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Abstract

Recent algorithms provide powerful solutions to
the problem of determining cost-minimizing (or
revenue-maximizing) allocations of items in com-
binatorial auctions. However, in many settings, cri-
teria other than cost (e.g., the number of winners,
the delivery date of items, etc.) are also relevant in
judging the quality of an allocation. Furthermore,
the bid taker is usually uncertain about her pref-
erences regarding tradeoffs between cost and non-
price features. We describe new methods that allow
the bid taker to determine (approximately) optimal
allocations despite this. These methods rely on the
notion ofminimax regretto guide the elicitation of
preferences from the bid taker and to measure the
quality of an allocation in the presence of utility
function uncertainty. Computational experiments
demonstrate the practicality of minimax computa-
tion and the efficacy of our elicitation techniques.

1 Introduction
Combinatorial auctions (CAs)generalize traditional market
mechanisms to allow the direct specification of bids overbun-
dlesof items[13; 14] together with various types of side con-
straints[17]. This form of expressive biddingis extremely
useful when a bidder’s valuation for collections of items—or
bidder’s costs in reverse auctions—exhibit complex structure.
The problem ofwinner determination (WD), namely, deter-
mining a (cost or revenue) optimal allocation of items given a
collection of expressive bids, is generally NP-complete[14].
However, algorithms have been designed for WD that work
very well in practice[9; 16; 18]. Indeed, recent advances
have impelled the application of CAs to large-scale, real-
world markets, such as procurement.

Most of the recent literature on CAs has focused on al-
gorithms that find optimal allocations w.r.t. cost or revenue.
However, in many settings, features other than cost also play a
role in assessing the quality of an allocation. For example, in
a procurement auction (or reverse auction), the bid taker may
be concerned with the number of suppliers awarded business,
the percentage of business awarded to a specific supplier, the
average delivery-on-time rating of awarded business, and any
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of a host of other factors that can be traded off against cost.
Most algorithms can be adapted to deal with such featuresif,
say, tradeoff weights are made explicit and incorporated into
the objective function. However, most bid takers are unable
or unwilling to articulate such precise tradeoffs (for reasons
we elaborate below).

One way to deal with this issue is to allow users to gener-
ate a collection of allocations by imposing various constraints
on these feature values (e.g., limiting the number of suppliers
to five) and examining the implications on the optimal allo-
cation (e.g., how cost changes) by rerunning WD. When this
process ends, the user chooses one of the generated alloca-
tions as making the right tradeoffs between cost and the rele-
vant non-price attributes. Unfortunately, this manual process
of scenario navigationdoes nothing to ensure sufficient or
efficient exploration of allocation or tradeoff space.1

In this paper, we explicitly view the process of choosing
an optimal allocation as requiring a form ofpreference elici-
tation with the bid taker (i.e., the party determining the final
allocation).2 We assume that the way in which non-price fea-
tures influence the choice of allocation can be modeled using
a utility function, albeit one that is imprecisely specified. Us-
ing this observation, we develop a collection of techniques
that can support, or even automate, the preference elicitation
required to determine an (approximately) optimal allocation.
As such, it can obviate the need for manual creation and ex-
ploration of different scenarios. Underlying these methods is
the notion ofminimax regret; this allows us to examine the
worst-case error associated with optimizing an allocation in
the presence of utility function uncertainty, thus givingrobust
allocations. It also provides valuable information to guide
elicitation: it can suggest appropriate refinements of utility
information, and when to terminate preference refinement.

We begin in Section 2 with a discussion of CAs and linear
utility functions over non-price features. Section 3 addresses
the issue of utility functon uncertainty and defines minimax

1In procurement settings, the bid taker generally maintains such
flexibility in deciding the allocation. This means that there is no pre-
determined allocation rule (i.e., mapping from bids to allocations),
unlike canonical auctions. Therefore, this is sometimes referred to
asprocurement optimizationrather than an auction. These observa-
tions of typical use of WD software are based on our experiences
with large-scale, real-world procurement problems.

2We distinguish the preference elicitation we study from forms
of elicitation for CAs in which one attempts to minimize the amount
of bid information needed from thebidders(e.g.,[6; 7]).



regret as a suitable criterion for robust decision making. In
Section 4 we define several techniques for computing mini-
max optimal allocations in CAs under different forms of util-
ity function uncertainty. Section 5 describes two methods for
preference elicitation based on minimax regret, and empiri-
cally evaluates these strategies on random problems with re-
alistic structure and size, demonstrating the feasibility of our
methods. We conclude in Section 6 with a discussion of fu-
ture research.

