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Abstract

We propose and examine a method of approximate
dynamic programming for Markov decision processes
based on structured problem representations. We as-
sume an MDPisrepresented using adynamic Bayesian
network, and construct value functions using decision
trees as our function representation. The size of the
representation is kept within acceptablelimits by prun-
ing these value trees so that leaves represent possible
ranges of values, thus approximating the value func-
tions produced during optimization. We propose a
method for detecting convergence, prove errorsbounds
on theresulting approximately optimal value functions
and policies, and describe some preliminary experi-
mental results.

1 Introduction

Markov decision processes (MDPs) have come to play an
increasingly important rolein Al research, forming the ba-
sic model for much recent research in decision-theoretic
planning (DTP) and reinforcement learning (RL). The aim
in both DTP and RL isto discover apolicy for the behavior
of an agent in a (generally) stochastic environment. There-
sulting policy should offer good or optimal long-term per-
formance in the sense of maximizing expected accumula
tion of reward. Thekey distinctionbetween DTPandRL is
that the former assumes an immediate reward function and
action model representing the system dynamics are known,
wheress the latter takes both of these to be unknown quan-
titiesthat must be learned (possibly implicitly).

With a known action model and rewards, optimization
methods based on dynamic programming can be used to
produce an optimal policy [1, 13, 20]. But a serious prob-
lem for dynamic programming isthe curse of dimensional -
ity: thetime (and space) required grows polynomially with
the size of the state space, which itself grows exponentially
with the number domain features. This problem is exacer-

bated in RL because of the sampling requirements for each
State.

One way of addressing this problem in the case of both
known and unknown models is through the use of aggre-
gation methods (or generalization), in which a number of
states are grouped because they have similar or identical
values and/or action choice. These aggregates are treated
as a single state in dynamic programming a gorithms for
the solution of MDPs or the related methods used in RL
[22, 2, 16, 4, 5, 11, 12, 9, 17]. Such aggregations can be
based on a number of different problem features, such as
similarity of states according to some domain metric; but
most methods generally assume that the states so grouped
havethesame value. Inaddition, such schemes can beexact
or approximate, adaptive or fixed, and uniform or nonuni-
form, and can be generated using a priori problem charac-
teristics or learned generaizations.

In this paper, we consider the problem of constructing an
approximately optimal policy when the action-model and
reward function are known.! In addition, we assume that
the action model is specified using a compact and natural
specification |anguage, namely dynamic Bayesian networks
[18, 10]. In previouswork, we described a method for opti-
mal policy constructionthat exploited the problem structure
laid bare by the Bayes net representation [5]. Our algorithm
built aggregationsin anonuniformand adaptive way, repre-
senting value functions (and policies) using decision trees,
and performed structured dynamic programming using this
representation.

Unfortunately, with many problems, even structured repre-
sentations may not help greatly with optimal policy con-
struction, for the optima value function may take on a
large number of distinct values, precluding compact rep-

'The close relationship between RL methods such as Q-
learning [26] and the solution of MDPs with known models sug-
gests that our ideas should be applicable to the unknown-model
setting (see Section 6).



resentation. However, often the distinctions made are of
minor importance—if states with roughly the same value
can be grouped, good (though possibly suboptimal) poli-
cies should result. The approximation schemes we present
in this paper consider pruning the tree representation of
value functions at intermediate stages of policy construc-
tion. This method thus exploits prior problem structure in
away that leadsto very informed approximation.

In Section 2, we describe MDPs and their structured repre-
sentation using dynamic Bayes nets, followed in Section 3
by a brief description of the SPI algorithm of [5] that per-
forms optimization using a decision tree representation of
value functions. We then focus on issues arising due to
approximation of these value trees. We first describe, in
Section 4, an algorithm for pruning (and ordering) asingle
value tree, using methods adapted from those in the litera-
tureon classification by decisiontrees[3, 25]. In Section 5,
we describe a structured version of vaue iteration that ap-
proximates the n-step optimal value functions it produces
using the pruning method. These approximate value trees
are labeled with value ranges that are guaranteed to con-
tain the true values of the states to which they refer. This
allows loca error bounds to be maintained during compu-
tation with minimal effort. These will typicaly be much
tighter than possible globa bounds. Moreover, while ap-
proximation of value functions can sometimes lead to ar-
bitrarily bad results [8], maintaining accurate value ranges
allows us to circumvent convergence problems. We show
convergence, describe error bounds, and report on some
preliminary experimental results. We conclude with adis-
cussion of the applicability of these ideas to reinforcement
learning.

