system

features. We represent the dependence of reward on specific state features using a diagram such as that

shown in Figure 3: here a reward node (the diamond in the figure) depends only on the values of the variablesW and HCO. The matrix represents this reward as function of the values taken by the two variables. Here

we see that the best states are those in which the owner has coffee and the robot is dry, while the worst states

are those in which the variables take the opposite values. Note that there is a preference for states in which

the robot is wet and the owner has coffee over those where the robot stays dry and its owner is without

coffee: thus, delivering coffee is a higher priority objective for the robot than staying dry.

The reward node in this example is related to the value nodes of influence diagrams [45, 69]. In influence

diagrams, these nodes generally represent (long-term) value, whereas we use them to represent immediate

reward (note that we assume stationarity of the reward process). In both cases, the independence of reward

and certain state variables is exploited. Some work on influence diagrams has considered the use of reward

nodes such as these, which are combined using some function (e.g., summation) to determine overall value

(see, e.g., [79]). If action costs need to be modeled (i.e., reward has the form R(s; a)), a node representing

the chosen action can be included, as they are in influence diagrams, or a separate reward function can be

specified for each action, just as we specified a distinct DBN for each action to capture the process dynamics.

As with CPTs for actions, this conditional reward function can also be represented using a decision tree.

In the example shown, the decision tree is no more compact than the full table; but in many instances, a

decision-tree representation can be considerably more compact.

The representation of reward functions can sometimes be more compact if the reward function is com-

prised of a number of independent components whose values are combined with some simple function to

determine overall reward. These ideas are common in the study of multi-attribute utility theory [49]. In our

example, the reward function can be broken into two additive, independent components: one component

determines the “sub-reward” determined by HCO—0:9 if HCO, 0 if HCO; and the other determines the
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Figure 4: Examples of a Policy Tree and a Value Tree

sub-reward for W— 0:1 of W and 0 if W . The reward at any state is determined by summing the two sub-

rewards at the state. If there are a number of such component reward functions, specification of reward in

terms of these components (together with a combination function) can often be considerably more compact.

While we permit a number of “independent” decision trees to be specified, our algorithms do not exploit

the utility independence inherent in such a reward specification. Instead, we simply combine the component

functions into a single decision tree representing the true (global) reward function. How best to exploit such

utility independence in MDPs in general is still an open question, though it has received some attention. For

discussion of these issues, see [9, 37, 56, 71].

3.3 Value Function and Policy Representation

It is clear that value functions and policies can also be represented using decision trees (or other compact

function representations). Again, these exploit the fact that value or optimal action choice may not depend

on certain state variables, or may only depend on certain variables given that other variables take on specific

values.

The algorithms we develop in the next section construct tree-structured representations of value func-

tions and policies. Both value trees and policy trees have internal nodes labeled by state variables and edges

labeled with (corresponding) variable values. The leaves of value trees are labeled with real values, denot-

ing the value of any state consistent with the labeling of the corresponding branch. The leaves of policy

trees are labeled with actions, denoting the action to be performed at any state consistent with the labeling

of the corresponding branch. Tree representations of policies are sometimes used in reinforcement learn-

ing as well [23], though in a somewhat different fashion. Examples of a policy and value tree are given in

Figure 4.

In our implementation of decision-theoretic regression and structured dynamic programming algorithms

described in the next section, we allow our trees to be slightlymore sophisticated in the case of multi-valued

variables. When a tree splits on a variable with more than two domain values, we require only that the do-

19



main be split into two or more subsets of values, with each subset labeling an edge directed from the corre-

sponding interior node. In this way, if the distinctions between the values, say, fx1; x2g and fx3; x4g from

the domain val(X) are important for value function or policy prediction, but the distinction between x1 andx2 (orx3 and x4) are not, we are not forced to create four distinct subtrees under nodeX. We will, however,

for ease of presentation describe our algorithms as if splits at any interior node of a tree are exhaustive.

These value function and policy trees can understood as effecting a form of state aggregation; every

state satisfying the conditions labeling a particular branch of the tree are assigned the same value or action

choice. In particular, this form of aggregation can be viewed as state space abstraction, since at any state

we are generally ignoring certain features and using only the value of others in predicting, say, the value or

optimal action choice at that state. It is clear that similar remarks can be applied to both the DBN action

representation, where states with similar dynamics under a specific action are grouped together, and to the

decision-tree reward representation.

Categorizing these types of abstraction along the dimensions described in [11, 30], our methods use

nonuniform abstraction; that is, different features are ignored in different parts of the state space. In par-

ticular, these decision trees capture a conditional form of relevance, where certain variables are deemed to

be relevant to value function prediction under certain conditions, but irrelevant under others. Compared

to linear function approximators or neural network representations of value functions, our representations

aggregate states in a “piecewise constant” fashion.

As we will see below, our abstraction scheme can also be classified as adaptive in that the aggregation of

states varies over time as our algorithms progress. Finally, our main algorithm implements an exact abstrac-

tion process, whereby states are aggregated only when they agree exactly on the quantity being represented

(e.g., value, reward, optimal action or transition distribution). We will see in Section 6.2 an approximate

variant of this abstraction method.

4 Decision-Theoretic Regression

The decision-tree representations described in the previous section provide a means of representing value

functions and policies more compactly than the straightforward table-based representations. In particular,

if a tree can be constructed to represent the optimal value function or policy in which the number of inter-

nal nodes labeled by state variables is polynomial in the number of variables, then this representation will

be exponentially smaller than the corresponding tabular representation. If we were given the structure of

such a tree for (say) the value function by an oracle, one might imagine partitioning state space into the ab-

stract states given by the structure of the tree, and performing dynamic programming—let’s assume value

iteration—over the reduced state space. In this case, each dynamic-programming iteration would require

only one Bellman backup per abstract state, thus, a number of backups which is a polynomial function of

the logarithm of the number of states.

Unfortunately, even if the true value function can be compactly represented using a decision tree, the
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regions of state space over which an intermediate value function generated by value iteration is constant

need not match those of the optimal value function. Furthermore, we don’t usually have access to oracles

who provide us with suitable abstractions. What we need are algorithms that, for example, infer the proper

structure of the sequence of value functions produced by value iteration, and perform Bellman backups once

per abstract state once this structure has been deduced. One could use similar ideas in (regular or modified)

policy iteration.

In this section we develop methods to do just this. These techniques exploit the structure inherent in

the MDP that has been made explicit by the DBN and decision-tree representations of the system dynamics

and the reward function. Specifically, given a tree-structured representation of a value functionV , we derive

algorithms that produce tree-structured representations of the following functions: Q-functions with respect

to V ; the value function obtained by performing a Bellman backup with respect to V ; the value function

obtained by successive approximationwith respect to a fixed policy�, where � is represented with a decision

tree; and the greedy policy with respect to V . These algorithms infer (to varying degrees) the appropriate

structure of the underlying value function or policy before performing any decision-theoretic calculations

(e.g., maximizations or expected value calculations). In this way, operations such as computing the expected

value of an action are computed only once per abstract state (or region of state space, or leaf of the tree),

instead of once per system state. If the size of the trees is substantially smaller than the size of the original

state space, the computational savings can also be substantial.

The key to all of the operations mentioned above is the first—the computation of a Q-function QVa for

action a with respect to a given value function V . This operation can be viewed as the decision-theoretic

analog of regression, as described in Section 1.1.

In this section, we assume that none of the action networks describing our domain contain synchronic

arcs; that is, an action’s effects on distinct variables are uncorrelated (given knowledge of the current state).

This assumption is valid in many domains, including those we experimented with, but may be unrealistic

in others. We do this primarily for reasons of exposition. Our algorithms are conceptually simple in the

case where correlations are absent. As described in Section 3.1.1, determining the probability of a state

variable taking a certain value after an action is performed is straightforward. When the action network has

no synchronic arcs, these can be combined by multiplication to determine state transitionprobabilitiesdue to

their independence; but this combination requires some simple probabilistic inference when synchronic arcs

are present. To avoid having the intuitions get lost in the details of this inference, we present our algorithms

under the assumption of uncorrelated effects. We discuss the requisite amendments to the decision-theoretic

regression algorithm when correlations are present in Section 6.1.

In Section 4.1 we describe the basic decision-theoretic regression algorithm. We describe regression

of a tree-structured value function through a (tree-structured) policy in Section 4.2 and the maximization

step needed for Bellman backups in Section 4.3. Section 4.4 treats the policy improvement step of policy

iteration and puts the pieces above together to form the tree-structured version of (modified) policy iteration.

In Section 4.5 we use these component algorithms to implement structured value iteration.
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In the sequel we frequently use the following standard operations on decision trees:� Tree Simplification: This refers to the process of removing any redundant interior nodes in a tree (i.e.,

meaningless splits). If two or more interior nodes lying on a single branch b of tree T are labeled by

the same variable, all but the topmost such node is removed from the tree.16 For any node so removed,

we retain exactly one of its subtrees: the subtree consistent with the edge label (on b) of the topmost

node (see Figure 5). In addition, if an interior node splits a tree into two or more subtrees, all of which

are identical, that interior node can be removed, and the parent arc of the removed node redirected to

a single “copy” of the subtree. We use Simplify(T ) to denote the tree resulting from simplification.� Appending Trees: By appending tree T2 to leaf l of tree T1, we refer to extendingT1 with the structure

of T2 at the leaf l. The new leaves added to the tree (i.e., those leaves of T2) are labeled using some

function of the label of l and the labels of the corresponding leaves in T2 (see Figure 6). We primarily

consider the following functions: the union of the information in two labels; the sum of two labels; or

the maximum of two labels. We denote by Append(T1; l; T2) the tree resulting from this process (the

label-combining function will always be clear from context). We denote by Append(T1; T2) the tree

obtained by appending T2 to each leaf of T1. In other words, Append(T1; T2) denotes a tree whose

branches partition state space as determined by the intersection of the partitions induced by T1 andT2. We usually assume the resulting trees are simplified without explicitly mentioning this fact.� Merging Trees: By merging a set of trees fT1; � � � ; Tng, we refer to the process of producing a single

tree that makes all distinctions occurring in any of the trees, and whose leaves are labeled using some

function of the labels of the corresponding leaves in the original tree. This can be accomplished by

repeated appending of successive trees to the merge of the earlier trees in the sequence (any append

ordering will result in a semantically equivalent result, assuming the label-combination function is

associative and commutative). We refer to the resulting tree as Merge(fT1; � � � ; Tng). We usually

assume the resulting trees are simplified.

16Tree simplification is only slightly more involved when multivalued variables are allowed to split nonexhaustively. In this case,
a certain variable may legitimately appear on a branch of a tree more than once, not unlike continuous splits in classification and
regression trees.
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Figure 6: Appending tree T2 to leaf l1 of T1, with labels combined using function f . Note that the resulting
tree has been simplified.

4.1 Regression through a Single Action

A key component in all dynamic programming algorithms is the computation of the expected value of per-

forming action a at state si, with respect to a given value function V . Recalling Equation 5:QVa (si) = R(si) + � Xsj2S Pr(si; a; sj)V (sj)
Notice that this computation can be divided into three phases: (a) the computation of the expected future

value of performing a at s,
Psj2S Pr(si; a; sj)V (sj); (b) the discounting of this future value by �; and

(c) the addition of the immediate reward R(si). If V is represented compactly using Tree(V ), we would

like to produce a compact tree-structured representation Tree(QVa ) of QVa itself. We can do this by exploit-

ing structure in the reward function (given by Tree(R)), the structure in the action network for a, and the

structure given by Tree(V ). Intuitively,QVa takes the same value at states si and sj if these states have the

same reward and the same expected discounted future value.17 That si and sj have identical reward can be

verified easily by examining Tree(R). We now focus on the latter condition.

