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Abstract

Recent algorithms provide powerful solutions to
the problem of determining cost-minimizing (or
revenue-maximizing) allocations of items in com-
binatorial auctions. However, in many settings, cri-
teria other than cost (e.g., the number of winners,
the delivery date of items, etc.) are also relevant in
judging the quality of an allocation. Furthermore,
the bid taker is usually uncertain about her pref-
erences regarding tradeoffs between cost and non-
price features. We describe new methods that allow
the bid taker to determine (approximately) optimal
allocations despite this. These methods rely on the
notion of minimax regreto guide the elicitation of
preferences from the bid taker and to measure the
quality of an allocation in the presence of utility
function uncertainty. Computational experiments
demonstrate the practicality of minimax computa-
tion and the efficacy of our elicitation techniques.
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of a host of other factors that can be traded off against cost.
Most algorithms can be adapted to deal with such feaifires
say, tradeoff weights are made explicit and incorporated into
the objective function. However, most bid takers are unable
or unwilling to articulate such precise tradeoffs (for reasons
we elaborate below).

One way to deal with this issue is to allow users to gener-
ate a collection of allocations by imposing various constraints
on these feature values (e.g., limiting the number of suppliers
to five) and examining the implications on the optimal allo-
cation (e.g., how cost changes) by rerunning WD. When this
process ends, the user chooses one of the generated alloca-
tions as making the right tradeoffs between cost and the rele-
vant non-price attributes. Unfortunately, this manual process
of scenario navigatiordoes nothing to ensure sufficient or
efficient exploration of allocation or tradeoff space.

In this paper, we explicitly view the process of choosing
an optimal allocation as requiring a form pfeference elici-
tation with the bid taker (i.e., the party determining the final
allocation)? We assume that the way in which non-price fea-
tures influence the choice of allocation can be modeled using
a utility function, albeit one that is imprecisely specified. Us-
ing this observation, we develop a collection of techniques

Combinatorial auctions (CAg)eneralize traditional market
mechanisms to allow the direct specification of bids doer-
dlesof items[13; 14 together with various types of side con-
straints[17]. This form of expressive biddings extremely
useful when a bidder’s valuation for collections of items—or
bidder’s costs in reverse auctions—exhibit complex structur
The problem ofwinner determination (WD)hamely, deter-

mining a (cost or revenue) optimal allocation of items given a,)ations. It also provides valuable information to guide
collection of expressive bids, is generally NP-complé.  ojicitation: it can suggest appropriate refinements of utility

However, algorithms have been designed for WD that Worlﬁnformation, and when to terminate preference refinement.

\éery well Irl]l %rat(r:]tlce[9;|_16;t_ 18. flng(Aaedt, r:acent ad\I/ancesl We begin in Section 2 with a discussion of CAs and linear
ave 1mpelied the application or LAS 10 large-scale, realy iy functions over non-price features. Section 3 addresses

world markets, such as procurement. ; ” . . -
Most of the recent literature on GAs has focused on aI_the issue of utility functon uncertainty and defines minimax

gOI’Itth that f|nd Op“mal a||0cat|0nS w.r.t. cost or revenue. 1|n procurement Settingsl the bid taker genera”y maintains such
However, in many settings, features other than cost also playfxibility in deciding the allocation. This means that there is no pre-
role in assessing the quality of an allocation. For example, inletermined allocation rule (i.e., mapping from bids to allocations),
a procurement auction (or reverse auction), the bid taker maynlike canonical auctions. Therefore, this is sometimes referred to
be concerned with the number of suppliers awarded businesasprocurement optimizatiorather than an auction. These obs_erva-
the percentage of business awarded to a specific supplier, tH&ns of typical use of WD software are based on our experiences

average delivery-on-time rating of awarded business, and arfyt1 large-scale, real-world procurement problems.
We distinguish the preference elicitation we study from forms

Copyright(©) 2004, American Association for Artificial Intelligence of elicitation for CAs in which one attempts to minimize the amount
(www.aaai.org). All rights reserved. of bid information needed from tHaidders(e.qg.,[6; 7]).

that can support, or even automate, the preference elicitation

required to determine an (approximately) optimal allocation.

