Computing Optimal Policiesfor Partially Observable Decision Processes using
Compact Representations

Craig Boutilier and David Poole
Department of Computer Science
University of British Columbia
Vancouver, BC V6T 174, CANADA
cebly@cs.ubc.ca, poole@cs.ubc.ca

Abstract

Partially-observable Markov decision processesprovideagen-
eral model for decision theoretic planning problems, allowing
trade-offs between various courses of actionsto be determined
under conditions of uncertainty, and incorporating partial ob-
servations made by an agent. Dynamic programming algo-
rithms based on the belief state of an agent can be used to
construct optimal policies without explicit consideration of
past history, but at high computational cost. In this paper, we
discuss how structured representations of system dynamics
can be incorporated in classic POMDP solution agorithms.
We use Bayesian networks with structured conditional prob-
ability matrices to represent POMDPs, and use this model to
structure the belief space for POMDP agorithms, alowing
irrelevant distinctions to be ignored. Apart from speeding up
optimal policy construction, we suggest that such representa-
tions can be exploited in the development of useful approxi-
mation methods.

1 Introduction

Recent interest in decision-theoretic planning (DTP) hasbeen
spurred by theneed to extend planning algorithmsto deal with
quantified uncertainty regarding an agent’s knowledge of the
world and action effects, as well as competing objectives
[9,7, 4, 16] (see[2] for abrief survey). A useful underlying
semantic model for such DTP problemsis that of partially
observable Markov decision processes (POMDPs) [6]. This
model, used in operations research [17, 12] and stochastic
control, accountsfor the tradeoffs between competing objec-
tives, action costs, uncertainty of action effects and observa-
tions that provide incomplete information about the world.
However, while the modd is very general, these problems
aretypically specified in terms of state transitions and obser-
vations associated with individual states—even specifying a
problem in these terms is problematic given that the state
space grows exponentially with the number of variablesused
to describe the prablem.

Influence diagrams (IDs) and Bayesian networks (BNs)
[10, 14] provide a much more natural way of specifying the
dynamicsof asystem, including the effects of actionsand ob-
servation probabilities, by exploiting problem structure and
independencies among random variables. As such, prob-
lems can be specified much more compactly and naturally

[8, 4, 16]. Inaddition, algorithmsfor solving | Ds can exploit
such regularitiesfor computational gain in decision-making.
Classic solution methods for POMDPs within the OR com-
munity, in contrast, have been developed primarily using
explicit state-based representations which adds a sometimes
unwanted computational burden. However, unlike 1D algo-
rithms, for which policies grow exponentially with the time
horizon, POMDP algorithms offer concepts (in particular,
that of belief state) that sometimes alleviate this difficulty.

In this paper we propose a method for optimal policy con-
struction, based on standard POMDP algorithms, that ex-
ploits BN representations of actions and reward, as well as
tree [4] or rule [16] representations within the BN itself. In
this way, our technique exploits the advantages of classic
POMDP and ID representations and provides leverage for
approximation methods.

In Section 2, we define POMDPs and associated notions,
at the same time showing how structured representations,
based on BNs (augmented with tree-structured conditional
probability tables), can be used to specify POMDPs. In Sec-
tion 3, we describe a particular POMDP agorithm due to
Monahan [12], based on the work of Sondik [17]. In Sec-
tion 4, we describe how we can incorporate the structure
captured by our representations to reduce the effective state
space of the Monahan algorithm at any point in its computa-
tion. Our algorithm exploitsideas from the SPI algorithm of
[4] for fully observable processes. In Section 5 we suggest
that our method may enable good approximation schemesfor
POMDPs.

2 POMDPsand Structured Representations

In this section we build upon the classic presentation of
POM DPs adopted in much of the OR community. We refer
to [17, 11, 6] for further details and [12, 5] for a survey.
We describe the main components of POMDPs and related
concepts. However, by assuming that problems are specified
in terms or propositional (or other random) variables, we are
ableto describe how structured representations, in particul ar,
decision trees or if-then rules, can be used to describe these
components compactly. We begin with a (running) example.