Recall that the branches of Tree(V ) correspond to regions of state space in which V is constant. Two

states si; sj will have identical expected future value (with respect to V and a) if a causes both states to

transition to any “constant region of V ” with the same probability. This is equivalent to saying that a, when

executed at either state, makes the conditions labeling any branch b of Tree(V ) true with identical prob-

ability. Thus Tree(QVa ) should (only) distinguish conditions under which action a makes some branch of

Tree(V ) true with differing odds. These conditions can be determined by examining the conditions under

which the impact of a on any variable Xi occurring in Tree(V ) varies, which in turn can be determined by

examining the action network for a, specifically Tree(a;Xi).
We illustrate the intuitions with an example before describing the algorithm in detail. Consider a do-

main with four boolean variables W , X, Y and Z, with action a shown in Figure 7(a) and reward function

17This is a sufficient condition, not a necessary condition; more on this below.
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Figure 7: (a) A simple action network; and (b) a reward function.R shown in Figure 7(b). Action a has no influence on variables W or X, but makes Y true with high prob-

ability if X is true, and makes Z true with high probability if Y is true (both Y and Z are unaffected if they

are true before a is performed).

If we assume that V 0 is the reward functionR, then Tree(V 0) is simply the tree shown in the figure andV 0 is represented very compactly as a tree with two leaves instead of a table with 16 entries. Figure 8 illus-

trates how a tree representing Q1a (i.e., QV 0a ) is constructed. Building Tree(Q1a) requires that we delineate

the conditions under which a will have distinct expected future value with respect to V 0. Because future

value (with 0 stages to go) depends only on the truth ofZ, expected future value with one stage to go depends

only on conditions that influence the probability of Z being true or false after a is performed. These con-

ditions are given directly by the network for action a, specifically by the tree representing CPT(Z; a). The

action network in Figure 7 tells us that Z’s post-action probability is influenced only by the pre-action truth

values of Y and Z (and that it is independent of Y if Z is true). Each branch of this tree thus corresponds

to a set of conditions on the state with 1 stage-to-go under which action a will lead with fixed probability to

each of the regions of state space determined by Tree(V 0), and is denoted in Figure 8(b) as PTree(Q1a), the

“probability tree” for Q1a. We can view this as regressing the tree representing V 0 through the action a to

obtain the conditions (with 1 stage-to-go) under which a has identical effects with respect to the conditions

relevant to prediction of V 0.

Each leaf of PTree(Q1a) is labeled with a distributionover Z—this of course dictates a distribution over

the branches of Tree(V 0). As such, we can compute the expected future value of performing action a under

any of the conditions labeling any branch of PTree(Q1a), as shown in Figure 8(c). For example, when Z is

false and Y is true, amakes Z true with probability0:9 and false with probability0:1; so the expected future

value (as dictated by V 0) of executing a under those conditions is 9. We denote by FVTree(Q1a) the “future

value tree” obtained by converting the distributions over branches of PTree(Q1a) into expected values with
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Figure 8: The various intermediate trees constructed during the regression of Tree(V 0) through action a to
obtain Tree(Q1a) are shown here. (a) Tree(V 0): the tree representation of V 0; (b) PTree(Q1a): this denotes
the probability of making variable Z—the only variable mentioned in Tree(V 0)—true with zero stages-to-
go when action a is performed with one stage-to-go; (c) FVTree(Q1a): this denotes the undiscounted ex-
pected future value associated with performing a with one stage-to-go; and (d) Tree(Q1a): the tree repre-
sentation of Q1a, obtained by discounting FVTree(Q1a) and adding to it the reward function (structured as
Tree(R).
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Figure 9: The state aggregation induced by the regression of Tree(V 0) through action a.

respect to V 0.

Finally, since Q1a is given by immediate reward plus discounted expected future value, the final tree is

obtained by applying the discount factor to each leaf of FVTree(Q1a) and appending the reward tree to the re-

sulting tree (using addition to combine the leaves). In our example, since only variableZ occurs in Tree(R),
the final Tree(Q1a), illustrated in Figure 8(d), does not grow in size when Tree(R) is appended. In general,

however, this step can cause further growth of the tree. Notice that the algorithm is unchanged if action

costs are involved: a reward function of the form R(s; a) can easily be accommodated in the construction

of Tree(Q1a).
A slightly more direct view of the state aggregation induced by this abstraction mechanism is shown in

Figure 9. Working from the left, we see the partitioning of state space induced by the series of operations

described above. To the left, we have the original value function V 0, which depends only on variable Z.

PTree(Q1a) can be viewed as a new partitioningof state space: each region in this partitioning contains only
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Figure 10: Regression of Tree(V 1) through a to obtain Tree(Q2a): (a) Tree(V 1); (b) Partial completion of
PTree(Q2a); (c) Unsimplified version of PTree(Q2a); (d) PTree(Q2a); (e) FVTree(Q2a); and (f) Tree(Q2a).
states that have identical probability of reaching the different regions of V 0 under action a, as suggested by

the figure. Within these regions of PTree(Q1a), each state has the same expected future value (in the figure

the discounted future value is shown). The final step involves adding the immediate reward R to each state

to obtain Tree(Q1a). In this example, this causes no further state splitting, since R depends only on variableZ (and the partition already reflects the Z, :Z distinction).

More interesting aspects of the regression operation emerge when the value tree being regressed througha has more structure. Imagine that V 1(s) = Q1a(s), so that Tree(Q1a) as produced above is now Tree(V 1)
(e.g., suppose a has maximum expected value with 1 stage to go at each state during a value iteration compu-

tation). To obtain Tree(Q2a), we perform the steps shown in Figure 10. In order to predict expected future

value, we must predict the probability of making any branch in Tree(V 1) true. Thus we must know the

probability of making Z true and—if Z is possibly false—the probability of making Y true. To do this,

we “regress” the individual variables occurring in Tree(V 1) through a and piece together the appropriate

conditions.

In Step 1, the variable Z is regressed through a as above, producing a tree (simply the tree representing

CPT(Z; a)) whose leaves are labeled with distributions over Z (see Figure 10(b)). In Step 2, we regress

the variable Y through a, which returns CPT(Y; a) from the DBN with leaves labeled with distributions

over Y . This tree is appended to the first tree (that in Figure 10(b)) at every leaf where Pr(Z) < 1:0; at

leaves where Z is certain to become true, the value of Y is irrelevant to prediction of V 1. The leaves of

the appended tree are labeled by the union of the original labels—each leaf is now labeled by a distribution

over Y and one over Z (see Figure 10(c)). Of course, this tree can be simplified by redundant node removal

to give PTree(Q2a) as shown in Figure 10(d).
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Figure 11: The state aggregation induced by the construction of PTree(Q2a) from V 1.

Once again, an alternative perspective on the constructionof PTree(Q2a) is illustrated in Figure 11. RegressingV 1 through a first requires regressing Z through a and then Y through a. The regression of Z produces the

state partitioning shown at the left of Figure 11, PTree�: this is sufficient to determine the probability of

ending up in either the “Z-half” or “:Z-half” of V 1. Given that we end up in the :Z-half, we must then

determine the probability of making Y true or false (i.e., ending up in the :ZY -quarter, or the :Z:Y -

quarter of V 1). This is achieved by regressing Y through a. The conditions relevant to predicting Y are

“overlayed” on top of the :Z region just created to produce the more refined partitioning at the right of

Figure 11, PTree. Notice that the prediction of Y is not relevant for the Z region of PTree(Q2a) since all

states where Z is true will move, with probability one, to the Z-region of V 1.

Note that each leaf of PTree(Q2a) induces a joint product distribution over Y and Z. The semantics

of our DBNs, under our assumption that there are no synchronic arcs, ensures that the probabilities of Y
and Z becoming true under action a are independent given relevant aspects of the state. Specifically, the

conditions labeling the branches of PTree(Q2a) are sufficient to ensure this independence. Thus, the product

of these two distributions provides an accurate prediction of the probability of making any of the conditions

labeling the branches of Tree(V 1) come about. For example, PTree(Q2a) tells us that if Z is false and Y
is true, then a will make Z true (and leave Y true) with probability 0:9 and make Z false (and leave Y
true) with probability 0:1. Each of these conditions is sufficient to “navigate” Tree(V 1). Thus, expected

future value can be easily determined for each branch of PTree(Q2a), giving rise to FVTree(Q2a) as shown

in Figure 10(e). Discounting the future value tree and adding the immediate reward, we obtain the final

form of Tree(Q2a), as shown in Figure 10(f).

This example illustrates the main intuitions underlying our regression algorithm. Given Tree(V ), the

tree Tree(QVa ) is constructed in three stages. The most important phase is the first, the construction of

PTree(QVa ), which provides a tree whose leaves are labeled with a set of distributions over a subset of the

variables occurring in Tree(V ).18 The corresponding joint distribution (simply the product distribution ob-

18In general, not all variables will occur at the leaves. A distribution over Xi is needed only in those conditions under which Xi
27



Input: Tree(V ), action a; Output: Tree(QVa )
1. Let PTree(QVa ) be the tree returned by PRegress(Tree(V ); a); we assume PRegress(Tree(V ); a) is simplified (contains no redundant nodes).

2. Construct FVTree(QVa ) as follows. For each branch b 2 PRegress(Tree(V ); a) (with leaf node lb ):

(a) Let Prb be the joint distribution obtained from the product of the individual variable distributions labeling lb.

(b) Computevb =Pb02Tree(V ) Prb(b0)V (b0). (Here b0 are branches in Tree(V ), Prb(b0) is the probability of the conditions

labeling that branch as given by the distributionPrb, and V (b0) is the value labeling the leaf l0b in Tree(V )).
(c) Re-label leaf lb with vb.

3. Discount FVTree(QVa ) with discount factor � (multiply each leaf label by �).

4. Append (and simplify) the reward tree, Tree(R), to FVTree(QVa ), using addition as the combination function. The resulting tree is Tree(QVa ).
Figure 12: Algorithm Regress(Tree(V ); a)

tained from the individual distributions) will fix a probability distribution over the branches of Tree(V ),
and thus over the values occurring in value function V . This tree is constructed by regressing each of the

variables occurring in Tree(V ) through a, in turn, and piecing together the resulting trees. The trees for the

individual variables are themselves taken directly from the DBN for a.

The second phase of the algorithm simply involves using the joint distributionat each leaf of PTree(QVa )
to compute FVTree(QVa ), the expected future value tree with respect to V . The final phase involves adding

the reward function to the discounted version of FVTree(QVa ) to obtain Tree(QVa ). This last step may in-

volve expanding FVTree(QVa ) by appending Tree(R) to it and doing some simplification.

The algorithmRegress(Tree(V ); a)—which accepts as input Tree(V ) and action a, and returns Tree(QVa )—
is detailed in Figure 12. The bulk of the tree structure is produced in the call to the recursive algorithm

PRegress(Tree(V ); a), which produces PTree(QVa ). PRegress(Tree(V ); a) is described in Figure 13.

Both algorithms are described in reasonably straightforward terms; and each could be implemented in

slightly more complicated ways to minimize repeated operations and tree traversals. For instance, Steps 3

and 4 of Regress need not wait until FVTree(QVa ) is completely constructed in Step 2. Opportunities for op-

timization of PRegress include: exploiting shared substructure in the subtrees of Tree(V ), thus intertwining

the (currently) independent recursive calls to PRegress in Step 3(b); and combining the merging operations

at different leaves in Step 4(b) so that leaves labeled by distributions with overlap in their support sets can

share computation. We note that several other ways of constructing PTree(QVa ) may also prove useful. In

what follows, we will not discuss in detail the fine-tuning of these tree-manipulation algorithms.19

The soundness of the algorithm is ensured by the following result.