As such, it can obviate the need for manual creation and ex-

ploration of different scenarios. Underlying these methods is

the notion ofminimax regret this allows us to examine the

Sworst-case error associated with optimizing an allocation in
the presence of utility function uncertainty, thus givingust



regret as a suitable criterion for robust decision making. Irbeing equal, in order to minimize overhead. While a hard
Section 4 we define several techniques for computing minieonstraint might be imposed on the number of suppliers (e.g.,
max optimal allocations in CAs under different forms of util- less than five), this approach is undesirable, since rarely is a
ity function uncertainty. Section 5 describes two methods fobuyer unwilling to consider a larger number of suppliers if
preference elicitation based on minimax regret, and empirithat reduces cost significantly. Instead there is a tradeoff—
cally evaluates these strategies on random problems with r@ne is willing to pay more for a collection of items if the
alistic structure and size, demonstrating the feasibility of oumumber of suppliers is less. There are a number of properties
methods. We conclude in Section 6 with a discussion of futhat are often used in procurement—to use just one domain

ture research. of application—to assess the quality of allocations. Among
these are: number of winners; (possibly aggregate) quality of
2 CAs and Non-price-based Utility certain items; percentage of volume given to a specific sup-

dolier; geographical diversity of winners; and many others.

Tradeoffs between price and non-price features can be cap-
tured by the buyer'sitility function We let X denote the set
2.1 Combinatorial Auctions of feasible allocations given bidB. Let F' = {fi,..., fx}
CAs have found recent popularity as market mechanisms du€ @ Set ofeaturesover which the buyer has preferences. \We
to their ability to allow expressive bids reflecting the com- 2SSUme thatthe buyer's preferences for allocatiogsX’ can
plex utility structure of market participants. As a result, eco-P€ expressed byguasi-linear utility functiorof the form
nomically efficient allocations of goods and services can be k
found using combinatorial bids in cases where noncombina- u(x) = wifi(z) — c(z), 6y
torial bids would not suffice. Recent research has focused i=1
on the problem ofwinner determinatiorin various classes wherec(z) is the cost of the allocation. Thus the utility func-
of CAs: finding an optimal allocation w.r.t. cost or revenue.tion is completely characterized by a set of tradeoff weights
While a computationally difficult probleni14], recent ad- w; that express how much of each feature the buyer is willing
vances in optimization methods for CAs have made them &o sacrifice for a given amount of money. We assume local
practical market technolod$; 16; 1§. value functionsy; that convert any non-numerij(z) into a

The WD problem for a generic CA can be formulated as amumeric valuev; (f;(z)); but we suppress mention of for
integer program (IP). In this paper, we focusremerse CAs notational clarity.
where the goal is to obtain a collection of items at minimal Letw = (wy,...,w;) denote aveight vector We assume
cost, since procurement is a main motivation for our work.all weights are non-negative (i.av, > 0), which implies that
However, this is for concreteness only—all of our techniquesigher levels of each feature are preferred to lower ledels.
apply mutatis mutandiso most variants of CAs (sdd9] for ~ We will use the notation (z; w) when we wish to emphasize
a discussion of a number of such generalizations). the fact that utility is parameterized by a weight vector.

In a reverse CA, auyer(bid taker) wishes to obtain a spe-  The independence and linearity of the local utility func-
cific set of itemsG. Sellerssubmit bids of the formb;, p;), tions inherent in our formulation are, admittedly, fairly strong
whereb; C G is a subset of items, and is the price at which  assumptions, but nonetheless often (roughly) hold in practice.
it is offered. Given a set of bidB = {(b;,p;) : # < m}, we  Our techniques can be generalized to nonlinear local utility
let anallocationbe any subset aB. A feasible allocatioris  functions anadtonditionally independer¢atures through var-
an allocation whose bids cover all itemsGh The WD prob-  ious encoding tricks. We also assume that each fegtre
lem asks for the feasible allocation that supplieas cheaply can be defined linearly in terms of attributes of allocation
as possible, and can be formulated as a (linear) IP. Lefting Again, if this is not so, certain approximations are possible.
be a boolean variable denoting that kg, p;) was accepted, We briefly discuss these generalizations in Section 4.4.
we wish to solve:

We begin with a discussion of relevant concepts relating t
CAs and utility for non-price features.