2 MDPsand Structured Representations

We assumethat the system to be controlled can be described
as a fully-observable, discrete state Markov decision pro-
cess[1, 13, 19], withafinite set of system states.S. Thecon-
trolling agent has available afinite set of actions A which
cause stochastic statetransitions: wewritePr(s, a, t) to de-
note the probability action « causes a transition to state ¢
when executed in state s. A real-valued reward function R
reflects the objectives of the agent, with R(s) denoting the
(immediate) utility of being in state s.? A (stationary) pol-
icyn : S — A denotes a particular course of action to be
adopted by an agent, with 7 (s) being the action to be exe-
cuted whenever the agent findsitself in state s. We assume
an infinite horizon (i.e., the agent will act indefinitely) and
that the agent accumul ates the rewards associated with the

“More general formulations of reward (e.g., adding action
costs) offer no special complications.

States it enters.

In order to compare policies, we adopt expected total dis-
counted reward as our optimality criterion; future rewards
are discounted by rate 0 < 7 < 1. Thevalue of apolicy 7
can be shown to satisfy [13]:

Val(s) = R(s) + 8> _Pr(s,m(s),t) - Vx (1)

tes

Thevalueof 7 at any initial state s can be computed by solv-
ing thissystem of linear equations. A policy « isoptimal if
Vr(s) > Vu(s) foral s € S and policies «’. The optimal
value function * is the same as the value function for any
optimal policy. Techniques for constructing optimal poli-
ciesand valuefunctionsfor discounted problemshave been
well-studied; we discuss these in the next section.

Onedifficulty withthe general presentation of MDPs given
above is its faillure to exploit natural problem structure.
Most systems are characterized by a set of random vari-
ablesor propositionsthat describerel evant features, and ac-
tions and rewards are specified in terms of these features
[15, 4, 24]. In addition, since the state space grows expo-
nentially with the number of features, explicit specification
and computation over the state space can be problematic.

We assume that a set of atomic propositionsP describes our
system, inducing a state space of size 2/P!, and use two-
stage tempora or dynamic Bayesian networks to describe
our actions [10, 5]. For each action, we have a Bayes net
with one set of nodes representing the system state prior
to the action (one node for each variable), another set rep-
resenting the world after the action has been performed,
and directed arcs representing causa influences between
thethese sets. Each post-action node has an associated con-
ditional probability table (CPT) quantifying the influence
of the action on the corresponding variable, giventhevalue
of itsinfluences (see [5, 6] for amore detailed discussion of
thisrepresentation).® Figure 1(a) illustratesthis representa-
tion for asingle action.*

The lack of an arc from a pre-action variable X to a post-
action variable Y in the network for action « reflects the
independence of a’s effect on Y from the prior vaue of
X . We capture additional independence by assuming struc-
tured CPTs. In particul ar, we useadecision treeto represent
the function that maps combinations of parent variable val-

*To simplify the presentation, we consider only binary vari-
ables and assume that no arcs are directed between post-action
nodes; but these assumptions can easily be relaxed.