Theorem 4.1 Let PTree(QVa ) be the tree produced by the algorithmPRegress(Tree(V ); a). For any branch

is relevant to future value. In our example, a distribution over Y was not needed when the distribution over Z was concentrated onZ = >.
19The specific performance of different approaches to tree manipulation will likely be closely tied to many domain specific features,

such as the noise in actions’ effects, the ordering of variables in the input representation, the problem specific structure, and so on. Until
more empirical experience is obtained with these algorithms, we are unable to offer deep insights into these factors.
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Input: Tree(V ), action a; Output: PTree(QVa )
1. If Tree(V ) contains a single (leaf) node (necessarily labeled with a value), return an empty tree PTree(QVa ).
2. Let X be the variable labeling the root of Tree(V ). Let TPX be the tree-structured CPT forX in the DBN for a (with leaves labeled by distri-

butions over val(X)).
3. For each xi 2 val(X) that occurs with positive probability in the distribution at some leaf in TPX :

(a) Let TVxi be the subtree in Tree(V ) attached to the root X by arc xi.

(b) Let TPxi be the tree produced by calling PRegress(TVxi ; a).
4. For each leaf l 2 TPX , labeled with distributionPrl:

(a) Let vall(X) = fxi 2 val(X) : Prl(xi) > 0g
(b) Let Tl = Merge(fTPxi : xi 2 vall(X)g), using union to combine the leaf labels (which are distributions over sets of

variables).

(c) Revise TPX by appending Tl to leaf l, using union to combine the leaf labels (distributions) of Tl with the label (distribution
overX) of leaf l.

5. Return PTree(QVa ) = TPX .

Figure 13: Algorithm PRegress(Tree(V ); a)b of PTree(QVa ), let B denote the event determined by its edge labels, and assume the leaf of b is labeled by

distributionsPi(Xi) for 1 � i � k. Let Prb denote the joint product distribution over X = fX1; � � � ; Xkg
induced by fP1; � � � ; Pkg. Then:

(a) Any x 2 val(X) such that Prb(x) > 0 corresponds to a unique branch of Tree(V ). That

is, any assignment to X that has positive probability is sufficient to “traverse” Tree(V ) to a

unique leaf node.

(b) Let x 2 val(X) and si be any state satisfying B. ThenXfPr(si; a; sj) : sj j= xg = Prb(x)
In other words, Pr(St+1 j= x j St j= B; At = a) = Prb(x).

Proof We prove part (a) inductively on the depth of tree Tree(V ). The base case for a tree of depth 0—i.e.,

when Tree(V ) consists of a single leaf labeled with a value—is immediate, since PRegress returns

an empty tree, which is sufficient to traverse Tree(V ) to a leaf. Now assume that the result holds for

all value trees with depth less than d. Let Tree(V ) have depth d with root labeled by variable X and

subtrees Tree(xi) for each xi 2 val(X). Since all subtrees Tree(xi) have depth less than d, by the

inductive hypothesis PRegress will return a probability tree PTree(xi) capturing a joint distribution

over the variables in Tree(xi) such that any assignment to those variables given nonzero probability

allows subtree Tree(xi) to be traversed to a leaf. Now PTree(QVa ) is constructed by appending to

each leaf l of the tree CPT(X; a) those trees PTree(xi) for which the distribution over X labeling l
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assignsPr(xi) > 0, and maintaining the subsequent product distributionat each resulting leaf. If this

resulting product distribution at any leaf of PRegress(Tree(V ); a) assigns Pr(xi) > 0, then we may

traverse the xi arc from the root of Tree(V ). The fact that this distribution must include information

from PTree(xi) means that any event with nonzero probability permits the navigation of the subtree

Tree(xi) of Tree(V ). If the resulting product distribution assigns Pr(xi) = 0, then we will never

traverse the xi arc, and the fact that the distributions from PTree(xi) are not included in the product

distribution is irrelevant.

To prove part (b), let leaf lb of PTree(QVa ) be labeled by a distribution over the set of variables X =fX1; � � � ; Xkg and the corresponding branch b labeled with conditions B. By construction, the con-

ditions labeling b entail the conditions labeling exactly one branch bXi of the tree for CPT(Xi; a), for

each Xi. Denote these conditionsBXi . The semantics of the DBN, given the absence of synchronic

arcs, ensures that Pr(Xt+1i jBtXi ; At = a) = Pr(Xt+1i jBtXi ; At = a;Ct+1; Ct)
where Ct is any event over the variables Xtj consistent with BXi and Ct+1 is any event over the

variables Xt+1j ; j 6= i. Since, for each Xi the distribution labeling lb is exactly Pr(Xt+1i jBtXi ; At =a), the corresponding product distribution isPr(Xt+11 jBt; At = a) Pr(Xt+12 jBt; At = a) � � �Pr(Xt+1k jBt; At = a)
Since the Xt+1i are independent given Bt, this is exactly:Pr(Xt+11 ; Xt+12 ; � � �Xt+1k jBt; At = a)
Since the Xt+1i are independent of any event Ct consistent with Bt, the result follows. �

It follows almost immediately that the algorithm Regress(Tree(V ); a) is sound, since it uses PTree(QVa ) to

the determine the distributionover values in Tree(V ), and the conditionsunder which to use that distribution

to compute the expected future value of performinga. Adding the immediate reward to the discounted future

value is straightforward.

Corollary 4.2 Let Tree(QVa ) be the tree produced by the algorithm Regress(Tree(V ); a). For any branchb of Tree(QVa ), let B denote the event determined by its edge labels, and assume the leaf of b is labeled by

the value vb. For any state si j= B, we haveQVa (si) = vb. In other words, Tree(QVa ) accurately representsQVa .
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Input: Tree(V ), Tree(�); Output: Tree(QV� )
1. For each action a occurring in Tree(�), call Regress(Tree(V ); a) to produce Tree(QVa ).
2. At each leaf of Tree(�) labeled by a, append Tree(QVa ) to Tree(�), retaining the leaf labels (values) from Tree(QVa ) (deleting the action labels

from Tree(�)).
3. Return the (simplified) resulting tree, Tree(QV� ).

Figure 14: Algorithm Regress(Tree(V ); Tree(�))
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Figure 15: Regression of Tree(V ) through Tree(�) to obtain Tree(QV� ): (a) Tree(�); and (b) Tree(QV� ).
4.2 Regression through a Policy

The algorithm for regressing a value function through an action can be generalized to regress a value func-

tion through a policy. Specifically, given value function V , we wish to produce a new value function QV�
that represents the value of executing policy � for one step and receiving terminal value V . This is, for

instance, the key step in successive approximation for policy evaluation: given V k� , V k+1� is just QV k�� .

Given a tree Tree(V ) representing V and a tree Tree(�) representing �, our goal is to produce a tree

Tree(QV� ) capturing QV� . The algorithm Regress(Tree(V ); Tree(�)) that does this is conceptually similar

to Regress(Tree(V ); a), the key difference being that different actions are performed in different regions of

state space, as dictated by Tree(�). Our algorithm, detailed in Figure 14, reflects the most straightforward

approach to producing Regress(Tree(V ); Tree(�)). The algorithm Regress(Tree(V ); a) is applied to each

action occurring in Tree(�), and the resulting tree is appended to Tree(�) at each leaf where a occurs (see

Figure 15 for an illustration). The tree is then suitably simplified.

Since QV� (s) is just QVa (s) at any state where �(s) = a, it is quite obvious that the algorithm produces

a sound representation of QV� .

Proposition 4.3 Let Tree(QV� ) be the tree produced by the algorithm Regress(Tree(V ); Tree(�)). For any

branch b of Tree(QV� ), let B denote the event determined by its edge labels, and assume the leaf of b is

labeled by the value vb. For any state si j= B, we haveQV� (si) = vb. In other words, Tree(QV� ) accurately
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Figure 16: Merging two Q-trees Tree(Qk+1a ) and Tree(Qk+1b ) to obtain an improved value function,
Tree(V k+1).
represents QV� .

As in the previous subsection, our algorithm is reasonably straightforward, and could be optimized some-

what to work more efficiently under certain conditions. For example, if actiona occurs in Tree(�) only under

specific conditionsC, these conditions could be passed to Regress(Tree(V ); a) to incrementally prune the

subtrees generated by that algorithm.

4.3 Merging Q-trees

A fundamental step in both value iteration and policy iteration is the maximization step involved in a Bell-

man backup. In value iteration, V k+1 is computed by setting V k+1(s) = maxaQk+1a , where Qk+1a is

itself computed with respect to V k. In policy iteration, an improved policy �0 is constructed by setting�0(s) = argmaxQV�a . Given tree representations of the appropriateQ-functions, these maximization steps

can be implemented by merging theseQ-trees and using maximization as the leaf-label-combining function

(substituting the maximizing action names for values in the case of policy improvement).

In the case of value iteration, assume we have been given Tree(Qk+1a ) for each action a (this is obtained

by regressing Tree(V k) through action a). Tree(V k+1) can then be obtained by merging these trees and

simplifying (i.e., obtaining Merge(fTree(Qk+1a ) : a 2 Ag)), taking each leaf label in Tree(V k+1) to be

the maximum over the corresponding labels in the trees in fTree(Qk+1a ) : a 2 Ag. This is illustrated in

Figure 16.

As mentioned earlier, there are a number of ways in which this merge operation can be implemented.

Our approach is straightforward, implemented via repeated appending and simplification. Another possi-

bility would be to reorder allQ-trees to have a common variable ordering (e.g., the ordering of the tree with

highest “average” value could be retained), and simultaneously traversing all trees to find the maximizing

values (and tree structure).

With policy improvement, we are given Tree(QV�a ) for each a, and must produce Tree(�0), a tree-structured

representation of some policy�0 that is greedy with respect toV� . This is achieved in a nearly identical fash-
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Figure 17: Merging two Q-trees Tree(Qk+1a ) and Tree(Qk+1b ) to obtain an improved policy, Tree(�0).
Input: Tree(R), Tree(�); Output: Tree(V�)

1. Set Tree(V 0� ) to be Tree(R) (immediate reward).

2. Until termination, compute Tree(V k+1� ) = Regress(Tree(V k� ); Tree(�)).
3. Return the final tree Tree(V�) = Tree(V n� ).

Figure 18: The Structured Successive Approximation (SSA) Algorithm

ion, by merging the Q-trees; but rather than labeling leaves with the maximizing Q-values, we label them

with the corresponding (i.e., maximizing) action names. Once these merged values are replaced with ac-

tion labels, the trees may be further simplified, since a subtree with distinct (maximizing) value labels on

the leaves may have identical action labels at these leaves. Figure 17 illustrates this process. We note that

the merged tree (as it exists before the maximizing Q-values are replaced by action labels) should not be

simplified by collapsing identical subtrees. In the example illustrated, both leaves under node Y have iden-

tical values in the intermediate merged value tree; but these values are produced by different maximizing

actions. Hence, the split of Y is relevant to the representation of �0.
4.4 Structured Successive Approximation

With the tree-structured implementations of basic operations such as expected value computation, maxi-

mization, and Bellman backups, we can now implement standard dynamic programming algorithms in a

structured fashion. The first such algorithm is the successive approximation algorithm, which, given a fixed

policy �, computes the value function V�.