minp;q; St Y ¢ >1,Y9€G 3 Utility Function Uncertainty
i+gEbs In this section, we develop techniques for computinigust
. . - . allocations when the parameters of the utility function are not
Note that we assume free disposal (i.e., obtaining muIt|pIepreCisely specified

copies of any incurs no penalty). This problem can be gen-= o \"2 \ nown weight vectow, our objective would be
eralized to include multiple units of each item, no free dis- oo “fin the feasible allocatiarf, with maximum utility:
posal, various side constraints on the part of the sellers orthr%aLX u(z). A number of WD algorithms can be adapted
buyer, etc. Notice, however, that existing methods determmF0 tﬁis Iinéar optimization problem. Unfortunately, buy-

tsr:rea%%t&r;?sfgflgﬂ?;rﬁ%grg'mm'zmg only the (possibly con- ers are usually uncertain about their tradeoff weights. This
: should not be surprising; the decision analysis literature is

2.2 Linear Utility for Non-price Features rife with evidence that decision makers have trouble con-

structing precise tradeoff weighits1]. And numerous meth-

While cost minimization is a primary objective in procure- ods for decision making and elicitation have been developed

ment, other features of the ultimate allocation will often play

a role in assessing the quality of that allocation. For exam- 3Forinstance, if fewer winners are preferred to more, the relevant
ple, the buyer may prefer to deal with fewer suppliers, all elsdeature isnegativenumber of winners.



that account for this fact, both within decision analyig8;  (in modified form) application to analysis of online algo-
15] and Al [10; 5; 2; 4. Furthermore, in procurement, the rithms [1]. Only recently has it been used in the explicit
buyer is often faced with the difficult task of aggregating themodeling of utility function uncertainty and elicitatiol3;
preferences of multiple stakeholders via internal negotiatiori5]. The minimax optimal allocation is attractive due to its
within the buying organization (the CFO preferring low cost, robustnessagainst utility uncertainty. The key difficulty in
marketing people preferring high average delivery-on-timehe application of minimax regret in practical settings is the
rating, plant managers preferring small numbers of supplierg;omputation of minimax optimal decisions and its use in elic-
etc.). Thus, buyers are often unwilling to commit to specificitation, though recently computationally effective techniques
tradeoff weights, often adopting the approach of “preferencérave begun to emerda2; 4.
aggregation through least commitment.”

In practice, we have found that buyers are often willing to4 Computation of Minimax Regret

provide loose bounds on these tradeoff weights, but unwillin t WD method anot b lied directly t mput
to make things more precise without aid. As a result, buyer%\/IOS ethods cannot be applie ectly to computa-
ion of the minimax optimal allocation. Specifically, Eqg. 5

tend to ignore tradeoff weights altogether. Instead, they fre-

quently use WD software to explore differestenariospy ~ 'cduires solution of a minimax program (with a min over two
rtljaxes), preventing the application of very effective linear op-

Imposing various constraints on feature values and genera’umization techniques. In this section we describe an algo-
ing the corresponding optimal allocations. With a number of . hm to computg the.minimax optimal allocation in a wgy

such allocations in hand, manual inspection is used to choo at uses standard integer proaramming or WD methods iter-

the most preferred allocation from this set. Unfortunately, .. naard integer prog g or Wb .

while users find such manustenario navigatiomppealing, 2uvely. We distinguish two settings. In the fir8t; is defined

it generally admits neithesufficientnor efficientexploration ~ 2Y UPPer and lower bounds for each weight these being

of allocation space. quite natural to specify (_1|rectly. In the second, arbltrary linear
‘constraints on they; definelV; these naturally arise when a

In the next section, we develop techniques that will sup or compares or ranks two or more alternatives
port, or even automate, this process. However, we first neelaiLly P :

methods for making allocational decisions in the presence of q Upper and Lower Weight Bounds

utility function uncertainty. Assume that through some inter-

action with the buyer, we have a set of linear constraints oiComputing Max Regret We begin with computation of
the buyer’s weight vector, witlh” denoting the set of feasible max regret (Eq. 3). Suppo3$E is a hyperrectangle in weight
vectors? Without full knowledge ofw, we cannot maximize space defined by an upper boungl and lower boundy;| on
utility (Eq. 1): whatever: we chose, there may be some feasi-each parameter;. The max regret of a specific allocatien
ble utility function for whichz is far from optimal. Our goal w.r.t. W is given by the obvious optimization program:
instead is to find abust allocatiorthat, in the worst case, is k

as close to optimal as possible. In other words, even if an ad-MR(x) = max max » wi [fi(z") = fi(x)] — c(z') + e(x) (6)
versary were allowed to choose the utility function, we want wew e A