2 CAs and Non-price-based Utility
We begin with a discussion of relevant concepts relating to
CAs and utility for non-price features.

2.1 Combinatorial Auctions
CAs have found recent popularity as market mechanisms due
to their ability to allow expressive bids reflecting the com-
plex utility structure of market participants. As a result, eco-
nomically efficient allocations of goods and services can be
found using combinatorial bids in cases where noncombina-
torial bids would not suffice. Recent research has focused
on the problem ofwinner determinationin various classes
of CAs: finding an optimal allocation w.r.t. cost or revenue.
While a computationally difficult problem[14], recent ad-
vances in optimization methods for CAs have made them a
practical market technology[9; 16; 18].

The WD problem for a generic CA can be formulated as an
integer program (IP). In this paper, we focus onreverse CAs
where the goal is to obtain a collection of items at minimal
cost, since procurement is a main motivation for our work.
However, this is for concreteness only—all of our techniques
applymutatis mutandisto most variants of CAs (see[19] for
a discussion of a number of such generalizations).

In a reverse CA, abuyer(bid taker) wishes to obtain a spe-
cific set of itemsG. Sellerssubmit bids of the form〈bi, pi〉,
wherebi ⊆ G is a subset of items, andpi is the price at which
it is offered. Given a set of bidsB = {〈bi, pi〉 : i ≤ m}, we
let anallocationbe any subset ofB. A feasible allocationis
an allocation whose bids cover all items inG. The WD prob-
lem asks for the feasible allocation that suppliesG as cheaply
as possible, and can be formulated as a (linear) IP. Lettingqi

be a boolean variable denoting that bid〈bi, pi〉 was accepted,
we wish to solve:

min piqi s.t.
∑

i:g∈bi

qi ≥ 1, ∀g ∈ G

Note that we assume free disposal (i.e., obtaining multiple
copies of anyg incurs no penalty). This problem can be gen-
eralized to include multiple units of each item, no free dis-
posal, various side constraints on the part of the sellers or the
buyer, etc. Notice, however, that existing methods determine
the optimal solution by minimizing only the (possibly con-
strained)costof obtainingG.

2.2 Linear Utility for Non-price Features
While cost minimization is a primary objective in procure-
ment, other features of the ultimate allocation will often play
a role in assessing the quality of that allocation. For exam-
ple, the buyer may prefer to deal with fewer suppliers, all else

being equal, in order to minimize overhead. While a hard
constraint might be imposed on the number of suppliers (e.g.,
less than five), this approach is undesirable, since rarely is a
buyer unwilling to consider a larger number of suppliers if
that reduces cost significantly. Instead there is a tradeoff—
one is willing to pay more for a collection of items if the
number of suppliers is less. There are a number of properties
that are often used in procurement—to use just one domain
of application—to assess the quality of allocations. Among
these are: number of winners; (possibly aggregate) quality of
certain items; percentage of volume given to a specific sup-
plier; geographical diversity of winners; and many others.

Tradeoffs between price and non-price features can be cap-
tured by the buyer’sutility function. We letX denote the set
of feasible allocations given bidsB. Let F = {f1, . . . , fk}
be a set offeaturesover which the buyer has preferences. We
assume that the buyer’s preferences for allocationsx ∈ X can
be expressed by aquasi-linear utility functionof the form

u(x) =
k∑

i=1

wifi(x) − c(x), (1)

wherec(x) is the cost of the allocation. Thus the utility func-
tion is completely characterized by a set of tradeoff weights
wi that express how much of each feature the buyer is willing
to sacrifice for a given amount of money. We assume local
value functionsvi that convert any non-numericfi(x) into a
numeric valuevi(fi(x)); but we suppress mention ofvi for
notational clarity.

Let w = 〈w1, . . . , wk〉 denote aweight vector. We assume
all weights are non-negative (i.e.,w ≥ 0), which implies that
higher levels of each feature are preferred to lower levels.3

We will use the notationu(x;w) when we wish to emphasize
the fact that utility is parameterized by a weight vector.