*Thisis atoy domain in which arobot is supposed to get cof-
fee from a coffee shop acrossthe street, can get wet if it israining
unlessit hasan umbrella, and is rewarded if it brings coffee when
the user requestsit, and penalized (to alesser extent) if it getswet
[5, 7]. Thisnetwork describes the action of fetching coffee.
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Figure 1: (a) Action Network with Tree-structured CPTs; and (b) Reward Tree

ues to (conditional) probabilities. For instance, the treesin
Figure 1(a) show that ¢/ influencesthe probability of 11" be-
coming true (as a consequence of the action), but only if R
istrueand 1 isfalse (left arrows are assumed to be | abeled
“true” and right arrows “false”). Thus, additiona regular-
ities in transition probabilities are used to provide a more
compact representation than the usual (locally exponential)
CPTs (the matrices). This can be exploited computation-
ally, as we describe below. A similar representation can be
used to represent the reward function R, as shown in Fig-
ure1(b). Wecall thisthe (immediate) reward tree, Tree( R).

3 Structured Policy Construction

A very simple agorithm for optimal policy constructionis
valueiteration [1]. We produce a sequence of n-step opti-
mal value functions V™ by setting V° = R, and defining

Vi+1()_maX{R )+ 8> Pr(s,a,t)-Vi()} (1)

tes

The sequence of functions 1V converges linearly to V* in
thelimit. Each iterationisknown as a Bellman backup. Af-
ter some finite number » of iterations, the choice of maxi-
mizing action for each s forms an optimal policy = and V"
approximates its value. In particular, one simple stopping
criterion requires termination when
e(l = 08)
20

(where || X|| = max{|z| : € X} denotesthe supremum
norm). This ensures the resulting value function Vi+! is
within 5 of the optimal function VV* at any state, and that
theinduced policy isc-optimal (i.e., itsvalueiswithine of
V*)[19].

Vit — Vil <

2

In an effort to mitigate the curse of dimensiondity, re-
searchers have sought to use aggregation or generalization
to group states. One possible approach uses action mod-
els to form regions in the state space that have identical
value and performs dynamic programming stepsin thisway
[5, 12]. We briefly describe a structured version of valueit-
eration (SV|1) based on thisintuition: at each stage, V¥ will
be represented as a decision tree.®

Invaueiteration, we need to produce the sequence of value
functions V% V1 ... using Bellman backups, and we'd
like to do so using a compact function representation such
as decision trees. Clearly, Tree(R) provides a structured
representation of V. Inaddition, given any such structured
valuetree |/, we can use the Bayes net action description to
produce a Q-tree ), for any action a. This tree describes
thevalue of performing action a assuming terminal valueis
givenby V (i.e, aQ-function [26]). Roughly, each branch
of V' determines a region of the state space with a unique
value. The Bayes net for a allows us to easily determine
the conditionsthat influence the probability of reaching any
such region when « is performed: we ssimply read from the
network the variablesthat influence the variablesin V. In-
tuitively, we perform a stochastic generalization of goal re-
gression [12]. Rather than provide details, weillustratethe
intuitionswith a simple example (see [5] for details).

Consider theinitia valuetree V' in Figure 2 (again, | eft ar-
rows denote true, right arrows false) and suppose action «
(Figure 1(a)) isto be performed. We can determine the fu-
turevalue of a asfollows: to determine whether we end up
in the left or right subtree of 1/, we must know the proba-
bility of « making WC true. The conditions(prior to theac-

5This algorithm is a minor variant of the SPI algorithm [5],
which is based on modified policy iteration [20]. The basic opera-
tions are the same, though intermediate policies are not produced
inSVI.
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Figure 2: Generating a Q-tree

tion) that i nfluence WC becoming true (after the action) can
beread fromthe network for a, givingriseto thefirst partial
tree (Step 1). Notethat the probability of WC becoming true
(i.e., theactual effect of theactiononWC) labelseach leaf in
thispartia tree. We emphasi ze that the WC occurrences la-
beling interior nodes of thetreerefer to the pre-action state,
whileleavesrefer totheprobability of WCin the post-action
State.

We perform a similar “explanation” of HC (Step 2). Note
that we only care about itsvalue when WC is possibly true;
thusthe influences for HC are only added to the I eft branch
of thefirst partia tree. Finally, the (more interesting) con-
ditions under which 1/ becomes true or false are also read
from the network and added to the partial tree (Step 3). At
this point, the leaves of this partia tree are labeled with
probabilitiesthat determine the precise probability of end-
ing up in any of the regions determined by theinitial value
tree. By computing this expected future value (together
with discounting and adding theimmediate reward), we de-
terminethetree @), shown in Figure 3(a).