x to be as close to optimal as possible. This poses the difficulty that the objective is quadratic, since
both thew; and the adversarial allocatiori are variables.
Fortunately, sincéV is specified by upper and lower weight
R(z,w) = max uw(@'; w) — u(z; w) (2)  bounds, we can rewrite this as follows:

k , o)) (! (
C(m,HZ{wJ(ﬁ(m;*ﬁ( ) if fi(@') > fi( ))}

Defn Theregretof allocationz w.r.t. utility functionw is

Themaximum regreof x w.r.t. feasible utility setV is max e(x)— wi (fi(z') — fi(z)) it fi(2) < fi(z))
MR(z, W) = max R(x,w) (3)  With some clever encoding, we can make this objective linear,
v and rewrite this optimization as an IP. Specifically, we can

The pairwise max regredf = w.r.t. 2’ (with W under- linearly define variabled; to indicate thatf;(z') > fi(x)

stood) is (and A; the opposite), as well as variahl@r (resp.,F]7)

MR(z,z') = max u(z'; w) — u(z; w) ) thét_takes valug;(2’) if Af is true anq 0 otherwise (resp., if
wew A; is true). We then solve the following objective:
k

The minimax optimal (or robust) allocationv.r.t. W TS i T . B
(i.e., the allocation witminimax regrelis max 3_{wi [F ~ @) AT+ wd [ = fi(@) AT} +e(X) —e(a)

=1
xjy = arg min max MR(x, ") (5)  Thus with a linear IP we can compute the max regret of any
veXzleX given allocationz.

Minimax regret is one of the more appealing criteria for
decision making undestrict uncertainty(i.e., where dis- Computing Minimax Regret Computing the allocation
tributional information is lacking)20; §. It has found with minimax regret requires a minimax program:
k

“The elicitation methods below will make it clear exactly how  arg min max max > w;[fi(2') — fi(2)] + ¢(z’) — ¢(x)
these constraints arise. Linearity is important computationally, but rEXWEW 2le X i

is not critical to the definition of max regret that follows.



We can convert this to a standard minimization using the fol<*, we are assured that all unexpressed constraints (for those

lowing conceptual trick: z' outsideGern) are satisfied. If the computed max regret level
min § is greater thaa*, then the corresponding constraint is added,
zeX thus making “maximal” progress towards a true solution.

k
st. 6> > wilfi(a') - fi(x)] + c(@’) —c(z), Va',w (7) 4.2 Arbitrary Weight Constraints
T ) WhenW is given by a set of arbitrary linear constraints, we
The difficulty lies in the fact that these constraints over allogn't exploit weight bounds in the manner above. However,
a' € X andw ¢ IV cannot be enumerated explicitly. we can use an alternating optimization technique to compute
Fortunately, for any specific’, we need not enumerate the ax regret whe’ is so defined using only a sequence of IPs
(continuous) set of possible weight vectd¥s rather we can  and |Ps. Note that if we fix a weight vecter, the quadratic
identify the unique weight vectow (hence the only active  program in Eq. 6 becomes a linear IP; and if we fix the al-
constraint forz’) that maximizes the regret afw.r.t. 2 by  |ocationa’, it becomes an LP. So to solve Eq. 6 we start by

setting eachw; to either its upper or lower bound (depending fixing w to some random feasible weight vecter. We then
on the relative values of this featureinandz’). This can jterate over the following steps:

be accomplished using a strategy much like the one outline ) _ . .
above, using a specific indicator variable for eath This () Gven a fixedw;, solve the IP above, obtaining solution
still leaves the problem of enumerating all allocatiofigo x;, With max regretrn;.

form the constraint set above. To circumvent this, we use afb) Given the fixed:}, solve the LP above, obtaining solution
iterative constraint generation procedure, whereby we solve w;,; with max regretn;, .

relaxed versions of the problem, gradually adding constraint:
for variousz’ until we are assured that all active constraints
in the full program are present.