Example Imagine a robot that can check whether a user
wants coffee and can get it by going to the shop across the

S we
AN
Ves0s Yeso1
. No02 No09

Figure 1: Action Networksfor (a) GetC and (b) TestC

street. Therobot is rewarded if the user wants coffee WC
and has coffeeHC, but ispenalizedif HC isfalsewhen WC
istrue. Therobotwill alsogetwet W if itisraining R when
it goes for coffee, unless it has its umbrella U. We can
imagine a number of other tasks here as well. Although
the robot can check on the weather, grab its umbrella,
etc., we focus on two actions. getting coffee GetC and
checking whether the user wants coffee by means of a
quick inspection TestC.

2.1 System Dynamics
We assume a finite set of propositions P that describe all
relevant aspects of the system we wish to control. Thisin-
duces afinite state space S = 27 consisting of all possible
assignments of truth values to P. There is a finite set of
actions A available to the agent or controller, with each ac-
tion causing a state transition. We assume the system can
be modeled as a POMDP with a stationary dynamics (i.e.,
the effects of actions do not depend on the stage of the pro-
cess). For smplicity we assume all actions can be taken (or
attempted) at all states. While an action takes an agent from
one state to another, the effects of actions cannot be pre-
dicted with certainty; hence (dightly abusing notation) we
write Pr(s2|s1, a) to denote the probability that s, is reached
giventhat action a is performed in state s;. Thisformulation
assumes the Markov property for the system in question.

One can represent the transition probabilities associated
with action a explicitly using a |S| x |S| probability ma-
trix. However, the fact that |S| increases exponentially with
the number of problem characteristics|P| generally requires
more compact representation; thus we represent an action’s
effectsusing a“two-dice” (temporal) Bayesnet [8]: we have
one set of nodesrepresenting the state prior to the action (one
node for each variable P), another set representing the state
after the action has been performed, and directed arcs repre-
senting causal influences between these sets (see Figure 1).
We require that the induced graph be acyclic. For simplicity
we assume also that arcs are directed only from pre-action to
post-action nodes.* See[8, 4] for details.

The post-action nodes have the usual conditional proba-
bility tables (CPTs) describing the probability of their values

1We often denote post-action variables by P’ instead of P to
prevent confusion. Causal influences between post-action variables
should be viewed asramifications and will complicate our algorithm
dlightly, but only in minor detail.

given the values of their parents, under action a. We assume
that these CPTs are represented using a decision tree, asin
[4] (or if-then rules asin [15]). These are essentially com-
pact function representations that exploit regularities in the
CPTs. We will exploit the compactness and structure of such
representationswhen producing optimal policies. We denote
the tree for variable P under action a by Tree(P’'|a).?

Example Figurel(a)illustratesthe network for action GetC.
The network structure shows, for instance, that the truth
of W', whether the robot is wet after performing GetC,
depends on the values of R, U and W prior to the ac-
tion. The matrix for W' quantifies this dependence; and
Tree(W'|GetC) illustrates the more compact representa-
tion (the leaf nodes indicate the probability of W' after
GetC given the conditions labeling its branch: left arcs
denote true and right arcs false). We elaborate on the Obs
variable below.

2.2 Observations

Since the system is partially observable, the planning agent
may not beableto observeitsexact state, introducing another
source of uncertainty into action selection. However, we
assumeaset of possibleobservations O that provideevidence
for thetrue nature of (variousaspectsof) the state. Ingeneral,
the observation at any stage will depend stochastically on the
state, the action performed and its outcome.