Given a set of Q-trees (one for each action) produced us-
ing avalue function V', we can construct a tree represent-
ing Vit! by simply “merging” thesetrees; that is, we create
aminimal subsuming tree (one that makes all distinctions
common to the set) and choose the maximum Q-value for
each new region. This corresponds to performing a Bell-
man backup according to Equation (1). Once agood value
function V" is obtained, the set of Q-trees with respect to
V™ can be used to produce a structured policy, by merging
and |l abeling with maximizing actions.

4 Approximate Value Trees

The most important feature of SVI isthat it produces a se-
guence of value trees that accurately represent the optimal
n-step valuefunctions, and producesthe smallest trees pos-

sible based solely on structure (modul o variable ordering).
Unfortunately, it may beinherently difficult to construct an
optimal value function and policy for certain problems be-
cause they fail to exhibit enough structure to admit com-
pact representation.’ Certainly, there is a very clear ten-
dency for the sequence of value trees produced in SVI to
make progressively morefine-grained distinctions, some of
which may have amargina effect on value.

Wenow consider strategiesthat removedi stinctions(nodes)
in the tree that induce small differences in value. The re-
sulting pruned value tree will no longer reflect regions that
haveidentical value, but regionsof similar value. Our basic
policy construction scheme will be an approximate version
of SVI (caled ASVI). In broad outline, we will construct
a segquence of approximate ranged value trees by: a) prun-
ing a value tree so that it makes fewer distinctions and ap-
proximatesitstrue value; b) generating a new valuetree by
structured Bellman backup based on the approximate value
tree. Essentially, we will perform region-based dynamic
programming, but coalesce regions that make distinctions
of marginal utility. We describe the ASV1 algorithmin the
next section. Wefirst describeranged valuetreesand strate-
giesfor pruning asingletree.

Suppose we are given a value tree such as that in Fig-
ure 3(a), but are unhappy with its size. A simple way to
reduce the size of the tree is to replace a (nontrivia) sub-
treewith asingleleaf, for example, asshownin Figure3(b).
Since we no longer distinguishing (e.g.) W R-states from
W R-states, the resulting tree can only approximately rep-
resent the true value function. One obviouschoice of value
assignment for the larger region (new leaf) isthe midpoint
of the val ues being repl aced—thi s minimizesthe maximum
error in the approximate value tree. We could instead |abel

SFor instance, one can easily construct examples of small
(polynomial) Bayes net descriptions of MDPs that have value
functions with many (exponential) distinct values [5].
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Figure 3: (a) Value Tree and (b) Pruned Range Tree

the new region with arange encompassing all replaced val-
ues (as shown in thefigure). Rangesplay avauablerolein
ASVI, so we assume that all approximate value functions
are represented by ranged value trees (r-trees): each lesf is
labeled with a range [u, [] representing the maximum (up-
per) and minimum (lower) values associated with states in
the corresponding region. Point-val ued regions (hence, ex-
act value functions) are represented by setting v = 1.

For any ranged value function 1/, we take the upper value
function VT to betheval uefunctioninduced by considering
the upper entries of V. The lower value function VV+ and
the midpoint function V¢ are defined in the obvious way.
In choosing aparticular value for aregion given V' (e.g., in
action selection), one can obvioudy recover the midpoint
from therange and usethe function V< asneeded. For any
state s and ranged function V', we define span(s) tobeu —1,
where v and [ are the upper and lower values for theregion
containing s. The span of 1/ is the maximum of all such
spans. The maximum error in the induced value function
V<, assuming that the rangesin V' contain the true values
of all states, isspan(1)/2.