Note that in defining this program, we use tricks similar
to those used to compute max regret. However, now allo
cation variables refer to “our” allocation (we are minimizing
over these variables), not the adversary’s allocation. The a
versary'’s allocations will be fixed within specific constraints.
The formulation is similar to the max regret computation ex-4 straightforward way.

cept that we require variables;['], A;"['], F;"[2'], and When the dimensionality o’ is small, we can improve
— ! H ! 1 1 . .
F"[a'] for each adversariat’ present in the constraint set the procedure. First, we run a standard vertex enumeration

¥his alternation stops whenever the max regret computed at

two successive levels is identical. Since the computation of a

neww is an LP, the algorithm will terminate with a solution

w whose value is equal to that of somé lies at a vertex

of the polytopd/V . This ensures convergence though perhaps
nly at a local maximum. We can integrate this scheme with a
onstraint generation procedure to compute an approximately

minimax optimal allocation with some minor modificationsin

(similar in meaning to those above). ~ algorithm once to compute the vertices1of—this will be
The constraint generation procedure works as follows: 3 small set if only a few features are relevant to utility. At
1. LetGen= {z'} for some arbitrary feasible'. each iteration of the procedure, rather than repeatedly solv-

ing IPs and LPs to generate a new constraint, we can find the
adversarial allocation’ that maximizes the regret of* as
min § follows: we compute the,, that maximizes the regret of
& w.r.t. each weight vectow in the vertex set; the maximum
sto > BwiT(fi(x')AT [2']—F ') +wd (fi(z)A; [2/]  of these gives the’ andw at which the regret of* is maxi-
im1 mized. Thist’ (with suitable setting of weights) is then added
“F @)} + e(a’) — e(X) Vi’ € Gen to the constraint sétThis removes the LPfrqm each iteration
and ensures convergence to a global maximum. Indeed, one
can avoid constraint generation altogether and simply impose
Letz* be the IP solution with objective valueé. the constraints for eack, x, pair and solve a single IP.

3. Compute the minimax regret of allocatien using the 4.3 Empirical Evaluation
IP above, producing a solution with regret lev&land
adversarial allocation”. If r* > ¢*, then add:”’ to Gen
and repeat from Step 2; otherwises(if = §*), terminate
with minimax optimal solutiorx™ (with regret leveb™*).

2. Solve the following IP:

and definitional constraintsvz’ € Gen

We tested the effectiveness of our procedures on some large
scale, real-world reverse CAs. The goal in this section is to
demonstrate the computational feasibility of our constraint
generation procedure for practical problems. Here we fo-
The correctness of this procedure is easy to verify. Theus on the computation of minimax regret for problems with
constraints ensure thatis greater or equal to the pairwise weight bounds. (We discuss arbitrary linear constraints in
regret level MR (z*,z') of the solutionz* and everyz’ €  Section 5.2.)
Gen and the minimization ensures that has the minimum For these experiments, we generated random reverse CAs
such regret. Given the solutiart to this relaxed IP, we can which have a similar structure to a class of transportation pro-
easily determine the adversarial allocatidhthat maximizes  curement problems encountered frequently in the real world.
regret w.r.tx*. If the max regret ofc* is no greater than the In these instances, the items to be procured are divided into

5This related to Bender’s reformulation for mixed I[24]. 5This is much like Bender's decompositifh2].
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o ‘ ‘ 4.4 Generalizations

In this section, we briefly hint at how the simple linear utility
0r ] model can be generalized and minimax regret computation
15 | ] adjusted to reflect these changes.
First, we note that independence of features is not critical.
If the utilities of some features are conditionally dependent
57 ] on those of others, but this dependence is sparse (e.g., as cap-
0 ‘ ‘ ‘ N tured in a graphical modé€B]), the number of utility parame-
A ters remains small, and typically the utility of an allocation is
Figure 1: Number of constraints generated alinear fur)cno'n of the;e parameters..' .
' ' Uncertainty in a nonlinear local utility function for a spe-
cific featuref; cannot be represented using bounds (or con-

five regions; the relevant features are the number of winnin%ﬁraims) on a single weight;. However, even if the utility
suppliers in each region, and the number of winning supplier&inction has an unknown,_or nonparametric form, we can still
overall (yielding six features in total). Each instance has terffOmpute minimax regret if we have upper and lower bounds

suppliers, and ten times as many bids as there are items. TR® the utility of sampled pointérom the domain off;. We
bids are on individual items onfy. defer details to a longer version of this paper. From the point

of view of elicitation, we can address the question of which
sampled points offer the greatest (potential) improvement in

decision quality. Finally, dealing with certain types of fea-

tial bounds were chosen to reflect plausible tra_deoff We'ght%res that cannot be defined by linear constraints is also pos-
for each feature, and are reasonably (but plausibly) loose. sible. For certain features, we can impose bounds on their