The independence and linearity of the local utility func-
tions inherent in our formulation are, admittedly, fairly strong
assumptions, but nonetheless often (roughly) hold in practice.
Our techniques can be generalized to nonlinear local utility
functions andconditionally independentfeatures through var-
ious encoding tricks. We also assume that each featurefi(x)
can be defined linearly in terms of attributes of allocationx.
Again, if this is not so, certain approximations are possible.
We briefly discuss these generalizations in Section 4.4.

3 Utility Function Uncertainty
In this section, we develop techniques for computingrobust
allocations when the parameters of the utility function are not
precisely specified.

Given a known weight vectorw, our objective would be
clear—find the feasible allocationx∗

w with maximum utility:
maxx u(x). A number of WD algorithms can be adapted
to this linear optimization problem. Unfortunately, buy-
ers are usually uncertain about their tradeoff weights. This
should not be surprising; the decision analysis literature is
rife with evidence that decision makers have trouble con-
structing precise tradeoff weights[11]. And numerous meth-
ods for decision making and elicitation have been developed

3For instance, if fewer winners are preferred to more, the relevant
feature isnegativenumber of winners.



that account for this fact, both within decision analysis[23;
15] and AI [10; 5; 2; 4]. Furthermore, in procurement, the
buyer is often faced with the difficult task of aggregating the
preferences of multiple stakeholders via internal negotiation
within the buying organization (the CFO preferring low cost,
marketing people preferring high average delivery-on-time
rating, plant managers preferring small numbers of suppliers,
etc.). Thus, buyers are often unwilling to commit to specific
tradeoff weights, often adopting the approach of “preference
aggregation through least commitment.”

In practice, we have found that buyers are often willing to
provide loose bounds on these tradeoff weights, but unwilling
to make things more precise without aid. As a result, buyers
tend to ignore tradeoff weights altogether. Instead, they fre-
quently use WD software to explore differentscenariosby
imposing various constraints on feature values and generat-
ing the corresponding optimal allocations. With a number of
such allocations in hand, manual inspection is used to choose
the most preferred allocation from this set. Unfortunately,
while users find such manualscenario navigationappealing,
it generally admits neithersufficientnor efficientexploration
of allocation space.

In the next section, we develop techniques that will sup-
port, or even automate, this process. However, we first need
methods for making allocational decisions in the presence of
utility function uncertainty. Assume that through some inter-
action with the buyer, we have a set of linear constraints on
the buyer’s weight vector, withW denoting the set of feasible
vectors.4 Without full knowledge ofw, we cannot maximize
utility (Eq. 1): whateverx we chose, there may be some feasi-
ble utility function for whichx is far from optimal. Our goal
instead is to find arobust allocationthat, in the worst case, is
as close to optimal as possible. In other words, even if an ad-
versary were allowed to choose the utility function, we want
x to be as close to optimal as possible.

Defn Theregretof allocationx w.r.t. utility functionw is

R(x,w) = max
x′∈X

u(x′;w) − u(x;w) (2)

Themaximum regretof x w.r.t. feasible utility setW is

MR(x, W ) = max
w∈W

R(x,w) (3)

The pairwise max regretof x w.r.t. x′ (with W under-
stood) is

MR(x, x′) = max
w∈W

u(x′;w) − u(x;w) (4)

The minimax optimal (or robust) allocationw.r.t. W
(i.e., the allocation withminimax regret) is

x∗
W = arg min

x∈X
max
x′∈X

MR(x, x′) (5)

Minimax regret is one of the more appealing criteria for
decision making understrict uncertainty(i.e., where dis-
tributional information is lacking)[20; 8]. It has found

4The elicitation methods below will make it clear exactly how
these constraints arise. Linearity is important computationally, but
is not critical to the definition of max regret that follows.

(in modified form) application to analysis of online algo-
rithms [1]. Only recently has it been used in the explicit
modeling of utility function uncertainty and elicitation[3;
15]. The minimax optimal allocation is attractive due to its
robustnessagainst utility uncertainty. The key difficulty in
the application of minimax regret in practical settings is the
computation of minimax optimal decisions and its use in elic-
itation, though recently computationally effective techniques
have begun to emerge[22; 4].