When pruning an r-tree, we may either want the most ac-
curate tree of a fixed (maximum) size, or the smallest tree
of afixed (minimum) accuracy. Thisproblem, of coursg, is
strongly related to work on pruning decision trees in clas-
sification. Given a fixed decision tree (assuming training
has been completed), Bohanec and Bratko [3] present an
algorithm for producing the sequence of pruned trees of
decreasing size such that each tree in the sequence is the
most accurate among all trees of that size. We can apply
similar ideas in our setting, where the aim is to produce
ranged value functions with the smallest span. The algo-
rithm is shown in Figure 4. Several points are worth not-
ing. We assume that the initial tree is ranged, and produce
the new r-trees with (possibly) larger ranges by collapsing
subtrees. The sequence of trees isimplicit in the variable
SEQ-LABEL : subtrees are replaced in the order described

by SEQ-LABEL. If variables are boolean, the sequence of
produced treesisdense (thereisatreefor each sizelessthan
theinitial sizeof thetree). Finally, in practice, thea gorithm
isnot runto completion. Instead, weterminatewhen either:
a) ther-treeat some point hasarangelarger than some max-
imum specified range §, in which case the previous pruned
tree isthe desired tree; or b) the r-tree has been reduced to
some maximum allowable size. Which of these choicesis
used will be application dependent.

The amount of pruning that one can do by removing sub-
trees, within acceptable tol erances—indeed the size of the
tree before pruning—may be strongly influenced by the
node ordering used inthevaluetree. Again, thisissuearises
in research on classification [21, 25]. Finding the smallest
decision tree representing agiven functionis NP-hard [14],
but there are feasi bl e heuristics one can usein our setting to
reorder thetreeto make it smaller and/or more amenable to
pruning. Among these, one appears rather promisingand is
strongly related to the information gain heuristic [21].”

5 Policy Construction with Approximate
Value Functions

5.1 TheASVI Algorithm and its Properties

Armed with amethod for pruning an r-tree, we now exam-
ine how this can be applied to a policy construction tech-
nique like SVI. Our basic strategy can be described as fol-
lows. We use the reward Tree(R) as the ranged function

v (the ranges initially will be point values). Given any

"Roughly, we take the existing tree and categorize each vari-
able according to the size of the ranges induced when it is either
true or false—this can be donein one sweep through the tree. The
variable with the smallest rangesisinstalled at the root of the tree
(e.g., see[25]). Thisis repeated with the variables remaining in
the new subtrees. We defer details to the full paper. (Thanksto
Will Evansfor his help with theseideas.)



Input: ranged valuetree T’
Output: Labels SEQ-LABEL indicating order in which to replace
subtreesrooted at labeled node

1. Let SEQ =1

2. Let F bethe set of penultimate nodesin 7" (non-leaf nodes
all of whose children are leaves)
3. Foreachn € F, set R-label(n) = [un, ] Where
un, = max{u : [u,l] labelsachild of n}, andl,, = min{l :
[u, ] labelsachild of n}, and
4. While F' # 0
(@ Letn = argmin{u, — I, F}
(b) SetSEQ—LABEL(n) = SEQ SEQ = SEQ+1
(c) SetF = F — {n}
(d) If m = Parent(n) existsand Children(m) N F = 0
thenadd m to F and set R-label(m) = [um, l,»] where
Um = maxq{u. : [uc,l.] isR-label of achildc} l,,, =
min{l; : [uc, ] isR-label of achild ¢}

Figure 4: Algorithm for Optima Sequence of Pruned
Ranged Value Trees

1 SetV’ = R;seti=0
2. PruneVO, under some pruning criterion, to produce Vo
3. Repeat until stopping criterion holds (w.rt. V¢ and Vt1)

(a) Construct ranged Q-trees Q ! for each action a usi ng

Vi asthe terminal Vfaluefunctlon

(b) Mergethetrees Q to produce ranged valuefunction
—i+1
v

(c) Prune vt , under some pruning criterion, to produce
V1 Increment ¢

Figure5: Genera Structure of ASVI

ranged function Vﬁ we create a pruned tree Vi by prun-
ing V' within some specified tolerance (or size) to get a
more compact, but approximate, representation of V'. The
prunedtree V" isthen used asthe basisfor Bellman backups
to produceanew -treeV" . Thisnew r-treeisconstructed
in amanner very similar to that used in ordinary SVI, the
key differencelyingintheuse of therangesin V? instead of

point values. We note that 7' isitself an approximation
of thetruei + 1-step valuefunction V?*!, sinceit was pro-
duced using an approximation of . However, Vi1 will

be further approximated by pruning 7't to produce Vi +1.