We assume we have been given a tree-structured policy �, represented as Tree(�). Structured succes-

sive approximation (SSA), described in Figure 18, proceeds by constructing a sequence of value functionsV 0� ; V 1� ; � � �, each represented as a tree, Tree(V k� ). The initial value function is simply the reward function

Tree(R) itself, while successive value approximations Tree(V k+1� ) are produced by regressing Tree(V k� )
through Tree(�).

Termination is determined by some standard criterion, such as supremum norm or span seminorm. In
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Figure 19: Fifty iterations of SSA with fixed policy DelC.

our implementation, we use span seminorm. To determine convergence, we must compute kV k+1� � V k� ks
at each iteration. We do this by first merging Tree(V k+1� ) and Tree(V k� ), using difference as the combination

function, to obtain Tree(V k+1� � V k� ). The span of this tree is determined by one tree traversal to find its

maximal and minimal elements, denoted m+ and m�, respectively. Given a termination threshold ", ifm+ � m� � ", then Tree(V k+1� ) is returned as Tree(V�), the approximate value of the policy �, with

bounds given by the usual formulae.20

Since the termination test clearly reproduces the classical test in our tree-structured setting, it follows

immediately from Proposition 4.3 that Tree(V�) accurately reflects V�.

Theorem 4.4 Let Tree(V�) be the tree produced by the SSA algorithm. For any branch b of Tree(V�)), letB denote the event determined by its edge labels, and assume the leaf of b is labeled by the value vb. For any

state si j= B, we have V�(si) = vb � f("), where f(") is the standard error introduced by the termination

criterion. In other words, Tree(V�) accurately represents V�.

Note that the approximation error is due to the nature of successive approximation itself, not the use of

the decision-tree representation. The usual error terms for either the span seminorm or supremum norm

stopping criteria, as described in Section 2.2, apply here directly.

Figure 19 illustrates the sequence of value trees produced by fifty iterations of SSA using our running

example, where the policy being used is, for simplicity, the uniform application of action DelC at every

state. After fifty iterations, the estimated value V �(s) is within 0:04 of its true value. The SSA algorithm

has discovered that there are only eight distinct values in this value function, and has abstracted the state

space appropriately.21 Thus, it performs eight expected value computations, or backups, per iteration, rather

than the 64 required by the standard state-based successive approximation algorithm.

One thing we notice immediately about the sequence of value trees in this example is that its structure

stabilizes very quickly. How quickly this occurs depends on a number of specific problem characteristics,

20Again, span semi-norm is generally used for early stopping with a good policy, not for accurate estimation of the value function.
21In fact, this value function has only six distinct values, but the minimal decision-tree representation requires eight leaves. A rep-

resentation such as a decision graph, or ADD, would be able to represent this value function more concisely still.
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but we can be assured that once the structure of the tree stabilizes in this fashion — that is, once the structure

persists in two successive iterations — its structure will not change in any subsequent iteration.22

Theorem 4.5 Let Tree(V k� ) and Tree(V k+1� ) be two trees produced by successive iterationsof SSA. If Tree(V k� )
and Tree(V k+1� ) have identical structure (i.e., are identical except possibly for the value labels at their

leaves), then Tree(V k+j� ) will have the same structure for any j � 0.

Proof Suppose Tree(V k� ) and Tree(V k+1� ) have the same structure. The algorithm Regress(Tree(V k� ); Tree(�))
produces the structure of Tree(V k+1� ) based on the structure of Tree(V k� ) without regard to the val-

ues at the leaves. Since Tree(V k+1� ) has identical structure (it differs from Tree(V k� ) only in its leaf

values), the algorithm will produce Tree(V k+2� ) to have identical structure to Tree(V k+1� ). A simple

inductive argument proves the result. �
The significance of this result lies in the fact that, once the decision tree structure stabilizes, SSA can proceed

exactly as standard successive approximation. Specifically, there is no need to recompute the structure of

the decision tree at subsequent iterations. SSA can reuse the same decision tree and simply perform one

expected value calculation per leaf (in contrast to the standard one calculation per state) without additional

overhead.

4.5 Structured Policy Iteration

Policy iteration can be implemented in a way that exploits tree structure by simply piecing together some

of the components described above. Structured policy iteration (SPI) is detailed in Figure 20 and works by

alternating phases of SSA and structured policy improvement. Policy improvement is implemented using

the “maximization merge” described in Section 4.3, where action names replace values labeling the leaves.

Termination is tested by comparing Tree(�) and Tree(�0) to see if the policies are identical.23

The soundness of the component algorithms ensures that the SPI algorithm produces trees that accurately

reflect the optimal policy and value function.

Theorem 4.6 Let Tree(��) and Tree(V �) be the trees produced by the SPI algorithm. For any branch b of

Tree(V �), let B denote the event determined by its edge labels, and assume the leaf of b is labeled by the

value vb. For any state si j= B, we have V �(si) = vb � f("), where f(") is the standard error introduced

by the termination crtierion. Similarly, the policy �� represented by Tree(��) is f(")-optimal.

22If identical values are collapsed at subtrees, the structure can in fact become simpler. The following result ignores this possibility.
It seems to rarely occur in practice except at the earliest stages of dynamic programming. Such collapsing can be ignored until the end
of a sequence of iterations in any case, thus the practical import of the results remains.

23As is usual with policy iteration, if more than one action can be chosen for the greedy policy �0 during policy improvement and
one of the candidate actions is the same as the action taken in �, the action used by � is retained.
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Input: Tree(R), Tree(�) for random initial �; Output: Tree(��) and Tree(V �).
1. Set Tree(�0) = Tree(�).
2. Repeat

(a) Set Tree(�) = Tree(�0).
(b) Compute Tree(V�) using SSA.

(c) Compute Tree(QV�a ) = Regress(Tree(V�); a) for each action a.

(d) Merge the trees Tree(QV�a ) to obtain Tree(�0) (where �0 is the greedy policy w.r.t. V� ).

Until �0 = �.

3. Return Tree(��) = Tree(�) and Tree(V �) = Tree(V�).
Figure 20: The Structured Policy Iteration (SPI) Algorithm
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Figure 21: The sequence of improved policies produced by SPI.

Notice that the potential approximation error introduced in policy iteration is due to the fact that policy

evaluation is obtained by means of successive approximation. Procedures such as action elimination [62]

can be used to ensure that the obtained policy is in fact optimal.24

Figure 21 illustrates the sequence of four policy trees produced by SPI using our running example (with

an initial policy that uniformly delivers coffee at each state). A fifth policy tree is created and compared to

the fourth, but is found to be identical; thus the final (fourth) tree is the optimal policy for this problem.25

The final value function is shown in Figure 22. Notice that the final policy consists of a tree with eight leaves

showing that SPI is capable of discovering inherent structure in optimal policies. Furthermore, the optimal

value function consists of 18 distinct leaves. Thus each policy evaluation and improvement computation

involves no more (and generally fewer) than 18 expected value or maximization computations, rather than

the 64 required in the standard, state-based version of policy iteration.

24Optimality can also be assured if policy evaluation is performed exactly by solution of the corresponding linear equations. We
conjecture that a means of doing so in a way that exploits structure may be possible, but have not explored this possibility.

25The action DelC is essentially a “no-op” for this domain when the robot doesnot have coffee. Thus it remains as the action selected
(since it was the sole action in the initial policy) when nothing of interest is to be done. If DelC incurred some cost and a no-op were
included in the set of actions, the no-op would be optimal at all branches where DelC occurs other than hHCO;HCR; Oi.
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Figure 22: The optimal value function produced by SPI.

Input: Tree(R). Output: Tree(��) and Tree(V �).
1. Set Tree(V 0) = Tree(R).
2. Repeat

(a) Compute Tree(QV ka ) = Regress(Tree(V k); a) for each action a.

(b) Merge (via maximization) the trees Tree(QV ka ) to obtain Tree(V k+1).
Until termination criterion holds (w.r.t. Tree(V k+1), Tree(V k)).

3. Set Tree(V �) = Tree(V k+1).
4. Compute Tree(QV �a ) = Regress(Tree(V �); a) for each action a.

5. Merge the trees Tree(QV �a ) to obtain Tree(��) (where �� is the greedy policy w.r.t. V �).

6. Return Tree(��) and Tree(V �).
Figure 23: The Structured Value Iteration (SVI) Algorithm

Finally, we point out that modified policy iteration can be implemented in exactly the same fashion. The

only change required of the SPI algorithm as presented is that one would perform a fixed number of steps

of SSA in order to evaluate a policy rather than implementing SSA until convergence.

4.6 Structured Value Iteration

For completeness, we also describe a structured value iteration (SVI) algorithm. The results described be-

low are all based on SPI, but SVI plays an important role in approximation, as we discuss in Section 6.2.

SVI is shown in Figure 23 and works by repeatedly constructing Q-trees for the current estimated value

function and performing a maximization merge to obtain an improved estimate of the value function. Once

convergence according to some termination criterion is attained, the greedy policy with respect to that value

function is produced via another maximization merge (where values are replaced by action names). The al-

gorithm is obviously sound given the soundness of its components.
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4.7 Related Work

We have already pointed out a number of techniques for solving large MDPs, but two approaches to state

aggregation warrant further discussion due to their similarity to our method.

Dietterich and Flann [32, 33] also consider the application of regression methods to the solutionof MDPs

in the context of reinforcement learning. Their original proposal [32] is restricted to MDPs with goal regions

and deterministic actions (represented using STRIPS-like operators), thus rendering true goal-regression

techniques directly applicable. They extend their approach in [33] to allow stochastic actions, thus pro-

viding a stochastic generalization of goal regression. One key difference between their model and ours is

that they deal exclusively with goal-based problems whereas we allow general reward functions. Thus we

might classify their work as stochastic regression and ours as decision-theoretic regression. The general

motivation and spirit of their proposal is very similar to ours, but focuses on different representations. In

the abstract, Dietterich and Flann simply require operators (actions) that can be inverted, and they develop

grid-world navigation and chess end-games as examples of deterministic regression. In the stochastic case,

Dietterich and Flann place an emphasis is on algorithms for manipulating rectangular regions of grid worlds.

In contrast, our approach deals with general DBN/decision-tree representations of discrete, multi-variable

systems. Our decision-tree representation has certain advantages in multi-variable domains (e.g., we will

see below that it provides leverage for approximation). In navigation domains (to take one example), the

region-based representation is clearly superior as they offer very little structure that can be exploited by a

decision tree. Both approaches can be seen as particular instances of a more general approach to regression

in MDPs.

The model minimization approach of Givan and Dean [26, 27, 39] is also related to our model. In this

work, the notion of automaton minimization [42, 51] is extended to MDPs and is used to analyze abstraction

techniques such as those presented in [30]. As such this technique can be viewed as providing a more ab-

stract view of the type of work we describe here. The emphasis is not on specific algorithms for regression,

but rather a development of a theoretical framework in which abstraction methods such as those proposed

here, as well as others, are viewed as minimization algorithms for stochastic automata. Intuitively, a min-

imized automaton is one in which states are aggregated if they agree on a certain property of interest. For

example, before solving an MDP, it can be minimized by discovering blocks of states such that each state in

a given block agrees on reward, and agrees on the transition probabilities for each action with respect to the

block structure. Specifically, when an action is taken, each state in a block must have the same probability

of moving to any other block (not necessarily any other state). An aggregate MDP formed this way (i.e., by

replacing states with blocks) can be solved optimally, but more quickly due to the reduction in state space

size. Lee and Yannikakis [51] describe an algorithm for for minimizing stochastic automata, though it re-

lies on state space enumeration and is not directed toward decision processes. As pointed out by Dean and

Givan [26], the MDP abstraction method of [30] can be viewed directly in this way, explicitly minimizing

the MDP before solving it.
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Of course, minimization can involve abstraction with respect to weaker properties, such as value func-

tion differences [26]. The SPI algorithm can be viewed in this light: it dynamically constructs a “minimal

model” based on the current estimate of the value function. For instance, Theorem 4.4, pertaining to the

stabilization of the value function structure, can be interpreted as confirming the discovery of a minimal

model (with respect to value of a fixed policy).