To measure the computational feasibility of the minimaxvalues with linear constraints. This permits the discretization
optimization, we tracked how many rounds of constraintof feature values, allowing one to define utility as a function
generation were required to determine the minimax optimabf the specific discrete level taken by that feature.
allocation—since each iteration requires the solution of two
WD problems, this gives a sense of how the problem will5  preference Elicitation

scale with one’s favorite WD algorithm. We first test how

the number of generated constraints scales with problem siz& fitical component of WD when non-price features play a

Testing problems sizes of 10, 20, 30, 40, and 50 items (art(')le is preference elicitatiorfrom the bid taker. While the

each size, we generated 10 instances), we found the avdpinimax regret methods described above allow robust deci-

age number of constraints generated to be 3.3., 3.8, 3.6, 3.§;ons to be made in the face of utility function uncertainty,

and 3.1, respectively. Figure 1 shows the distribution of con!'€S€ must be coupled with tools that support a buyer in re-

straint generation rounds for a larger set of instances (10ning her preferences. Uncertainty must be reduced if regret

instances with 500 bids and 50 items). The vast majority ofS [0 réach an acceptable level. Regret methods have a key
instances required only 3 or 4 rounds of constraint generg@dvantage in this respect—when regret reaches a satisfactory
tion® Interestingly, the average number generated constraint§V€l further refinement of the utility function can peven
stays nearly constant as problem size increases. This is vel§) P& unnecessary. Thus, in a practical sense, minimax regret
promising for the scalability of this technique to even largeran nelp focus elicitation on thelevantparts of the buyer's
instances (at least from problems in this class), since it seentdility function.

to depend only on how well the underlying WD method itself !N this section, we describe two classes of techniques in
scales. which minimax regret is used to drive the process of elici-

tation. While a number of methods can be used for elicita-

_Should the number of required constraints become infeagon e focus here on two especially simple techniques, one
sible, approximate solutions can be obtained in an anytimg,s|ying direct manipulation of weight bounds, the second
fashion by early termination of constraint generation (we d%volving comparisons of automatically chosen outcofies.

not test this behavior here since the number of required CORye provide detailed empirical results are presented for the
straints is so small). Faster convergence can also be achievgt method. and preliminary results for the second.

by “seeding” the constraint generation procedure with the
constraints used in related versions of the problem; for in5.1 Direct Weight-bound Manipulation

stance, in the elicitation process, once new utility informationy, qr first method the buyer directly manipulates the upper
is received, the new minimax problem can be seeded with thg,  5er hounds (via a graphical interface) on the weights
constraints from the prior, closely related problem. Finally, using regret-based feedback. We assume the buyer

the solution time per generated constraint can be shortengghs orovided some initial (possibly crude) bounds on each
by using approximate WD.

25 1

Instances

10

All experiments were conducted for the case whergde-
fined by upper and lower bounds for each weight The ini-

%Also, different stakeholders in the buying organization can de-
- cide to end their internal negotiation when the benefit from further
"Here the combinatorial complexity of WD stems solely from negotiation (i.e., max regret) becomes provably small.
consideration of the number of winners. %We are also exploring various hybrids of these methods, includ-
8average WD solution time for these instances was 19.37s. ing their combination with manual navigation.
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Figure 2: (a) Avg. max regret and avg. true regret as a function of number of sligeactions(each interaction is one
tightening of one bound of one feature weight); (b) Number of interactions required to reach zero max regret; (c) Reduction of
max regret on a specific instance (true regret is zero immediately).