4 Computation of Minimax Regret
Most WD methods cannot be applied directly to computa-
tion of the minimax optimal allocation. Specifically, Eq. 5
requires solution of a minimax program (with a min over two
maxes), preventing the application of very effective linear op-
timization techniques. In this section we describe an algo-
rithm to compute the minimax optimal allocation in a way
that uses standard integer programming or WD methods iter-
atively. We distinguish two settings. In the first,W is defined
by upper and lower bounds for each weightwi, these being
quite natural to specify directly. In the second, arbitrary linear
constraints on thewi defineW ; these naturally arise when a
buyer compares or ranks two or more alternatives.

4.1 Upper and Lower Weight Bounds

Computing Max Regret We begin with computation of
max regret (Eq. 3). SupposeW is a hyperrectangle in weight
space defined by an upper boundwi↑ and lower boundwi↓ on
each parameterwi. The max regret of a specific allocationx
w.r.t. W is given by the obvious optimization program:

MR(x) = max
w∈W

max
x′∈X

kX
i=1

wi[fi(x
′) − fi(x)] − c(x′) + c(x) (6)

This poses the difficulty that the objective is quadratic, since
both thewi and the adversarial allocationx′ are variables.
Fortunately, sinceW is specified by upper and lower weight
bounds, we can rewrite this as follows:

max
x′∈X

c(x)−c(x′)+
kX

i=1


wi↑(fi(x

′) − fi(x)) if fi(x
′) > fi(x))

wi↓(fi(x
′) − fi(x)) if fi(x

′) ≤ fi(x))

ff

With some clever encoding, we can make this objective linear,
and rewrite this optimization as an IP. Specifically, we can
linearly define variableA+

i to indicate thatfi(x′) > fi(x)
(andA−

i the opposite), as well as variableF+
i (resp.,F−

i )
that takes valuefi(x′) if A+

i is true and 0 otherwise (resp., if
A−

i is true). We then solve the following objective:

max
kX

i=1

{wi↑[F+
i −fi(x)A+

i ]+wi↓[F−
i −fi(x)A−

i ]}+c(X)−c(x)

Thus with a linear IP we can compute the max regret of any
given allocationx.

Computing Minimax Regret Computing the allocation
with minimax regret requires a minimax program:

arg min
x∈X

max
w∈W

max
x′∈X

kX
i=1

wi[fi(x
′) − fi(x)] + c(x′) − c(x)



We can convert this to a standard minimization using the fol-
lowing conceptual trick:

min
x∈X

δ

s.t. δ ≥
kX

i=1

wi[fi(x
′) − fi(x)] + c(x′) − c(x), ∀x′, w (7)

The difficulty lies in the fact that these constraints over all
x′ ∈ X andw ∈ W cannot be enumerated explicitly.

Fortunately, for any specificx′, we need not enumerate the
(continuous) set of possible weight vectorsW ; rather we can
identify the unique weight vectorw (hence the only active
constraint forx′) that maximizes the regret ofx w.r.t. x′ by
setting eachwi to either its upper or lower bound (depending
on the relative values of this feature inx andx′). This can
be accomplished using a strategy much like the one outlined
above, using a specific indicator variable for eachx′. This
still leaves the problem of enumerating all allocationsx′ to
form the constraint set above. To circumvent this, we use an
iterative constraint generation procedure, whereby we solve
relaxed versions of the problem, gradually adding constraints
for variousx′ until we are assured that all active constraints
in the full program are present.5

Note that in defining this program, we use tricks similar
to those used to compute max regret. However, now allo-
cation variables refer to “our” allocation (we are minimizing
over these variables), not the adversary’s allocation. The ad-
versary’s allocations will be fixed within specific constraints.
The formulation is similar to the max regret computation ex-
cept that we require variablesA+

i [x′], A−
i [x′], F+

i [x′], and
F−

i [x′] for each adversarialx′ present in the constraint set
(similar in meaning to those above).

The constraint generation procedure works as follows:

1. LetGen= {x′} for some arbitrary feasiblex′.
2. Solve the following IP:

min δ

s.t.δ ≥
kX

i=1

{wi↑(fi(x
′)A+

i [x′]−F+
i [x′])+wi↓(fi(x

′)A−
i [x′]

− F−
i [x′])} + c(x′) − c(X) ∀x′ ∈ Gen

and definitional constraints∀x′ ∈ Gen

Let x∗ be the IP solution with objective valueδ∗.