TheapproximateSV1 agorithm (ASV1) isdescribed ingen-
eral termsin Figure 5. The general structure showsthe pro-
duction of a sequence of (ranged) approximations V"', V"
of the optimal n-step valuefunctions V™. Thefunction V"
is produced by structured Bellman backup and V" by ad-

ditional pruning. We elaborate on the crucia steps in the
algorithm bel ow.

The steps involved in producing the value function vt
(i.e., Steps 3(a) and 3(b)) are reasonably straightforward,
but deserve some elaboration. The production of the r-tree

@ff proceeds exactly as it does in SVI with one minor
exception. Since the target value tree V' is labeled with
ranges |t isasimplematter to producerangesfor theleaves

of Q " we simply take the expected future value using
the upper values for the target regionsto produce the upper
valuefor aleaf in the new tree and lower values similarly.
Conceptually, we can treat the new Q-tree as having ranges
produced using the trees VT and V4.

Slightly more subtleis the merging of Q-treesin Step 3(b).
Merging requiresthat for each state we determine which ac-
tion choi ce maximizes future expected value. In SVI thisis
reasonably straightforward: we find a partition (tree) that
subsumes each Q-tree and label the leaves of this larger
tree with the maximum val ue from the corresponding parti-
tionsin the set of Q-trees. In ASVI, these partitionsare la
beled with ranges that can’'t necessarily be compared with

amax operator. Instead we label the leaves of 7' with
the maximum of all upper labels of the corresponding par-
titionsin the Q-trees, and the maximum of all lower labels
of the corresponding partitions. Clearly, choosingthe maxi-
mum of the upper labelsiscorrect and boundsthetruevalue
of astate s. In the case of the lower |abels, there exists an
action that guarantees state s has the maximum of the ex-
pected values among the lower labels, namely the action
used to derive the maximizing Q-tree. Thisis therefore a
tight lower bound on the true value of state .2

The termination of ASVI raises some interesting issues.
Exact value iteration is guaranteed to converge because the
transformation operation (the Bellman backup) on value
functionsisacontraction operator with respect to thesupre-
mum norm (see Equation (2)). The same does not apply
when the intermediate value functions are approximated.
Indeed, without a well-thought out stopping criterion, we
can construct (quite straightforward and natural) examples
in which the pruning of value trees causes ASVI to cy-
cle through a sequence of identical value functionswithout
termination.® To deal with this situation, we adopt a fairly
conservative approach: we stop whenever theranges of two
consecutivevaluefunctionsindicate that the criterion given

#Note that this argument relies crucially on the fact that we
need not pick an action at this point; there will generally beno sin-
gle action that one can assign to each state in the region to ensure
this maximum lower bound is achieved for all states. But thisis
irrelevant to the construction of the value function.

?For further discussion of convergenceproblemsthat arise due
to approximation, see[8].



Table 1: Resultsin the 400 state domain for both fixed and dliding tolerance pruning.

Fixed Tolerance Sliding Tolerance
Pruning | Iterations | Time(s) | Max. Error || Pruning | Iterations | Time(s) | Max. Error
0 20 761 0
1 13 156 0.105 5% 11 100 0.708
2 12 129 0.478 10% 11 68 2.190
3 11 88 0.707 15% 11 59 4.596
5 11 70 1.037 20% 10 43 6.012
7 8 46 2.189 30% 8 28 18.295
9 2 1 42.47 40% 6 14 21.436
10 2 1 74.135 50% 5 8 33.019
by Equation (2) might be satisfied. Specifically, theuseof  Then
encompassing ranges allows us to test this condition in a . B(25 + ¢)
way tht isi . o : : V=Vl < ———
ay isimpossiblewith simple point val ued approxima- 1-8
tion. For any two ranged value functions V, W, we define
The induced policy = is such that
[
(V=W)(s) =min{|r—7+/|: Vi(s) §T§VT(5),
26(26 + ¢
Wt(s) <r < WT(s)} IV* = Vil < 6(176)