weight. At each round of interaction, we display the follow- immediate feedback, and if more than one such feature exists
ing information: a slider demonstrating the range of valueghe bound that provides the largest reductiodd®(z*, a*)
for eachw;, with boundsw’ andw}!| defining the feasible is moved. Otherwise, if the adversarial bound is very close to
weight setiW* at roundk; the minimax optimal allocation the true utility weight (within 10% of the total slider range),
z¥; the adversarial allocation®; the weightsw¢ chosen by the user moves an opposite bound.
the adversary that maximize regret:df (these will lie at ei- Despite the rather cautious nature of the “simulated user,”
ther an upper or lower bound, and are highlighted on eacwe find that the number of interactions required to find robust
slider); and the (adversarial) utility of boitf anda”*, aswell  allocations is typically quite small. The anytime nature of
as their difference (the minimax regret). utility refinement is evident in Figure 2(a), which shows max
The buyer is asked to manipulate the bounds. If the buyefegret of the minimax optimal allocation as a function of the
prefersz* to a* (or feels that regret overstates the amount bynumber of interactions (averaged over 100 50-item, 500-bid
whicha* is preferred ta:*), we ask the buyer to adjust one of instancesj? Max regret reduces very rapidly with the initial
the boundss? at which the adversary’s utility function lies. interactions. Reducing max regret to zero is more difficult,
As this bound is adjusted up (in the case of a lower boundputonly for some instances. On many instances, max regretis
or down (upper bound), the pairwise max regi&R (z*, a*) driven to zero very quickly, as shown m_Flgure 2(_b). Ong in-
must be reduced, and can be updated in real-time withouttance did not reach zero max regret within 100 interactions,
reoptimization, providing the user with real-time feedback.butitdid reach very low max regret quickly, as exemplified in
(The only exception is when* andz* agree on featurg;.)  Figure 2(c). Note thatrue regrei—the error in the minimax
However, ifa* is preferred tar*, the user must adjust one optimal allocation w.r.t. the true utlll_ty function—is conS|d_-
of the w; bounds opposite from that chosen by the advererably less than max regret (see Figure 2(a)). The anytime
sary. In this case, pairwise regret is unaffected, and no impature of the approach is critical: it allows one to terminate
mediate feedback is provided. After these manipulations, th&/hen max regret reaches an acceptable level, relative to the
new (tighter) bounds are used to recompute the minimax opticost of further interaction.
mal allocation and related quantities. The process terminates
when minimax regret is reduced to an acceptable level. 5.2 Comparison Queries

[For experimental purposes, we simulate a user's behaviofhe manipulation of bounds provides the user with direct
with a simple model which favors moving bounds that give conyo| of utility function refinement. Alternatively, an elici-

immediate feedback. Arue weightis chosen randomly for {a1ion scheme in which we directtyuerythe user about spe-
each feature using a truncated Gaussian distribution centeregi- aiiocations gives much more control to the system.

at. the mldp0|nt of the unkno;/vn wgght intervabil, wi, We have engaged in preliminary investigation of simple
with variance(0.25(w;l — wil))". This reflects the fact that comparison queries This involves asking the user to com-
users are more likely to have true utility closer to the middlepare two allocations: “Do you prefer to 22”13 A (yes/no)

of their assessed intervafs. Each move of a bound by the answer to such a query induces a linear constraint on possible

simulated user removes half of the distance between the CU\We|ght Vectors; for instanced:fis preferred tOUI, we impose
rent bound and the true weight. Atany stage, a user will movene |inear constraint

an “adversarial bound” (i.e., a bound at which the adversar-
ial utility w{ is located) if some such bound is more than w; fi(z) — c(z) > w; fi(x') — (')
0.1(wi — wy|) from the true weightv;; such moves provide
120ptimal allocations have average utility of 23,960.
we do not exploit this information in the querying process. Ex-  **Such comparisons need only involve the utility-bearing features
periments with uniformly drawn utilities have qualitatively similar of the allocations in question and the cost of each; the entire alloca-
results, but requirslightly more interaction. tions need not be presented.



350

T 40

‘ Avg.‘True hegrét

300 Avg. Max Regret ——— | 35|

250 | 0 f

200 fi

Instances
Max Regret

150 1
100 | 4

50

0 L L L L 0 — L T L
0O 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100 0 5 10 15 20 25
Interactions Interactions Interactions

Figure 3: (a) Avg. max regret and avg. true regret as a function of numbmrmparison queriegb) Number of queries
required to reach zero max regret; (c) Reduction of max regret on a specific instance (vs. slider interactions).

on the set of weight vectors. We can also allow the user to exinformation is generally being provided with each slider in-
press rough indifference by responding “I'm not sure,” treat-teraction than is contained in the response to a comparison
ing this as meaning.(z) — u(z’)| < e for some smalt, and  query. A suitable measure of interaction cost is needed to
imposing the constraint the these valueseactose. draw definitive conclusions regarding the relative merits of