3. Compute the minimax regret of allocationx∗ using the
IP above, producing a solution with regret levelr∗ and
adversarial allocationx′′. If r∗ > δ∗, then addx′′ to Gen
and repeat from Step 2; otherwise (ifr∗ = δ∗), terminate
with minimax optimal solutionx∗ (with regret levelδ∗).

The correctness of this procedure is easy to verify. The
constraints ensure thatδ is greater or equal to the pairwise
regret levelMR(x∗, x′) of the solutionx∗ and everyx′ ∈
Gen, and the minimization ensures thatx∗ has the minimum
such regret. Given the solutionx∗ to this relaxed IP, we can
easily determine the adversarial allocationx′′ that maximizes
regret w.r.t.x∗. If the max regret ofx∗ is no greater than the

5This related to Bender’s reformulation for mixed IPs[12].

δ∗, we are assured that all unexpressed constraints (for those
x′ outsideGen) are satisfied. If the computed max regret level
is greater thanδ∗, then the corresponding constraint is added,
thus making “maximal” progress towards a true solution.

4.2 Arbitrary Weight Constraints
WhenW is given by a set of arbitrary linear constraints, we
can’t exploit weight bounds in the manner above. However,
we can use an alternating optimization technique to compute
max regret whenW is so defined using only a sequence of IPs
and LPs. Note that if we fix a weight vectorw, the quadratic
program in Eq. 6 becomes a linear IP; and if we fix the al-
locationx′, it becomes an LP. So to solve Eq. 6 we start by
fixing w to some random feasible weight vectorw1. We then
iterate over the following steps:

(a) Given a fixedwi, solve the IP above, obtaining solution
x′

i, with max regretm′
i.

(b) Given the fixedx′
i, solve the LP above, obtaining solution

wi+1 with max regretmi+1.

This alternation stops whenever the max regret computed at
two successive levels is identical. Since the computation of a
neww is an LP, the algorithm will terminate with a solution
w whose value is equal to that of somew′ lies at a vertex
of the polytopeW . This ensures convergence though perhaps
only at a local maximum. We can integrate this scheme with a
constraint generation procedure to compute an approximately
minimax optimal allocation with some minor modifications in
a straightforward way.

When the dimensionality ofW is small, we can improve
the procedure. First, we run a standard vertex enumeration
algorithm once to compute the vertices ofW—this will be
a small set if only a few features are relevant to utility. At
each iteration of the procedure, rather than repeatedly solv-
ing IPs and LPs to generate a new constraint, we can find the
adversarial allocationx′ that maximizes the regret ofx∗ as
follows: we compute thexw that maximizes the regret ofx∗
w.r.t. each weight vectorw in the vertex set; the maximum
of these gives thex′ andw at which the regret ofx∗ is maxi-
mized. Thisx′ (with suitable setting of weights) is then added
to the constraint set.6 This removes the LP from each iteration
and ensures convergence to a global maximum. Indeed, one
can avoid constraint generation altogether and simply impose
the constraints for eachw, xw pair and solve a single IP.

4.3 Empirical Evaluation
We tested the effectiveness of our procedures on some large
scale, real-world reverse CAs. The goal in this section is to
demonstrate the computational feasibility of our constraint
generation procedure for practical problems. Here we fo-
cus on the computation of minimax regret for problems with
weight bounds. (We discuss arbitrary linear constraints in
Section 5.2.)

For these experiments, we generated random reverse CAs
which have a similar structure to a class of transportation pro-
curement problems encountered frequently in the real world.
In these instances, the items to be procured are divided into

6This is much like Bender’s decomposition[12].
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Figure 1: Number of constraints generated.

five regions; the relevant features are the number of winning
suppliers in each region, and the number of winning suppliers
overall (yielding six features in total). Each instance has ten
suppliers, and ten times as many bids as there are items. The
bids are on individual items only.7

All experiments were conducted for the case wherew is de-
fined by upper and lower bounds for each weightwi. The ini-
tial bounds were chosen to reflect plausible tradeoff weights
for each feature, and are reasonably (but plausibly) loose.