We terminate ASV1 when the following condition holds:

. V] .
Vi — Vi <e 3)

In other words, when the ranges for every state in succes-
sive value approximations either overlap or liewithin ¢ of
one another, we terminate. We note that testing this con-
dition with two r-trees is quite simple, involving only the
congtruction of a(minimal) subsuming tree.

Regardless of the pruning criterion, as long as it produces
sound r-trees, we can show the following results.

Prop. 1 Let Vi be the ith value tree produced by ASVI.
Then Vit < Vi < Vit

Thus the i-step ranged value functions “contain” the opti-
mal i-step value functions for the MDP. For finite-horizon
problems, thisis an important characteristic. It alows one
to specify different error boundsfor different regions of the
state space—if the value function is accurate in certain re-
gionsof the state space, thisknowledgeisnot “washed out”
inglobal error by larger error in other regions. With respect
to infinite horizon policies, Proposition 1 guarantees termi-
nation:

Prop. 2 If the stopping criterion specified by Equation (3)
isused, ASVI isguaranteed to terminate. Itsrate of conver-
genceislinear (at least that of value iteration).

Finally, it iseasy to verify the following error bounds.

Prop. 3 Let ASVI terminate (according to Equation (3))
with ranged value function V = V%; and let § = span(V/).

We note that the methods of SPI, as described in Section 3,
can be agpplied to produce atree-structured policy using the
midpoint value function 1< 10

It isa so worth noting that the argument for convergence of
ASVI cannot be applied to ASPI (approximate structured
modified policy iteration). ASPI requires that intermediate
policies be produced (and partially evaluated); but because
ranges are used one cannot generally guarantee that the se-
guence of policiesis improving. One action may be better
in one part of aregion but worse in another. While ASPI
workswell on many examples, it can rather easily fal into
cyclicbehavior. Thus, valueiteration seemstheideal candi-
date for approximation using ranges. However, we are cur-
rently investigating morerefined applicationsof theseideas
to policy iteration-based algorithms.

5.2 Practical Considerationsand Results

In this section, we consider some of the more pragmaticis-
sues associated with putting ASVI into practice. We first
consider pruning strategies. Suppose we have a desired
“percentage” tolerancet for error (e.g., all approximateval-
ues shouldliewithint = 0.1, or 10%, of truevalue). There
are two ways to implement such atolerance: a) afixed tol-
erance set at

6 max min
= —
Sl |

19See [23] for discussion of policy error given an approximate
value function.



or b) a diding tolerance, where the tree for the n-stage to
go function V'™ is pruned using atol erance of

tZﬁquax _ Rmin|

i=0

(Here R™2* and R™™ are the maximum and minimum im-
medi ate rewards; hence these termsreflect thelargest range
invaluesabtainableover afiniteor infinitehorizon.) A did-
ing tolerance is sometimes useful since the magnitude of
valuefunctions V" tends to grow with n—at early stages a
fixed tolerance may prunetoo aggressively, especially if we
areinterested in producing reasonably accurate value func-
tions a al stages. However, both approaches give good
results, for the fixed tolerance scheme will stop pruning
smaller distinctions eventually. Experiments suggest that
fixed tolerance runs faster, produces less complicated trees
at convergence, and isonly slightly less accurate that dlid-
ing tolerance.

Related to this is the fact that aggressive pruning often
removes small distinctions present in Tree( R), which are
reintroduced in the next stage, which are pruned again, etc.
We are currently exploring methodsthat prune Tree( R) ini-
tialy, and only introduce those distinctions after a suffi-
cient number of iterations. Finally, the error bounds for
SVI are extremely conservative and are due primarily tothe
need to detect convergence. Most of our experiments do
not come close to achieving such poor results. However,
we are exploring methods for running severa more itera-
tions of “fine-tuning” after convergence, focusing on spe-
cific parts of the state space, and methods to detect whether
additional progressis being made.'!