5 Analysis

In this section we describe some empirical results with our structured dynamic programming algorithms.

We focus on the SPI algorithm, show its performance on several problems with slightly different features,

and attempt to characterize the types of problems for which SPI will and will not work well. Some of the

reasons for poor performance will suggest directions for future development of MDP decomposition and

abstraction techniques.

In the following, we describe a series of problems and compare the running time of SPI with that of

flat (state-based) modified policy iteration (MPI). In all comparisons, we use the same number of iterations

for policy evaluation or the same termination criterion for both the structured and unstructured algorithms.

The MPI algorithm is optimized to exploit any sparseness in the transition matrices: sparse matrix repre-

sentations are used for probability matrices and the sparseness is used to avoid “state enumeration” of zero

probability states in expected value computations. In this sense, we compare SPI to the “(conceptually)

best” implementation of a general-purpose unstructured algorithm. We also describe the size of the result-

ing structured policies and value function in terms of the number of leaves the corresponding tree contain,

and compare this to the state space size.26

5.1 Synthetic MDPs: Best and Worst Cases

SPI was tested on two sets of synthetic MDPs designed to illustrate its performance under best-case and

worst-case scenarios, as compared to unstructured MPI, which enumerates the state space explicitly. Worst-

case behavior was tested on a series of MDPs whose tree-structured value function requires a full tree.

Specifically, the MDP is designed so that the optimal value function has a distinct value at each state. The

MDP consists of n boolean variables, X1; X2; � � �Xn, and n deterministic actions a1; a2; � � �an. A positive

reward r is associated with the single state where each Xk is true, while a reward of zero is assigned to all

other states. The problem is discounted with discount factor �. The kth action ak sets the kth variable Xk
true if all preceding variables Xi(i < k) are true, otherwise it has no effect; but it also makes all preceding

variables false. The DBN for the kth action is illustrated schematically in Figure 24(a).

26All of our results were obtained using an implementation written in C++ running under Linux on a Pentium II 400 MHz with
640MB of memory.
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Figure 24: (a) The DBN for the kth action ak in the worst-case examples; and (b) the worst-case value
function for the three-feature (n = 3) version of this MDP.

If the state space is viewed as a binary number, the optimal policy requires choosing an action to set

the highest bit (largest variableXk) whose predecessors are already set. Since this sets the predecessors to

false, the optimal policy induces a path from any given starting state that enumerates all binary numbers

in order until the number 11 � � �1 is reached (i.e., all variables are true). Because of discounting, the state

corresponding to number j has value �2n�j�1r. Thus, each state has a unique value. Though this MDP

can be represented using DBNs and decision trees in O(n2) space, its value function requires O(2n) space

when represented as a decision tree.27 An example of the optimal value function with three variables (n =3; r = 10; � = 0:9) is illustrated in Figure 24(b). This, then, represents something of a “worst case” for

SPI: it must enumerate the entire state space, exactly like MPI, yet pays the additional overhead associated

with constructing trees before doing the expected value calculations.

Figure 25 compares the performance of the SPI algorithm with unstructured MPI on a series of four

worst-case problems with six to twelve variables (64 to 4096 states).28 From the plot on the right of Fig-

ure 25 we see that the overhead associated with the SPI algorithm causes the algorithm to run roughly one

hundred times slower than the corresponding flat dynamic programming algorithm. The roughly constant

27This isn’t to say the value function can’t be represented compactly in some other way: the functional expression above offers a
compact representation!

28The data corresponding to all of the problems described in Section 5 can be found at the SPI web site,
http://www.cs.ubc.ca/spider/dearden/spi.html.
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Figure 25: Time and space performance for SPI and MPI on the worst-case series

overhead is to be expected given that the complete tree representing a value function is roughly twice as large

as the corresponding flat (tabular) value function. Thus the number of operations required to construct the

tree-structured value function is bounded by the size of the tree and the number of operations required to

traverse (partial) trees while building it.29

Note that as the number of variables in this type of problem increases, the space required to compute the

optimal policy increases at a significantly greater rate with SPI, as seen in the plot on the right of Figure 25.

Again, this is due to the fact that a tree representation of the value function requires storage of interior nodes

in the value tree.

While the overhead for SPI is quite large in the worst-case examples, such examples are designed in an

adversarial fashion to illustrate the worst-case. The constant-factor overhead in computation time may not

be a serious price to pay if worst-case bahavior is unlikely to arise in practice, as long as there are benefits in

the best or typical cases. We have designed a different set of abstract, synthetic examples to illustrate “best-

case” behavior. The best-case examples are designed so that the optimal value function, when represented

as a tree, has size linear in the number of problem variables; specifically, each variable occurs exactly once

in the tree. This is “best-case” in the sense that no problem in which all variables play a role in the final

value function can be smaller.30

Each best-case MDP consists ofn boolean variables,X1; X2; � � �Xn, andn deterministic actionsa1; a2; � � �an.

A positive reward r is associated with the single state where each Xk is true, while a reward of zero is as-

signed to all other states, much like the worst-case problems. The problem is again discounted with discount

factor �. The kth action ak sets the kth variable Xk true if all preceding variables Xi(i < k) are true, oth-

erwise it has no effect; but it also makes all succeeding variables Xj(j > k) false. The DBN for the kth

29The slight separation of the log plots as the number of variables increases is due to some slight inefficiencies in our prototype
implementation, not due to the decision-theoretic regression approach itself. We discuss this further at the end of this section.

30Of course, if there are completely irrelevant variables, SPI will recognize this as have an even greater advantage over unstructured
algorithms, as we discuss below.
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Figure 26: (a) The DBN for the kth action ak in the best-case examples; and (b) the best-case value function
for the three-feature (n = 3) version of this MDP.

action is illustrated schematically in Figure 26(a).

If the state space is viewed as a binary number, the optimal policy requires choosing an action to set

the highest bit (largest variable Xk) whose predecessors are already set. This turns off higher bits, each of

which must in turn be set by subsequent actions. Thus for any state whose lowest false variable is Xk, a

sequence of n � k + 1 actions (setting variables Xk through Xn) is required to reach the goal; the value

of such a state is �n�k+1r. Thus the value function contains only n + 1 distinct values and is represented

as a tree with n internal nodes, one for each variable. An example of the optimal value function with three

variables (n = 3; r = 10; � = 0:9) is illustrated in Figure 26(b). This MDP can be represented using DBNs

and decision trees in O(n2) space, and its value function requires O(n) space.

Figure 27 shows a comparison of SPI and MPI on this series of examples, ranging from 6 to 20 variables.

As expected, the time and space requirements for MPI grow exponentially with number of variables (and is

unable to solve the 20 variable problem due to memory demands), while SPI outperforms MPI considerably

with respect to both time and space. For example, SPI solves the 18-variable problem in 1.4 seconds, while

MPI requires 2923 seconds to solve the same problem.

We note that it is largely the inherent structure of the problems above that dictates the differences in

performance between SPI and MPI. While the problems are deterministic, the performance differences are

virtually identical when noise of various types is added to both the best- and worst-case problems. We il-

lustrate this with one simple form of noise (though similar phenomena arise with other noise models). In
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Figure 27: Time and space performance for SPI and MPI on the best-case series
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Figure 28: Solution time for SPI and MPI with various noise levels, on best-case problems (left) and worst-
case problems (right).

our worst-case problems, a k% noise level indicates a k% chance that action ak fails to set variableXk true

(otherwise the effect is exactly as above). In the best-case problems, a k% noise level indicates a k% chance

that action ak will make the variable Xk�1 false (otherwise the effect is unchanged). In the noisy variants

of these problems, the structure of the value function and optimal policy is identical; but noise generally

causes longer convergence times. Figure 28 compares the effect of noise for k = 10 and k = 20, on both

SPI and MPI, on best- and worst-case examples of various sizes. While noise makes both types of problems

harder to solve, the increase in difficulty is no worse for SPI than for unstructured MPI.
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Problem Algorithm States Actions SPI Leaves Time (s) Memory (M)

Manufacturing1 MPI 55,296 14 349 78
SPI 5786 650 22

Manufacturing2 MPI 221,184 14 1775 160
SPI 14,117 1969 54

Manufacturing3 MPI 1,769,472 14 >9000 -
SPI 40,278 5155 129

Figure 29: Comparison of SPI and MPI on process-planning problems

5.2 Process-Planning Problems

The results above illustrate the extreme points of SPI’s performance. To test more “typical case” perfor-

mance, we ran SPI on a set of process-planning problems from a synthetic manufacturing domain. These

domains are based on a manufacturing problem in which a product is produced by attaching finished com-

ponent parts. The parts must be milled, polished, painted, and attached by either bolting or gluing them

together. There are two types of finished product, high-qualityand low-quality, and the policies for produc-

ing then are quite different. For example, high-quality products should be hand-painted, drilled and bolted

together, which requires skilled labour, a drill-press, and a supply of bolts. This process is too expensive

for producing low-quality products, which should be spray-painted and glued, thus requiring a spray gun,

glue, and clamps. The reward function is designed to capture the need for high-quality versus low-quality

products: specifically, if high-quality is required, then little reward is given for producing a low-quality

product; and if low-quality is all that is necessary, high-quality production is given a small added reward,

but generally not enough to pay for the cost of producing high-quality.

Figure 29 shows the comparison of SPI and MPI on three such problems (again, full descriptions can be

found at the Web site mentioned above), with size ranging from 55,000 states to 1.8 million states. In the

largest of these problems, MPI is unable to run to completion due to memory limitations, but SPI solves the

problem in what we extrapolate to be roughly one-third the time required by MPI. In the smallest problem,

there is not enough structure in the value function to permit the tree-construction overhead of SPI to pay off.

In the medium-sized problem the methods are roughly comparable with respect to solution time. Because

of SPI’s ability to ignore irrelevant variables, new variables can be added to these problems that have no

impact on optimal actions, thus increasing state space size without having anything but a trivial impact on

SPI’s running time. Each new boolean variable added to the problem effectively doubles the running time

of MPI.

Notice that SPI discovers considerable regularity in the value functions for these problems. For instance,

in the largest problem SPI produces a value function tree with roughly 40,278 distinct leaves, thus discov-

ering that there are only (no more than) that many distinct values in the optimal value function among the
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1.8 million states.31 This regularity has a strong impact on the memory requirements for SPI, which are

considerably lower than those for MPI.

A key feature of this problem class that allows SPI to perform well is the fact that in certain parts of the

state space certain variables are completely irrelevant to the prediction of value. For instance, if high-quality

products are required, then a number of variables, such as the availability of glue, are irrelevant to value

function prediction. Similarly, low-quality products do not require the availability of skilled labour. This

is where SPI gains its computational and space advantages, since it discovers this conditional irrelevance,

effectively abstracting the state space by ignoring certain variables conditional on other variables taking

certain values. This type of irrelevance will hold in many types of domains. For example, in any domain

where there are several methods of achieving various objectives, but only one should be chosen under any

specific set of circumstances, the variables relevant to the execution of those methods that are not optimal

will be ignored by SPI (under the given circumstances).