To measure the computational feasibility of the minimax
optimization, we tracked how many rounds of constraint
generation were required to determine the minimax optimal
allocation—since each iteration requires the solution of two
WD problems, this gives a sense of how the problem will
scale with one’s favorite WD algorithm. We first test how
the number of generated constraints scales with problem size.
Testing problems sizes of 10, 20, 30, 40, and 50 items (at
each size, we generated 10 instances), we found the aver-
age number of constraints generated to be 3.3., 3.8, 3.6, 3.8,
and 3.1, respectively. Figure 1 shows the distribution of con-
straint generation rounds for a larger set of instances (100
instances with 500 bids and 50 items). The vast majority of
instances required only 3 or 4 rounds of constraint genera-
tion.8 Interestingly, the average number generated constraints
stays nearly constant as problem size increases. This is very
promising for the scalability of this technique to even larger
instances (at least from problems in this class), since it seems
to depend only on how well the underlying WD method itself
scales.

Should the number of required constraints become infea-
sible, approximate solutions can be obtained in an anytime
fashion by early termination of constraint generation (we do
not test this behavior here since the number of required con-
straints is so small). Faster convergence can also be achieved
by “seeding” the constraint generation procedure with the
constraints used in related versions of the problem; for in-
stance, in the elicitation process, once new utility information
is received, the new minimax problem can be seeded with the
constraints from the prior, closely related problem. Finally,
the solution time per generated constraint can be shortened
by using approximate WD.

7Here the combinatorial complexity of WD stems solely from
consideration of the number of winners.

8Average WD solution time for these instances was 19.37s.

4.4 Generalizations
In this section, we briefly hint at how the simple linear utility
model can be generalized and minimax regret computation
adjusted to reflect these changes.

First, we note that independence of features is not critical.
If the utilities of some features are conditionally dependent
on those of others, but this dependence is sparse (e.g., as cap-
tured in a graphical model[3]), the number of utility parame-
ters remains small, and typically the utility of an allocation is
a linear function of these parameters.

Uncertainty in a nonlinear local utility function for a spe-
cific featurefi cannot be represented using bounds (or con-
straints) on a single weightwi. However, even if the utility
function has an unknown, or nonparametric form, we can still
compute minimax regret if we have upper and lower bounds
on the utility of sampled pointsfrom the domain offi. We
defer details to a longer version of this paper. From the point
of view of elicitation, we can address the question of which
sampled points offer the greatest (potential) improvement in
decision quality. Finally, dealing with certain types of fea-
tures that cannot be defined by linear constraints is also pos-
sible. For certain features, we can impose bounds on their
values with linear constraints. This permits the discretization
of feature values, allowing one to define utility as a function
of the specific discrete level taken by that feature.

5 Preference Elicitation
A critical component of WD when non-price features play a
role is preference elicitationfrom the bid taker. While the
minimax regret methods described above allow robust deci-
sions to be made in the face of utility function uncertainty,
these must be coupled with tools that support a buyer in re-
fining her preferences. Uncertainty must be reduced if regret
is to reach an acceptable level. Regret methods have a key
advantage in this respect—when regret reaches a satisfactory
level, further refinement of the utility function can beproven
to be unnecessary. Thus, in a practical sense, minimax regret
can help focus elicitation on therelevantparts of the buyer’s
utility function.9

In this section, we describe two classes of techniques in
which minimax regret is used to drive the process of elici-
tation. While a number of methods can be used for elicita-
tion, we focus here on two especially simple techniques, one
involving direct manipulation of weight bounds, the second
involving comparisons of automatically chosen outcomes.10

We provide detailed empirical results are presented for the
first method, and preliminary results for the second.

5.1 Direct Weight-bound Manipulation
In our first method the buyer directly manipulates the upper
and lower bounds (via a graphical interface) on the weights
wi, using regret-based feedback. We assume the buyer
has provided some initial (possibly crude) bounds on each

9Also, different stakeholders in the buying organization can de-
cide to end their internal negotiation when the benefit from further
negotiation (i.e., max regret) becomes provably small.

10We are also exploring various hybrids of these methods, includ-
ing their combination with manual navigation.
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weight. At each roundk of interaction, we display the follow-
ing information: a slider demonstrating the range of values
for eachwi, with boundswk

i↑ andwk
i↓ defining the feasible

weight setW k at roundk; the minimax optimal allocation
xk; the adversarial allocationak; the weightswa

i chosen by
the adversary that maximize regret ofxk (these will lie at ei-
ther an upper or lower bound, and are highlighted on each
slider); and the (adversarial) utility of bothxk andak, as well
as their difference (the minimax regret).