We assume a family of distributions over observa-
tions, For each s;, s;,a; such that Pr(s;|s;,a;) > O, let
Pr(oi|s;,ax, s;) denote the probability of observing o, when
action ay, is executed at state s; and results in state s;. (As
aspecial case, afully observable system can be modeled by
assuming O = S and Pr(o|s;, ag,s;) = 1iff op = s;.)
We assume for simplicity that the observation probability de-
pends only on the action and starting state, not the resulting
state; that is, Pr(01|8i,ak,8h) = Pr(ol|sj,ak,sh) for each
SiySj .3

To represent observation probabilitiescompactly, we add a
distinguished variable Obs to each action network that repre-
sents the observations possible after performing that action.
We use Obs(a) to denote the set of possible observations
given a.* The variablesthat influence the observation are in-
dicated by directed arcs, and thiseffect isdescribed, asabove,
using a decision tree. We note that complex observations
may also be factored into distinct observation variables (e.g.,
should the agent get information pertaining to propositions P
and @ by performing one action, two distinct variables Obs;
and Obs, might be used); we ignore this possibility here.

2The network structure is not strictly necessary: the parent of a
post-action node can be determined from its CPT or decision tree
(see, e.g., Poole's [15] rule-based representation of Bayes nets).

Thisisanatural assumption for information-gathering actions,
but others are possible; e.g., Sondik’s [17] original presentation of
POMDPs assumes the observation depends only on the resulting
state. This assumption makes our algorithm somewhat simpler to
describe; but it can generalized (see Section 4).

4These are similar to observation variablesin influence diagrams
[210]; however, there are no emanating information arcs.

Figure 2: Reward Function Network

Example The variable Obs in Figure 1(a) takes on a sin-
gle value (Null), obtained with certainty when GetC is
executed (i.e., the action provides no feedback). More
interesting is the action TestC shown in Figure 1(b). Al-
though it has no effect on the state variables (we assume
persistence), it is useful as an information gathering ac-
tion: the value of the variable Obs (Yes or No) is strongly
dependent on whether the user wants coffee. Should the
value Yes be observed, our robot may be quite confident
the user does, in fact, want coffee (see below).

2.3 Rewards

Thefinal component needed to describe a POMDP isareal-
valued reward function R that associatesrewardsor penalties
with various states: R(s) denotes the relative goodness of
being in state s. We also assume a cost function C(a, s)
denoting the cost of taking action a in state s. The reward
(cost) function can be represented in a structured fashion
using avalue node and decision tree describing the influence
of variouscombinationsof variablesonrewards (aswith tree-
structured CPTs). Leaves of the tree represent the reward
associated with the states consistent with the labeling of the
corresponding branch.

Example Figure 2 shows the reward function for our prob-
lem, indicating that the reward for a particular state is
influenced only by the truth of the propositions W, WC
and HC. A similar representation for action cost can be
used. In this example action costs are constant: a cost of
1.0for GetC and 0.5 for TestC is assumed.

The sets of actions, states and observations, the associated
transition and observation probabilities, and the reward and
cost functions, make up aPOM DP. We now turn our attention
to the various concepts used in decision-making.

2.4 Policies

We focuson finite-horizon problems here: given a horizon of
Size n an agent executes n, actions at stages O throughn — 1
of the process, ending up in aterminal state at stagen. The
agent receives reward R(s) for each state s passed through
at stages O through n (its trgjectory). A plan or policy is a
function that determines the choice of action at any stage of
the system’s evolution. The value of apolicy isthe expected
sum of rewards accumulated (incorporating both action costs
and state rewards and penalties). A policy is optimal if no
other policy has larger value.

In choosing the action to perform at stage & of the process,
the agent can rely only onitsknowledge of theinitial state sg
(whether it knowsthe state exactly, or had an initial distribu-
tion over states), and the history of actionsit performed and

observations it received prior to stage k. Different action-
observation histories can lead an agent to choose different
actions. Thus, a policy can be represented as a mapping
from any initial state estimate, and k-stage history, to the ac-
tion for stage k + 1. Thisisroughly the approach adopted by
solution techniques for IDs [10]. However, an elegant way
to treat this problemisto maintain a current belief state, and
treat policies as mapping over from belief states to actions.

2.5 Bédlief States

A belief state 7 € A(S) is a probability distribution over
states. The probability =; assigned to state s; by « is the
degree of belief that the true (current) state of the system is
Si.