5.3 Taskable Robot Problems and Exogenous Events

We have also run SPI on more elaborate versions of the robot coffee-delivery scenario. We report on these

here because they point out certain problems for SPI when dealing with event-drivenprocesses. More specif-

ically, they point out conditions under which the type of “irrelevance” exploited by SPI is less likely to exist.

The problem domain is one in which the robot can move among five different locations, can pick up and

delivery coffee, can pick up and deliver mail and can tidy a lab. Penalties are imposed in states where there

is an outstanding request for coffee, there is undelivered mail, or the lab is untidy (there are several degrees

of untidiness).32 The problem is not designed to have any irrelevant features—for example, all features

relating to a specific objective are relevant to the value function if that objective needs to be filled. Thus

there are few irrelevant details that can be exploited by SPI. However, one feature of the problem makes the

problem especially difficult for SPI, namely, the presence of exogenous events.

Without exogenous events to drive the process, at any state there is some subset of the three objectives

that needs to be satisfied. However, once the objective is satisfied, it will never need to be considered again;

and if the objective was not relevant it will never become relevant. For instance, if there is no coffee request

outstanding in the initial state, no future coffee requests will be issued and no variables relevant to coffee

delivery are needed to predict value. In such an MDP, under the optimal policy the robot will reach an

absorbing state (or class of states) where all objectives are satisfied and never need to be considered again.

A more realistic version of the problem contains exogenous events that continuallydrive the robot to achieve

objectives that arise over time. For example, even if there is no outstanding coffee request, a coffee request

event can occur with some small probability. This requires that the robot constantlyassess it ability to deliver

coffee, even when in states where no coffee request is outstanding. Similarly, the realistic model contains

31The optimal policy tree is much smaller than the value function tree in all problems we consider.
32This domain is described in some detail in [11] and can be found at the Web site mentioned above.
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exogenous events that cause mail to arrive and the lab to become messier.

The problem domain has six variables (four of which are five-valued, hence 400 states) and eight ac-

tions. Without exogenous events, SPI runs to completion in 11.9 seconds, producing a final value tree with

291 leaves and a policy tree with 196 leaves, a requires 1.85Mb of memory. Notice that the value tree does

not contain significantly fewer entries than the flat, tabular representation. This is because all variables are

relevant under most circumstances. For comparison, MPI runs in 0.31 seconds and requires 1.5Mb of mem-

ory.

When we add the three exogenous events to the domain, SPI produces slightly larger value and policy

trees with 300 and 219 leaves, respectively, and requires 2.0Mb of memory. Though not substantially larger

than without exogenous events, the trees become larger because variables associated with various tasks are

now relevant even in states where the task is not “active.” For example, in a state with no outstanding cof-

fee requests, the variables relevant to coffee delivery are now relevant to predicting value—this is because

the exogenous “coffee request” event could, at some future point, make the task active, and the speed with

which it is accomplished depends on the status of coffee-delivery variables. Thus, exogenous events tend

to make trees larger by rendering variables relevant because of future possibilities.33 Even worse, SPI takes

nearly ten times as long (100.6 seconds) to run in the presence of the three exogenous events. This is not so

much because the final trees are much larger, but because the value trees produced in early phases on policy

iteration get much more complex; that is, the trees get larger earlier.

We note that these exogenous events cause difficulty primarily in cases where all variables are relevant

to the (optimal) performance of some task, and where these tasks can each arise at any time. When certain

problem variables are irrelevant—for example, because we discover, while solving the MDP, that they are

irrelevant to suboptimal (hence, unselected) methods of task achievement under certain conditions—SPI

still discovers these irrelevancies and can take advantage in the usual way, even in the presence of exoge-

nous events. Although exogenous events do increase the degree of (stochastic) connectedness of an MDP,

this is not the primary contributor to the difficulties faced by SPI in such domains. Rather it is the fact that

the complexity of the “abstract state description” required to predict the value function and optimal action

choice can depend on variables relevant to any task that could arise. This suggests that a form of task de-

scomposition could be used to help alleviate these difficulties (we return to this possibility in Section 7).

5.4 Discussion

In a some loose sense, SPI can be viewed as preserving as much structure in the value function represen-

tation as possible, subject to certain restrictions. For example, given the DBN for action a and the tree

representation of value function V , the regression of V through a will produce a regressed tree that makes

distinctions that could all be necessary given the structure of the inputs V and a. Whether the distinctions

33The effect on tree size is not dramatic in this example, but it is very easy to construct realistic scenarios where the effect is con-
siderably more severe.
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actually are necessary depends in large part on the specific values and probabilities labeling the leaves of

the input structures. But SPI produces output of minimal size for an algorithm that use only the structure

of input trees to make abstraction decisions.

Of course, the use of trees restricts how compactly certainly reward functions, value functions, and CPTs

can be represented. The smallest tree representation of a given value function may be exponentially larger

than the smallest representation using some other technique (like an ordered decision diagram, which can

handle disjunction much more effectively, or a decision list, or a set of Horn clauses). Variable ordering

also plays an important role in just how small a decision tree is. Since no representation can represent all

polynomial-sized functions (i.e., those with only polynomially-many distinct values) over a set of variables

compactly (i.e., with polynomial size), the potential blowup is unavoidable. Furthermore, no representation

is universally more compact than another; for instance, with some functions the best decision tree will be

exponentially smaller than the best ordered decision diagram, and for others it will be exponentially larger.

The choice of appropriate representation will generally depend on the structure of a given domain. We con-

jecture that decision trees offer a suitable choice for many problems. However, the basic conception of

decision-theoretic regression can be applied to any representation: one simply needs algorithms to manip-

ulate that representation, as in the region-based approach of Dietterich and Flann [32, 33] or the decision

diagram model of Hoey et al. [43].

The empirical results above suggest some possible directions for enhancing SPI and suggest conditions

under which SPI may and may not work well. Results on the process-planning domain suggest that the

overhead associated with SPI will pay off if we are able to eliminate the equivalent of roughly four to five

variables from the description of the value function. That is the tree representation of the value function

should have 15 to 30 times fewer leaves than there are states of the system. We expect that for large problems

such a reduction factor is very easy to obtain. Note that we refer only to computation time above; SPI offers

more dramatic savings in memory usage even when the time savings are minimal.

This time reduction estimate is based on the simple implementation described here. We notice that the

overhead in the worst-case examples is roughly constant at first glance. However, upon closer examination,

the overhead factor is increasing slowly with problem size. This suggests that the implementation tested has

certain inefficiencies. It also suggests that improved algorithms for manipulating the structured represen-

tations of value functions and policies could greatly improve the applicability of SPI. Both of these facts

have been confirmed in subsequent work [43] that extends SPI using algebraic decision diagrams (ADDs)

[2]. This improved structured representation and implementation (SPUDD) has been tested on the problems

described above and has proven the benefit of decision-theoretic regression to be more substantial than sug-

gested here.34 For example, SPUDD solves the 12-variable worst-case problem in just over 1500 seconds,

reducing worst-case overhead to a factor of 15 (from a factor of better than 100 with SPI), and actually shows

a decrease in overhead factor with problem size. On the largest process-planning problem (with 1.8 million

34SPUDD is based on structured value iteration rather than modified policy iteration; a version based on modified policy iteration
would show even better performance.
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states), SPUDD runs in 462 seconds, 12 times faster than SPI (and we conjecture about 35-40 times faster

than MPI). In the smaller process-planning examples, where SPI fails to beat MPI, SPUDD runs much faster

than MPI as well (in 78 seconds and 111 seconds, compared to 349 seconds and 1775 seconds for MPI).

We take these results to confirm the intuition that decision-theoretic regression can pay off even with much

smaller variable reduction factors.

The difficultywith exogenous events is something that cannot be addressed directly within the SPI model.

There are two methods we can use to deal with this however. The first is to use a form of approximation.

We discuss approximation withing the SPI framework in the followingsection; but we simply note here that

it may be a suitable way to handle the specific problem with exogenous events in certain situations. If the

events have reasonably small probability, knowledge of variables relevant to the corresponding objective

will have a small impact on value. The approximation scheme outlined later can ignore such distinctions.

This problem arises in the taskable robot domain largely because there are multiple objectives that may

be simultaneously active (or may become active in the future). One way to deal with this problem is to treat

the different objectives separately and construct optimal policies or value functions for the individual objec-

tives. This might be appropriate in the domain described above since each objective makes an independent

contribution to the reward function. A deeper discussion of such a model takes us beyond the scope of this

paper, and SPI specifically. However, we note that there have been several models of MDPs that exploit

this type of independence [9, 56, 71]. Decision-theoretic regression methods such as SPI can be used in

conjunction with such techniques to great effect since they are largely orthogonal.

6 Extensions of the Basic Algorithm

6.1 Handling Synchronic Constraints

The key operation defined in Section 4, namely the decision-theoretic regression operator Regress(Tree(V ); a),
was justified by assuming that the effects an action has on different post-action variables are independent.

Specifically, the joint distributions produced by the algorithm PRegress(Tree(V ); a) (see Figure 13) are

product distributions. These independence assumptions are valid in DBNs without synchronic arcs (arcs

between post-action variables); this fact in used in the proof of Theorem 4.1.

Unfortunately, this independence assumption no longer holds when action networks have synchronic

arcs. In a network representing an action a like that shown in Figure 30(a), the effect of a on variable Y t+1
is not independent of its effect on Xt+1 given the previous state. This causes two distinct problems for

decision-theoretic regression.

Regression involves computing Tree(QVa ) = Regress(Tree(V ); a), where Tree(QVa ) denotes the value

of executing awith k+1 stages-to-go assuming V represents k-stage-to-go value. The first problem that oc-

curs in our standard regression algorithm is a result of the fact that it pieces together CPT-trees from the DBN

for a for each of the variables occuring in Tree(V ). When there are synchronic constraints, these CPT-trees
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Figure 30: (a) An action network with synchronic arcs denoting a correlation between the effects on vari-
ables X and Y ; (b) An example value tree over the same domain

may have post-action variables occurring in them (e.g., Xt+1 occurs in the CPT for Y t+1 in Figure 30(a)),

leading to the occurrence of post-action variables in the tree Tree(QVa ). This means that Tree(QVa ) no longer

represents the value of executing awith k+1-stages-to-goas a function of the state at that time (it now refers

to properties of the state with k-stages-to-go). This can be fixed rather easily by summing out the influence

of Xt+1, replacing the dependence of Y t+1 on Xt+1 with a direct dependence on the parents of Xt+1.

The second problem that occurs when constructing Tree(QVa ) from Tree(V ) arises because the effect

of a on the variables occuring in Tree(V ) may be correlated. For example, if the variables X and Y both

occur on a single branch of Tree(V ), the probability of attaining the value in that branch (using action a
from Figure 30) cannot be specified by the independent probabilities of making X true and making Y true.

Unlike our earlier algorithm, where the lack of synchronic arcs ensured independence, we must keep track

of the joint distribution over Xt+1 and Y t+1 explicitly when constructing Tree(QVa ).
We illustrate how one deals with these issues by means of simple examples, and describe the intuitions

needed to extend our decision theoretic regression algorithm to deal with synchronic constraints. We do not

provide a formal algorithm, or proof of correctness; instead we refer to [8] for a more detailed description

of the necessary amendments.