The buyer is asked to manipulate the bounds. If the buyer
prefersxk to ak (or feels that regret overstates the amount by
whichak is preferred toxk), we ask the buyer to adjust one of
the boundswa

i at which the adversary’s utility function lies.
As this bound is adjusted up (in the case of a lower bound)
or down (upper bound), the pairwise max regretMR(xk, ak)
must be reduced, and can be updated in real-time without
reoptimization, providing the user with real-time feedback.
(The only exception is whenak andxk agree on featurefi.)
However, if ak is preferred toxk, the user must adjust one
of the wi bounds opposite from that chosen by the adver-
sary. In this case, pairwise regret is unaffected, and no im-
mediate feedback is provided. After these manipulations, the
new (tighter) bounds are used to recompute the minimax opti-
mal allocation and related quantities. The process terminates
when minimax regret is reduced to an acceptable level.

For experimental purposes, we simulate a user’s behavior
with a simple model which favors moving bounds that give
immediate feedback. Atrue weightis chosen randomly for
each feature using a truncated Gaussian distribution centered
at the midpoint of the unknown weight interval[wi↑, wi↓],
with variance(0.25(wi↑ − wi↓))2. This reflects the fact that
users are more likely to have true utility closer to the middle
of their assessed intervals.11 Each move of a bound by the
simulated user removes half of the distance between the cur-
rent bound and the true weight. At any stage, a user will move
an “adversarial bound” (i.e., a bound at which the adversar-
ial utility wa

i is located) if some such bound is more than
0.1(wi↑ − wi↓) from the true weightwi; such moves provide

11We do not exploit this information in the querying process. Ex-
periments with uniformly drawn utilities have qualitatively similar
results, but requireslightly more interaction.

immediate feedback, and if more than one such feature exists
the bound that provides the largest reduction inMR(xk, ak)
is moved. Otherwise, if the adversarial bound is very close to
the true utility weight (within 10% of the total slider range),
the user moves an opposite bound.

Despite the rather cautious nature of the “simulated user,”
we find that the number of interactions required to find robust
allocations is typically quite small. The anytime nature of
utility refinement is evident in Figure 2(a), which shows max
regret of the minimax optimal allocation as a function of the
number of interactions (averaged over 100 50-item, 500-bid
instances).12 Max regret reduces very rapidly with the initial
interactions. Reducing max regret to zero is more difficult,
but only for some instances. On many instances, max regret is
driven to zero very quickly, as shown in Figure 2(b). One in-
stance did not reach zero max regret within 100 interactions,
but it did reach very low max regret quickly, as exemplified in
Figure 2(c). Note thattrue regret—the error in the minimax
optimal allocation w.r.t. the true utility function—is consid-
erably less than max regret (see Figure 2(a)). The anytime
nature of the approach is critical: it allows one to terminate
when max regret reaches an acceptable level, relative to the
cost of further interaction.

5.2 Comparison Queries

The manipulation of bounds provides the user with direct
control of utility function refinement. Alternatively, an elici-
tation scheme in which we directlyquerythe user about spe-
cific allocations gives much more control to the system.

We have engaged in preliminary investigation of simple
comparison queries. This involves asking the user to com-
pare two allocations: “Do you preferx′ to x?”13 A (yes/no)
answer to such a query induces a linear constraint on possible
weight vectors; for instance, ifx is preferred tox′, we impose
the linear constraint

wifi(x) − c(x) > wifi(x′) − c(x′)

12Optimal allocations have average utility of 23,960.
13Such comparisons need only involve the utility-bearing features

of the allocations in question and the cost of each; the entire alloca-
tions need not be presented.
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Figure 3: (a) Avg. max regret and avg. true regret as a function of number ofcomparison queries; (b) Number of queries
required to reach zero max regret; (c) Reduction of max regret on a specific instance (vs. slider interactions).

on the set of weight vectors. We can also allow the user to ex-
press rough indifference by responding “I’m not sure,” treat-
ing this as meaning|u(x) − u(x′)| ≤ ε for some smallε, and
imposing the constraint the these values areε-close.

The goal then is to construct a query plan that reduces the
feasible regionW in a fashion that reduces the max regret of
the minimax optimal allocation quickly. A number of alterna-
tive query policies can be considered; to date we have focused
on a very simple, yet promising strategy, in which the user is
repeatedly asked to compare her minimax optimal allocation
with the adversary’s allocation. Any response to that query
will generally provide valuable information. Should the user
prefer the minimax optimal allocation, this immediately rules
out the adversary’s chosen utility function, and will generally
reduce regret. Conversely, should the user prefer the adver-
sary’s allocation, this rules out the current minimax optimal
allocation, thus imposing a constraint that forces a new (min-
imax optimal) decision to be made.