Given some state of belief 7 estimating the system state
at stage k of the decision process, we can update our belief
state based on the action o* taken and observation o* made
at stage k to form anew belief state 7*+* characterizing the
state of the system at stage k + 1. Oncewe haver**1inhand,
the fact that o*, o* and 7* gave rise to it can be forgotten.
We use T'(w, a, 0) to denote the transformation of the belief
state 7 given that action a is performed and observation o is
made: it isdefined as

ESJES Pr(O|Sj, a, Si)PI’(S”Sj, a)7rj
Zs]nskes Pr(o|5jv a, sk)Pr(Sk|Sj, a)7rj

T(w,a,0); denotesthe probability that the systemisin state
i once a, o are made, given prior belief state 7.

The new belief state T'(w, a,0) summarizes all informa-
tion necessary for subseguent decisions, accounting for all
past observations, actions and their influence on the agent’s
estimate of the system state. This is the essential assump-
tion behind classical POMDP techniques: at any stage of the
decision process, assuming 7* accurately summarizes past
actions and observations, the optimal decision can be based
solely on ¢ — history (now summarized) can be ignored
[17]. Intuitively, we can think of this as converting a par-
tially observable MDP over the original state space S into
a fully observable MDP over the belief space 5 (the set of
belief states 7).

A belief state may be represented using a vector of |S|
probabilities; but structured representations are possible. We
do not pursue these here, since most POMDP solution algo-
rithms do not use a belief state to construct a policy.

T(ﬂ-7 a, O)i =

2.6 ValueFunctions

State Value Functions: A statevaluefunctionVS: S — R
associates a value VS(s) with each state s. This reflects
the expected sum of future rewards the agent will receive,
assuming some fixed policy or sequence of actions in the
future. In addition, a state Q-function) : S x A - R
denotes the value Q(s, a) of performing an action a in state
s, assuming future value is dictated by a fixed course of
action [18]. In particular, let VS* and Q* be the k-stage-to-
go value and Q-functions. If the function VSF~1 is known,
then Bellman’s[1] optimality equation ensures that

Q¥ (51, 0)=C(a, i +R(s:)+ X, P (3511, VS (s))
VS (si) = maxX,c 4{Q% (si,a)}

1)
2

5
Q
o

V(m

oo N s O ®

o

05 10
Pr(Q) q 3 4

k<]

Figure 3: Piecewise Linear, Convex Value Function

Intuitively, once the agent has determined a course of action
for the last k — 1 stages of the process (giving riseto VSF—1),
Equation 1 determinesthe value of executing action a at any
state. In the case of fully observable MDPs, this forms the
basis of a dynamic programming a gorithm that can be used
to optimize the choice of action according to Equation 2.

We can represent value and Q-functions using decision
treesin precisely the same manner as reward functions (e.g.,
Figure 2). Figure 5 illustrates just such value and Q-trees.
In fact, as we will see below, we can apply these equations
directly to such structured representations.

Belief State Value Functions: Unfortunately, in the case
of POMDPs, determining the best action for individual states
is not often helpful, for the agent will typically not know the
exact state. However, the assignment of value to states via
value and Q-functionscan also be viewed as an assignment of
value to belief states. In particular, any state value function
VSinduces avalue function over belief states:

a(m) =7-VS= Y mVS(s;)

$; €S

Following Monahan [12] we cal these a-functions. The
value of a belief state is the weighted sum of the individual
state values; thus, such a-functionsour linear functions over
belief states. Q-functions can be applied similarly to belief
states. Finally, we notethat avaluetree or Q-tree can be used
to represent a linear value function over belief states; when
interpreted this way, we call these a-trees. In the sequel, we
assume that a-functions are represented by «a-trees.

In determining optimal policies for POMDPs, we need
to represent the optimal (k-stage-to-go) value functions V' :
A(S) — R for belief states. Clearly, a-functions, being
linear, are quiterestrictivein expressiveness. However, akey
observation of Sondik [17] is that optimal value functions
are piecewiselinear and convex (p.l.c.) over the belief space.
In other words, we can represent the optimal (k-stage-to-go)
value function for any POMDP as a set 8 of a-functions,
with

V(r) = max{a(r) : a € R}

(We will see exactly why thisis so in the next section.)