6.1.1 Summing out Post-Action Influences

Consider action a in Figure 30(a) and the example value tree Tree(V ) in Figure 30(b). Using the algorithm

PRegress(Tree(V ); a) from Section 4 to produce Tree(QVa ), we would first regress Y through a to obtain

the tree shown in Figure 31(a). Continuation of the algorithm will not lead to a legitimate Q-tree, since it

involves a post-action variable Xt+1. Our revised algorithm will establish the dependence of Pr(Y t+1)
on the previous state s by “summing out” the influence of Xt+1 on Y t+1, letting the probability of Y t+1
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Figure 31: Summing out the influence of post-action parents: (a) The (partial) tree obtained by the original
PRegress algorithm; (b) The effect of a on Xt+1; (c) A conceptual view of how the influence of Xt+1 is
summed out; and (d) The resulting (partial) PRegress-tree.

depend directly on the parents of Xt+1 instead of on Xt+1 itself. Specifically, we computePr(Y t+1js) = Xx02val(Xt+1)Pr(Y t+1jx0; s) � Pr(x0jXt) = Xx02val(Xt+1)Pr(Y t+1jx0; Y t) � Pr(x0jXt)
This computation can exploit the tree structure as follows. Once we have regressed Y through a, we

will replace the nodeXt+1 by the tree representing CPT(X; a). This dictatesPr(Xt+1j�(Xt+1)), and this

tree is duplicated in Figure 31(b). Denote the subtree of the replaced node corresponding to each value xi ofXt+1 by STree(xi). In Figure 31(a), STree(x0) is the single leftmost leaf node, while STree(x0) is the right

subtree rooted at variable Y . At each leaf l of CPT(X; a), we have the label Pr(xi). For those values ofxi that have positive probability, we merge the trees STree(xi) and copy these at l. Specifically, the merge

operation proceeds as illustrated in Figure 31(c): we weight each subtree STree(xi) by Pr(xi) labeling the

leaf of CPT(X; a), and merge these weighted subtrees using addition as the combination operation. The

resulting tree, shown in Figure 31(d), shows the probability of Y t+1 as a function of the previous state only,

with dependence on Xt+1 removed completely. Once completed, it is easy to see that regression of W
through a can proceed unhindered as in Section 4.

We now consider a second example (see Figure 32) that illustrates that the order in which these post-

action variables are replaced in a tree can be crucial. Suppose that we have an action a similar to the one

just described, except now we have that variable Y t+1 depends on both Xt+1 and Zt+1 (i.e., a’s effect onX, Y and Z is correlated). When we regress Y through a, we will introduce a tree in which bothXt+1 andZt+1 appear, and we assume thatXt+1 andZt+1 appear together on at least one branch of CPT(Y; a) that is

present in Tree(QVa ). Now let us suppose thatZt+1 also depends onXt+1, as in Figure 32. In such a case, it

is important to substitute CPT(Z; a) forZt+1 before substituting CPT(X; a) forXt+1. If we replace Xt+1
first, we will computePr(Y t+1jZt+1;�(Xt+1))= Xx02val(Xt+1)Pr(Y t+1jx0; Zt+1) Pr(x0j�(Xt+1))

50



Y Y

Z Z

XX

Figure 32: Ordering variables for replacement

(we suppress mention of other parents of Y t+1, if any). Subsequently, we would replace occurrences ofZt+1 with CPT(Z; a) and computePr(Y t+1j�(Zt+1);�(Xt+1)) = Xz02val(Zt+1)Pr(Y t+1jz0;�(Xt+1)) Pr(z0j�(Zt+1))
This ordering has two problems. First, since Xt+1 is a parent of Zt+1, this approach would reintroduceXt+1 into the tree, requiring the wasted computation of summing out Xt+1 again. Even worse, for any

branch of Tree(Z; a) on whichXt+1 occurs, the computation above is not valid, forY t+1 is not independent

of Xt+1 (an element of �(Zt+1)) given Zt+1 and �(Xt+1) (since Xt+1 directly influences Y t+1).

Because of this, we require that when a variable Y is regressed through a, if any two of its post-action

parents lie on the same branch of CPT(Y; a), these variables in CPT(Y; a) must be replaced by their trees

in an order that respects the dependence among post-action variables in a’s network. More precisely, let a

post-action ordering OP for action a be any ordering of variables such that, if Xt+1 is a parent of Zt+1,

then Zt+1 occurs before Xt+1 in this ordering (so the ordering goes against the direction of the synchronic

arcs in the DBN for a). Post-action variables in CPT(Y; a), or any tree obtained by recursive replacement

of post-action variables, must be replaced according to some post-action ordering OP .

6.1.2 Computing Local Joint Distributions

Consider again Tree(V ) shown in Figure 30(b) and its regression through the action a shown in Figure 33(a).

Figure 33(b) shows the first step of this regression, the regression of Y through a. The second step of the

regression appends CPT(W;a) to each leaf of this partial tree; but since Y t+1 occurs in CPT(W;a), we re-

place Y t+1 with CPT(Y; a) as described in the previous subsection, resulting in a tree PRegress(Tree(V ); a)
that has the structure of the tree shown in Figure 33(c).
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stage of regression; (c) The final version of PTree(QVa ) with joint distributions over certain effects labeling
the leaves; (d) An alternative structure for PTree(QVa ).

Once we have this structure, if we were to proceed as above, we would simply sum out the influence ofY t+1 on W t+1 to determine Pr(W t+1) at each leaf. That is, we would computePr(W t+1jW t; Xt; Y t) = Xy02val(Y t+1)Pr(W t+1jy0;W t) � Pr(y0jXt; Y t)
and obtain PTree(QVa ). This, unfortunately, does not provide an accurate picture of the probabilityof attain-

ing the conditions b labeling the branches of Tree(V ). If we labeled the leaves of PTree(QVa ) in Figure 33(c)

with Pr(Y t+1) and Pr(W t+1) so computed, these probabilities, while correct, are not sufficient to deter-

mine Pr(Y t+1;W t+1): Y t+1 and W t+1 are not independent given Xt, Y t and W t. The synchronic arc

between Y t+1 and W t+1 means that the effect of a on these two variables is correlated, even given knowl-

edge of the prior state.

To ensure correct expected future values are computed when constructing FVTree(QVa ), we must instead

maintain the correlation between Y t+1 and W t+1 in the construction of PTree(QVa ). To do this, we explic-

itly label the leaves of PTree(QVa ) with the joint distributionPr(Y t+1;W t+1), as shown in Figure 33(c).

We note that this joint is obtained in a very simple fashion. At each leaf of PTree(QVa ), we have easy ac-

cess to the labels both Pr(Y t+1) and Pr(W t+1jY t+1) (given the conditions on the previous state lead-

ing to that leaf). Instead of summing out the influence of Y t+1 on W t+1, we explicitly store the termsPr(Y t+1;W t+1) we compute.35

This approach—explicitly representing the joint probability of different action effects instead of sum-

ming out the influence of synchronic parents—allows us to accurately capture the correlations among action

35We should emphasize that this local joint distribution does not need to be computed or represented explicitly. Any factored repre-
sentation, e.g., storing directly Pr(Y t+1) and Pr(W t+1jY t+1), can be used. In fact, when a number of variables are correlated, we
generally expect this to be the approach of choice. However, we will continue to speak as if the local joint were explicitly represented
for ease of exposition.
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Figure 34: Deciding which correlations to record PTree(QVa ): (a) An action network with synchronic arcs;
(b) The first stage of regression; (c) The final version of PTree(QVa ) with joint distributions labeling the
leaves.

effects that directly impact the value function. It is important to note, however, that we need only com-

pute the joint distribution between two relevant variables in those contexts in which they are actually cor-

related. For instance, suppose that we switched the locations of variables Y t+1 and W t in CPT(W;a) in

Figure 33(a). We see then that W t+1 only depends on Y t+1 when W t is false. In this case, PTree(QVa )
would have a similar structure, but we could maintain independent estimates of Pr(Y t+1) and Pr(W t+1)
at certain leaves. In particular, referring to Figure 33(d), independent distributions could be maintained at

those leaves labeled I (since Y t+1 and W t+1 are independent given wt), while joint distributions must be

maintained at those leaves labeled J (since Y t+1 andW t+1 are not independent givenwt). Since represent-

ing a joint distribution explicitly requires a number of parameters exponential in the number of variables

involved (and is strongly impacted by the domain size of those variables), maintaining the (independent)

product form of the joint wherever possible is important.

The last piece in the puzzle pertains to the decision of when to sum out a variable’s influence on one

of its synchronic descendents and when to retain the (local) joint representation of the distribution over the

two variables. Consider again the value tree from Figure 30(b) and suppose action a has the form shown in

Figure 34(a); notice that the dependence ofW t+1 onY t+1 has been reversed in this action. When regressing

Tree(V ) through a, the first stage where Y t+1 is regressed leads to the tree in Figure 34(b). When removing

the influence of variable W t+1 on Y t+1, we obtain the tree shown in Figure 34(c). Using the ideas above,

we would be tempted to sum out the influence of W t+1 on Y t+1, computingPr(Y t+1jY t;W t) = Xw02val(W t+1)Pr(Y t+1jw0; Y t) � Pr(w0jW t)
However, if we “look ahead,” we see that the second stage of the regression algorithm requires us to regressW througha as well, sinceW also occurs in Tree(V ). Specifically, we will have to regress W at both of the

53



(a) (b)

W

Z Z

Y

W

Z Z

Y

Figure 35: Detecting future need for parents

leaf nodes for which we are attempting to compute Pr(Y t+1) as function of the parents of W t+1. Clearly,

since W t+1 and Y t+1 are correlated, we should leave Pr(Y t+1) uncomputed (explicitly), leaving the joint

representation of Pr(Y t+1;W t+1) as shown in Figure 34(c). When subsequently regressing W t+1 at each

leaf where Pr(Y t+1) > 0, our work is already done at these points.

This leads to an obvious question: when removing a post-action variable Zt+1 from the tree produced

when regressing another variable Y t+1 which depends on it, under what circumstances should we sum out

the influence ofZt+1 on Y t+1, and under what circumstances should we retain the explicit joint representa-

tion ofPr(Zt+1; Y t+1)? Intuitively, we want to retain the “expansion” ofY t+1 in terms ofZt+1 (i.e., retain

the joint) if we will need to worry about the correlation between Y t+1 and Zt+1 later on. As we saw above,

this notion of need is easily noticed when one of the variables in directly involved in the value tree, and

will be regressed explicitly afterward (under the conditions that label the current branch of course). How-

ever, variables that may be needed subsequently are not restricted to those that have to be regressed directly

(i.e., they needn’t be part of Tree(V )); instead, variables that influence those in Tree(V ) can sometimes be

retained in expanded form.

Consider the action in Figure 35(a) (we again use the same value function). When we regress Y througha, we obtain a tree containingnodeZt+1, which subsequentlygets replaced by CPT(Z; a). The termPr(Y t+1)
should be computed explicitly by summing the terms Pr(Y t+1jz0) � Pr(z0jZt) over values z0. However,

looking at Tree(V ), we see that W will be regressed wherever Pr(Y t+1) > 0, and that W t+1 also depends

on Zt+1. This means that (ignoring any specific structure in the CPT-trees) W t+1 and Y t+1 are correlated

given the previous state s. This dependence is mediated byZt+1, so we will need to explicitly use the joint

probabilityPr(Y t+1; Zt+1) to determine the joint probabilityPr(Y t+1;W t+1). In such a case, we say thatZt+1 is needed and we do not sum out its influence onY t+1. In an example like this, however, once we have

determined Pr(Y t+1; Zt+1;W t+1) we can decide to sum out Zt+1 to obtain the reduced joint distributionPr(Y t+1;W t+1) if Zt+1 will not be needed further.