The ability to compute minimax regret for arbitrary poly-
topesW , as discussed above, is critical when dealing with
comparison queries. We did some preliminary investigation
of the comparison query strategy using the vertex enumer-
ation scheme discussed in Section 4.2. After each query re-
sponse, a new linear constraint is imposed onW . The optimal
allocationxw is computed for each vertexw of W and the
minimax optimal allocation is then determined with a single
IP. Note that since the vertices ofW at each iteration are iden-
tical to the previous vertices except for those incident with
the new constraint, we need only run a WD algorithm at the
(small) set ofnewvertices.

Figure 3(a) shows average max-regret and true-regret re-
duction offered by the comparison query model (averaged
over 100 30-item, 300-bid instances). The same desirable
anytime nature as seen with slider interactions is evident, with
regret reducing very quickly with just a few initial queries.
Figure 3(b) shows the number of queries required to reach
zero max regret (though as with sliders, this measure is less
important than the anytime profile). Figure 3(c) illustrates
performance on a typical instance, showing that regret re-
duces very quickly with the number of queries. For compar-
ison, we show regret reduction with the slider mode of inter-
action on the same instance. While sliders generally require
slightly fewer interactions, it is important to note that more

information is generally being provided with each slider in-
teraction than is contained in the response to a comparison
query. A suitable measure of interaction cost is needed to
draw definitive conclusions regarding the relative merits of
the two approaches.

Computationally, the comparison query approach is quite
fast for problems of this size, and is certainly able to support
online interaction. Using the simple, non-iterative, vertex-
enumeration approach described in Section 4.2 on the 100
30-item, 300-bid instances, we found that theW polytope
had on average 253 vertices when querying terminates at the
optimal (zero-regret) solution. The WD problem for each ver-
tex is solved in 0.13s on average, but recall that after each in-
teraction, only new vertices need to have their WD problems
solved. On average, 54 vertices are added per query (each
initial computation is on a hyperrectangle with 64 vertices,
reflecting initial bounds). Finally, computation of the mini-
max optimal solution after each query (using the vertex solu-
tions as constraints) takes an average of 3.5s. Thus average
computation time per query is under 11 seconds. There are
considerable opportunities for improving this performance as
well.

6 Concluding Remarks
We have described new methods that allow a bid taker to find
an (approximately) optimal allocation despite uncertainty in
utility for non-price criteria. These methods rely on the notion
of minimax regretto guide the elicitation of preferences from
the bid taker on an as-needed basis, and to measure the quality
of an allocation in the presence of utility function uncertainty.
This provides a basis for deciding when to terminate utility re-
finement and for determining a robust allocation. Our compu-
tational experiments demonstrate the practicality of minimax
computation and the efficacy of our elicitation techniques.

While we presented our techniques for allocation-level fea-
tures, they can directly handle item-level (and bid-level) fea-
tures as well (e.g., color, delivery date, etc.). The bid taker
can leave certain item features unspecified, allowing bidders
to specify various alternative (e.g., red on Monday for $10, or
blue on Wednesday for $7).14 The bid taker’s utility function

14Preference elicitationfrom the bidders(using techniques anal-
ogous to ascending-price auctions), has been studied in single-item



can depend on these features, and our methods can be used
if the bid taker is uncertain about that function. Our tech-
niques and notation stay unchanged, but now each allocation
(i.e., vectorx) not only includes a decision variable (accept
or reject) for each bid, but also variables describing how the
additional features are set (e.g., what delivery date and color
the bid taker chooses).

We plan to conduct more systematic experiments with var-
ious forms of comparison queries. Apart from the “current
solution” strategy for choosing queries, we intend to investi-
gate other methods for choosing the allocations that the user
is asked to compare. We will also explore some of the it-
erative approaches to minimax optimization in the presense
of arbitrary weight contraints for problems where vertex enu-
meration is infeasible.

Other important directions include the study of additional
query types. In situations where computational bottlenecks
arise, investigation of anytime constraint generation and any-
time WD would prove interesting. We also plan to field these
techniques in procurement applications.
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