The goal then is to construct a query plan that reduces thée two approaches.
feasible regioriV in a fashion that reduces the max regret of Computationally, the comparison query approach is quite
the minimax optimal allocation quickly. A number of alterna- fast for problems of this size, and is certainly able to support
tive query policies can be considered:; to date we have focuse@nline interaction. Using the simple, non-iterative, vertex-
on a very simple, yet promising strategy, in which the user is€numeration approach described in Section 4.2 on the 100
repeatedly asked to compare her minimax optimal allocatio0-item, 300-bid instances, we found that e polytope
with the adversary’s allocation. Any response to that quenjiad on average 253 vertices when querying terminates at the
will generally provide valuable information. Should the useroptimal (zero-regret) solution. The WD problem for each ver-
prefer the minimax optimal allocation, this immediately rulesteX is solved in 0.13s on average, but recall that after each in-
out the adversary’s chosen utility function, and will generallyteraction, only new vertices need to have their WD problems
reduce regret. Conversely, should the user prefer the advegolved. On average, 54 vertices are added per query (each
sary’s allocation, this rules out the current minimax optimalinitial computation is on a hyperrectangle with 64 vertices,
allocation, thus imposing a constraint that forces a new (minteflecting initial bounds). Finally, computation of the mini-
imax optimal) decision to be made. max optimal solution after each query (using the vertex solu-

The ability to compute minimax regret for arbitrary poly- UONS as constraints) takes an average of 3.5s. Thus average
topesIV, as discussed above, is critical when dealing withC@MpPutation time per query is under 11 seconds. There are

comparison queries. We did some preliminary investigatiorFonSiderable opportunities for improving this performance as

of the comparison query strategy using the vertex enumer¥e!:
ation scheme discussed in Section 4.2. After each query re- )
sponse, a new linear constraint is imposedionThe optimal 6 Concluding Remarks

allocationa, is computed for each vertex of W and the \ye paye described new methods that allow a bid taker to find
minimax optimal allocation is then determined with a single 3y (3pproximately) optimal allocation despite uncertainty in
IP. Note that since the verticesiof at each iteration are iden- ijity for non-price criteria. These methods rely on the notion
tical to the previous vertices except for those incident withy¢ ininay regreto guide the elicitation of preferences from
the new constraint, we need only run a WD algorithm at the,q i taker on an as-needed basis, and to measure the quality
(small) set ohewvertices. of an allocation in the presence of utility function uncertainty.
Figure 3(a) shows average max-regret and true-regret rerhis provides a basis for deciding when to terminate utility re-
duction offered by the comparison query model (averageginement and for determining a robust allocation. Our compu-
over 100 30-item, 300-bid instances). The same desirablgytional experiments demonstrate the practicality of minimax
anytime nature as seen with slider interactions is evident, witikomputation and the efficacy of our elicitation techniques.
regret reducing very quickly with just a few initial queries.  \hile we presented our techniques for allocation-level fea-
Figure 3(b) shows the number of queries required to reacfyres, they can directly handle item-level (and bid-level) fea-
zero max regret (though as with sliders, this measure is lesgires as well (e.g., color, delivery date, etc.). The bid taker
important than the anytime profile). Figure 3(c) illustratescan leave certain item features unspecified, allowing bidders
performance on a typical instance, showing that regret rey specify various alternative (e.g., red on Monday for $10, or

duces very quickly with the number of queries. For comparyjye on Wednesday for $#}.The bid taker’s utility function
ison, we show regret reduction with the slider mode of inter-

action on the same instance. While sliders generally require “preference elicitatiofrom the biddergusing techniques anal-
slightly fewer interactions, it is important to note that more ogous to ascending-price auctions), has been studied in single-item



can depend on these features, and our methods can be uged Yuzo Fujisima, Kevin Leyton-Brown, and Yoav Shoham. Tam-
if the bid taker is uncertain about that function. Our tech-

nigues and notation stay unchanged, but now each allocation

(i.e., vectorz) not only includes a decision variable (accept

or reject) for each bid, but also variables describing how thé10]
additional features are set (e.g., what delivery date and color

the bid taker chooses).

We plan to conduct more systematic experiments with var-
ious forms of comparison queries. Apart from the “current[11]

solution” strategy for choosing queries, we intend to investi-

gate other methods for choosing the allocations that the user
is asked to compare. We will also explore some of the it-]12]
erative approaches to minimax optimization in the presense

of arbitrary weight contraints for problems where vertex enu-

meration is infeasible. [
Other important directions include the study of additional

query types. In situations where computational bottlenecks

arise, investigation of anytime constraint generation and anyj14] michael H. Rothkopf, Aleksander Peke’and Ronald M.

time WD would prove interesting. We also plan to field these
technigues in procurement applications.
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