As a graphical illustration of this p.l.c. representation,
consider Figure 3. Assume asingle proposition () (two states
¢ andg) and thethree a-functions a, az, as, al represented
astrees. Each a-tree determines a linear value function for
any belief state (e.g., a; takesits highest value at belief state
w(q) = 0;7(q) = 1). The set {au, az, a3} corresponds to
the p.l.c. value function indicated by the thick line.

B v3 vé4 C
vl v2 V5 V6
a a

Figure 4: Structured Domination Testing

Dominated a-functions: Finally, we note that certain el-
ements of a set X of a-functions may contribute nothing to
theinduced p.l.c. value function, namely, those elementsthat
are stochastically dominated. For instance, az in Figure 3
is dominated by one of a; or «ay at al points in the belief
space. Monahan [12] suggests that such dominated elements
be detected by means of a simple linear program and elimi-
nated from R (see also [5]). Once again, the use of a-trees
can in many cases considerably reduce the size of these LPs,
which normally involve variables for each state. For exam-
ple, to consider whether the tree a4y dominates s, as shown
in Figure 4, the required LP need only have variables corre-
sponding to the propositions AB, AB, AC and AC, rather
than | S| variables.

3 Computation of Optimal Policies

We now describe how to use the ideas above to to determine
optimal policies for POMDPs. We begin by presenting the
intuitionsunderlying Monahan’s[12] variant of Sondik’s[17]
algorithm, and how the p.l.c. nature of value functions is
exploited. We describe how our compact tree representations
can be exploited in the next section.

Given a POMDP, we want to determine a policy that se-
lects, for any belief state 7, and & > 0 within the problem
horizon, the optimal action to be performed. Intuitively,
Pol(m, k) € A is the best action available to the agent as-
suming its state of belief is 7 and there are k stages of the
process remaining. Unfortunately, representing such a func-
tion can be problematic, since the set of belief states B is a
|S|-dimensional continuous space. However, Sondik’s key
observation that k-stage-to-go value functions are p.l.c., and
thus finitely representable, also provides a means to finitely
represent policies (albeit indirectly). Intuitively, the determi-
nation of the “pieces’ of the the k-stage-to-go value function
will attach actions to each of these pieces. To determine
the best action to be performed for a given belief state 7, the
action associated with the“ maximal piece” of thevaluefunc-
tion for 7 will bethe best action. Thus, actionsare associated
with various regions of the belief space, regions determined
by the value function itself.

To see this, we first note that with zero stages-to-go the
agent has no action choiceto make, and the expected val ue of
beinginany belief stateisgiven by the a-function determined
by immediate reward R; that is, V() = 7 - R. Thus, V% is
alinear function of 7. We call this single a-function a°.

The computation of V! dependsonly on V° andillustrates
why the value functionsremain p.l.c. The value of perform-
ing any action a in a given state s is given by Q(a, s), as
defined in Equation 1, using R (or V°) astheterminal value.

Since the agent has no choice of action at stage 0, any ob-
servationsit makes subsequent to performing this action can
have no influence on its behavior or the expected value of the
action. Hence, this Q-function can be interpreted as an a-
function (say o) over belief states in the obviousway. The
value of 7 with one stage remaining requires that we choose
an action a that has maximal ()-value; in other words,

Vi(r) = max{al(n) : a € A}

However, since each of the ot islinear, V1 isp.l.c. and has
afinite representation — the set of at-functions themselves.
We dub this set R,

It is worth noting that the optimal action choice given
7 with one stage-to-go, while not represented explicitly, is
easily determined from R*: if ol isthe member of R* that
maximizes o (), then a is the best action choice. For any
af € R*, we say a isthe action associated with ¥ In this
algorithm, apolicy is represented implicitly in thisway.