Tables 1 and 2 display the results of pruning in two differ-
ent domains. In both cases, Iterationsis the number of it-
erations of SVI required for convergence, and Max. Error
isthe maximum (over al states) of the difference between
the optimal value of a state and its actua value under the
(approximately optimal) policy returned by ASVI. Table 2
also containsthe average error over all states, and the num-
ber of leaves in the ranged value tree produced. Note that
there is no pruning of Tree(R) or fine-tuning of the reward
tree in either domain, but we are currently exploring such
techniques.

Thefirst domain (Table 1) isamore complex version of the
coffee-robot domain described earlier. It contains eight ac-
tionsand six variables(two of which arefive-valued and the
rest boolean) giving 400 states. Values of states in thisdo-
main rangefrom -90to zero. Even relatively small amounts
of pruning, resultingin errorsof lessthantwo percent, result

1 Other measures such as the span seminorm look promising in
this respect.

Table 2: Resultsin an exponential domain for fixed maxi-
mum error pruning.

Pruning | Iter | Time(s) | MaxErr | AvgErr | Treesize
0 44 3153 0 0 1024
0.25 42 63 1.38 0.047 88
05 33 31 212 0.058 80
1.0 14 6 191 0.068 50
15 3 03 213 0.077 10
2.0 1 0.1 8.10 0.567 1

in an extremely large reduction in computation time.'? As
expected, the actual errors are much smaller than the theo-
retical maximum except when pruning ranges become very
large and result intrivia policies.

Table 1 also compares the effects of fixed and dliding toler-
ance pruning. Fixed tolerance pruning is somewhat faster
than dliding tolerance when compared on runswith similar
error; thisisduetothe much smaller trees produced early on
inASVI. These small initid trees greatly reducethe variety
of possibleval uefunctionsthat can be produced, so that, for
example, any pruning range between six and eight will pro-
ducethesamevaluetreefor thisdomain. Incontrast, diding
tolerance pruning results in much more gradua changesin
value asthetolerancet increases, making it easier to select
good pruning tolerances.

The second domain (Table 2) is one in which every state
has auniqueval ue, leading to worst-case behavior for struc-
tured methods such as SVI. While the problem has a com-
pact input description, SVI must (ultimately) perform back-
upsfor each state, with the additiona overhead of tree con-
struction. The problem consists of ten boolean variableand
ten actions, with 1024 states having values from 0 to 10.
This domain demonstrates the value of pruningin ASV1 in
preventing the exponentia blowup which leads to the very
poor performance of SVI. It aso shows that even when the
same number of iterations are necessary for convergence,
the reduced tree sizes lead to large performance improve-
ments. Thisdomainisan example of onewherevariableor-
deringiscritical. Had we chosen apoor ordering, itislikely
that very little pruning would have been possible, resulting
in littleor no savings.!3

12The time without pruning was produced using SV1 and will
therefore appear quite slow. Better exact algorithms such as SPI
(i.e., structured modified policy iteration) can also be used. The
pruning times still compare very favorably with the 434sfor find-
ing the optimal value using SPI.

13\We havenot yet experimented with variablereordering; ASV|
uses orderings implicit in the problem representation, which tend
to be natural and compact. However, exampleslike this point to
the need for further exploration in reordering before pruning.



6 Concluding Remarks

There areanumber of directionsthat remain to be explored,
including additional experiments with the strategies sug-
gested in the previous section. We are also interested in ap-
proximation methods based on a gorithms other than value
iteration. Finaly, in the full paper we describe the applica-
tion of our pruning method to RL. Roughly, following Diet-
terich and Flann[12], we can use action descriptionsto per-
form (a stochastic, non-goal-based) generalization of goal-
regression aong explored trgjectories. Pruning produces
generalizations of the state space that correspond to regions
with approximately the same (currently estimated) value.
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