Finally, suppose that W t+1 depends indirectly on Zt+1, but that this dependence is mediated by Y t+1,
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as in Figure 35(b). In this case, we can sum out Zt+1 and claim that Zt+1 is not needed: Zt+1 can only

influence W t+1 through its effect on Y t+1. This effect is adequately summarized by Pr(Y t+1jZt); and

the terms Pr(Y t+1; Zt+1jZt) are not needed to compute Pr(Y t+1;W t+1jZt) since W t+1 and Zt+1 are

independent given Y t+1.

These considerations are formalized in detail in [8]. Specifically, there we provide the formal definitions

and algorithms needed to operationalize the intuitions described in this section.

The use of actions with correlated effects leads to two difficulties. First, the overhead of tree construction

is increased. Essentially, certain minimal probabilistic inference must be performed in order to accurately

predict the effects of an action and to compute expected future value of performing an action with respect to

a given value function. The second difficulty lies in maintaining the PTrees themselves. Certain leaves of

these trees must be labeled by explicit (local) joint distributions. However, two considerations suggest that

this may not be problematic in practice. The first is the possibility that these joint distributions can them-

selves be factored in certain ways and computed as needed. The second lies in the fact that while many

actions will exhibit correlations in their effects, these correlations tend to involve a small number of vari-

ables. Our algorithm requires only that a joint be maintained over variables that are actually correlated. It

is clear, however, that practical experience is needed with this algorithm before a realistic assessment can

be made.

6.2 Approximation within SVI

One advantage of using decision trees to structure value functions is the ease with which one can spec-

ify approximation schemes. The tree Tree(V ) representing a value function V reflects all conditions rele-

vant to differences in value at different states. However, some of these distinctions may have a small im-

pact on value. That is, certain leaves of the tree may correspond to (clusters of) states whose values differ

only marginally. For example, referring to the optimal value tree produced by SPI in our running example

(Figure 22), we see that the states abstracted by the three branches of the tree hHCO;HCR; O;W;R;U i,hHCO;HCR; O;W;R;Ui, and hHCO;HCR; O;W;Ri all have values that differ by at most 0:09 (as com-

pared to the total range of values of 5:19 to 10:0). If we include the fourth branch hHCO;HCR; O;W i, the

values differ by at most 1:0. Tree-structured value functions make it easy to detect such regions of similar

value.

If we are willing to live with a certain amount of approximation error, a value tree can be made smaller

by pruning the tree in order to coalesce regions of similar value. More precisely, by replacing a subtree

whose leaves are labeled with value all within some small factor � of one another with a single leaf, we

obtain an approximation of the original value tree, but one which is (perhaps considerably) smaller.

There are several ways to label the leaves of a pruned value tree. We could label each leaf with the

(possibly weighted) average of the values within the subtree it replaced, or possibly with the midpoint of

the range of values it replaced. In our work, we have opted to label these leaves with the range of values
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9.00 10.00
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(a)

HCO

O O

HCR
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[9.0, 10.0]

[7.45, 8.45] [6.64, 7.64] [5.19, 6.19] [5.83, 6.83]

Figure 36: Two ranged value trees: (a) A more cautious pruning; and (b) a more aggressive pruning.

itself. Specifically, if a subtree is pruned, the replacing leaf is labeled with the maximum and minimum

values labeling the leaves of the pruned subtree. Two such ranged value trees, or R-trees, are illustrated in

Figure 36. The first tree corresponds to pruning the tree of Figure 22 by removing all distinctions referring

to variables R and U (i.e., removing subtrees rooted at R). The maximum range of values at any leaf is0:83, thus little error can be introduced by acting “optimally” with respect to the pruned value function.

The second tree is produced by the more aggressive pruning of all subtrees rooted at variable W , giving a

smaller tree with slightly larger ranges at the leaves.

There is no immediate computational utility in constructing a value tree and then pruning it—all of the

computational effort has already been expended to construct a larger tree. However, if the pruned tree is

one is a sequence of value trees constructed by, say, structured successive approximation or structured value

iteration (SVI), this pruning can be computationally beneficial. For instance, suppose we use SVI to solve a

structured MDP and Tree(V k) has been generated. By pruning Tree(V k) to obtain an approximate version

of V k, say Tree(eV k), the pruned tree will be smaller, containing fewer interior nodes. Subsequent decision-

theoretic regression used to generate Tree(eV k+1)—the approximate version of V k+1 generated from the

approximation of V k—will proceed more quickly due to the fact that the tree being regressed in smaller.

In [13] we develop an approximate variant of SVI in which each value tree in the sequence produced

by SVI is pruned before the next tree in the sequence in constructed. The result is an algorithm that solves

structured MDPs approximately but generally does so considerably more efficiently than exact SVI or SPI.

The value functions that are regressed are, in fact, ranged trees, not just simple value trees. The basic op-

erations defined in Section 4 are extended to deal with value ranges: backing up maximum and minimum

values through the basic Regress operator and merging R-trees to keep track of upper and lower bounds.

The result is an algorithm that produces a sequence of R-trees with a guarantee that the true value at any

state lies within the range labeling the appropriate leaf of the R-tree.

Apart from extending the algorithms to deal with value ranges, a number of other issues must be dealt

with to satisfactorily implement such an approximate version of SVI [13].

1. We must decide how best to prune a ranged tree. We may opt for the most accurate pruned tree of some

fixed maximum size or the smallest pruned tree of a fixed minimum accuracy. In [13] we present an
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algorithm for finding the optimal pruning sequence for a given R-tree; that is, an algorithm in which

each pruning step introduces the least error. This allows one to adopt whatever pruning criterion is

most suitable. The problem is strongly related to work on pruning decision trees in classification, and

our algorithm draws ideas from the work of Bohanec and Bratko [7].36 We are able to provide error

bounds for the algorithm as well in a way that allows on-line, anytime tradeoffs between tree size and

solution quality [13].37

2. The ability to prune is strongly influenced by the variable ordering in the tree. Again this issue arises

in research on classification [64, 82]. Finding the smallest decision tree representing a given function

is NP-hard [46], but in [13] we discuss certain feasible heuristics suitable for reordering an R-tree to

make it smaller and/or more amenable to pruning.

3. Termination of SVI requires care when approximations are introduced. While value iteration is as-

sured to terminate due to the contraction property of the Bellman backup operator, this property fails

to hold when approximations are introduced (in fact, we can easily construct examples where pruning

with midpoint replacement causes nontermination). Fortunately, since the ranged value trees we con-

struct are guaranteed to bracket the true value function, we can adopt rather cautious stopping criteria

based on the closeness of the ranges.

We refer to [13] for further details on approximation within these structured decision-theoretic regres-

sion operations. There we discuss these issues in more detail, present the various algorithms, describe results

on error bounds, and provide empirical evidence suggesting that approximate SVI can provide significant

computational savings over SVI, SPI and standard dynamic programming techniques with minimal intro-

duction of error in a variety of problems. For instance, on the worst-case MDPs described in Section 5.1,

approximate SVI provides significant savings over exact SVI with very little introduction of error, at many

levels of pruning. As one example, on the 10-variable worst-case domain approximate SVI at a cautious

level of pruning solves the problem in less than 1% of the time required by SVI (roughly the same amount

of time required by MPI), but introduces an average error in the value function of under 0.47%. At a more

aggressive pruning level it solves the problem in less than 0.01% of the time required by SVI (roughly one

one-hundredth the time required by MPI), yet introduces an average error of 0.77%. Similar results obtain

on other problems, such as the taskable robot problems (with and without exogenous events).

7 Concluding Remarks

We have proposed the notion of decision-theoretic regression as a generalization of classical regression

planning that deals with stochastic domains with conflicting objectives. Viewed as a form of state-space

36This work is concerned with pruning for the sake of simplifying the resulting decision tree with little loss in accuracy, in contrast
to pruning for the purpose of preventing overfitting [64].

37The approximation is thus careful enough to avoid the problems of approximation described in [18].
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abstraction, decision-theoretic regression groups together states that have identical value or policy choice

at various points in the dynamic programming computations required to solve an MDP. We have designed a

specific decision-theoretic regression operator that works with DBNs and decision trees representing transi-

tion and reward functions and that uses decision trees to represent value functions and policies. This opera-

tion exploits uniformity in the value function and policy, specifically, the fact that certain variables—under

certain conditions—are not relevant to the optimal choice of action or the prediction of value.

Our SPI algorithm was shown to offer some significant advantages in certain problems, both in terms

of time and space requirements, compared to unstructured dynamic programming. We also described some

problems where the overhead of SPI fails to pay off. Generally, speaking, the larger the problem the more

likely that overhead of tree construction associated with SPI will be more than compensated by the reduc-

tion in the number of expected value and maximization computations induced by abstraction. We discussed

certain problem properties that are likely to benefit SPI, with our best- and worst-case examples giving us

some sense of the boundaries of performance. Even in the worst case, SPI’s overhead is not overwhelm-

ing. Our tests suggest that the overhead will be compensated by (the equivalent of) the removal of only

a few variables. Finally, SPI lends itself readily to approximation, which offers additional computational

benefits—often with only a small introduction of error—providing the ability to construct error bounds that

can be used to make anytime computational decisions.

We note that decision-theoretic regression is a general concept whose applicability is not restricted to

decision-tree representations of transition functions, value functions and the like. The same principles apply

to any structured representation as long as one can develop a suitable regression operator for that represen-

tation. To wit, the SPUDD system [43] applies the same decision-theoretic regression techniques to the

solution of MDPs by value iteration, but does so using algebraic decision diagrams [2] to represent inputs

and output. Because these representations are often more compact than decision trees, the performance of

SPUDD is considerably better than that of SPI; but it adopts the same general conceptualization of the prob-

lem described here. We note that much SPUDD’s improved performance is due to the use of optimized code.

On the worst-case examples, SPUDD outperforms SPI from two- to twelve-fold (with larger performance

differences on larger problems). This occurs despite the fact the the decision diagram representation of the

value functions in the worst-case problem set is exactly a full decision tree. This provides further evidence

of the utility of decision-theoretic regression.

There are many interesting directions in which the work described here can be extended. One is the

integration of decision-theoretic regression with other concepts that can be used to solve MDPs effectively.

This includes the use of reachability analysis, other abstraction methods, and other structured value function

representations (e.g., those that support some type of functional decomposition of the value function such as

neural networks [6, 80] or additive structure [9, 31, 37, 47, 56, 72, 71]). This should prove possible because

the structure assumed by SPI can be exploited in a way that is orthogonal to the types of structure assumed

by many other solution methods. One example of this is the integration of abstraction methods like SPI with

reachability analysis [10].
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SPI and other decision-theoretic regression methods need to be tested empirically on more realistic do-

mains. Further testing will give an idea as to the types of problem structure that exist in naturally-occurring

MDPs. This will also suggest the types of representations (and associated regression algorithms) that can

best exploit this strcuture.

Finally, we hope to extend our decision-theoretic regression algorithms to more sophisticated forms of

MDPs that lend themselves to more realistic modeling of domains. This includes consideration of first-

order representations of stochastic decision problems that allow objects and relations over them to be spec-

ified. Such an extension is crucial in the modeling of real-world planning problems. Also of interest is the

extension of these methods to semi-Markov and hybrid (continuous-discrete) models. The application of

decision-theoretic regression to partially observable settings is important for realistic modeling as well. In-

vestigations into the application of SPI to POMDPs is reported in [16], where vectors corresponding to the

usual piecewise linear representation of value functions for POMDPs are treated as decision trees, produced

by decision-theoretic regression. Further investigations into compatible structured belief state representa-

tions is needed to make the approach more practical.
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