Determining V2 requires that we take observations into
account. To begin, we note that to determine the value of
action a with 2 stages-to-go, we alow for the fact that the
action b chosen with 1 stage-to-go (and thereforethe function
ai representing future value) can depend on the observation
o made after a. This dependence is accounted for using
observational strategies: the action chosen with k-stages-
to-go can depend on the observation made following the
execution of action a with k£ + 1 stages-to-go. Specificaly,
given aset R* of a-functions denoting possible future value,
an observational strategy is afunction OS: A x Obs — R,
For any o € Obs(a), we use o | to denote OS(a,0). We
write OS, to denotetherestricti on of OSto aparticular action
a.

For agiven action a, the value of performing a with k + 1
stages-to-go, given an observational strategy OS,, is given
by
QOS(G’7 Si)

= Cla,s;) + R(s;) + Z

0€O0bs(a) s; €S

= Z Pr(o|s;, a)QaE‘O(a, ;)

0€0bs(a)
where @« is the Q-function given by Equation 1, using

of , asthe terminal value function. Each Qg also deter-
mines an a-function over belief states. From this we derive
thetrue Q-function, by maximizing over observational strate-
gies:

Q(a,s) =
The state value function is determined using the Q-functions

by Equation 2, leaving uswith adefinition of the k + 1 stage
value function over belief states:

VE ()= - V:%; mi - max max{Qos, (4 5)}

gan{Qos, (a,s)}

Thus, V**1 is p.l.c. and can be represented by the set of
a-functions {Qog, : a € A}. We let R¥+1 be this set of

Z Pr(s;lo, si,a)a’;,o(sj

a-functions, defined in terms of X, (since each OS, mapsan
observation into an element of Xy).

This givesthe basic intuitions underlying Monahan’svari-
ant of Sondik’s algorithm. To determine the set of k-stage-
to-go value functions V* for k < n, where n is some finite
horizon, we simply iterate the following algorithm for n
steps:

1. LetR0 = {R}
2. For 0 < k < n, compute X"t = {Qpg :a € A}

As mentioned above, the optimal action choice at stage k
for any 7 is determined by the computing the o* € R, that
maximizesvalue of 7 and adopting the the action associated
with a*. We emphasize that the policy is not explicitly
represented.

Generally, many of the generated a-functionsin X, will be
irrelevant: they never influence the optimal policy because
they aredominated by other elementsof ;. Monahan’salgo-
rithmincludes a pruning phase at each iteration that removes
dominated componentsfrom X, (see Section 2.6).

4 Structured Computation of a-Functions

We now turn our attention to using the structured repre-
sentations described in Section 2 in Monahan's algorithm.
The aim isto obviate the need to compute and represent the
values of each state—each coefficient in the a-functions—
individually. Beginning with a tree representation of the
reward and cost functions, we use the tree-structured repre-
sentation of CPTsin our action and observation descriptions
to ensure that as much structure as possible is preserved in
the generation of the elements of X1 from X;. Thus, we
treat each R, asacollection of a-trees, and show in two steps
how to generate a the set of trees X1 from the set Ny,.

4.1 Generation of a Single a-treefor an action

The generation of an a-tree in Y1, using a particular ac-
tion a and strategy OS,, requires we compute the function
(s, » given by Equation 3, in structured form. We note that
'[hIS computation naturally breaks into two parts: first, we
compute the function @« _ for the individual observations

o € Obs(a); and then we piece them together, taking the
sum of the Q) D-func‘uona weighted by the probability of
observing o. We focus on the construction of Qo first.
The function @« . describes the value of perform| ng a
fixed action « at a state s, assumi ng the value of subsequent
statesisgivenby «, ,. For clarity, welet o denotethe a-tree
for g, and @, denote the tree-structured function Qax .
we wish to construct (i.e., a and o are fixed). Our method
for generating the new (Q-tree exploits the ideas described
in[4], and is closely related to [15] (we refer to [4] for fur-
ther details). Roughly, given a structured value function a,
the conditions under which two states can have different ex-
pected future value given by « (under action a) can be easily
determined by appeal to the action network for a. In par-
ticular, although an action may have different effects at two
states, if the differences pertain only to variables (or variable
assignments) that are not relevant to the value function «,

wc wc | wc | wc
/\ /\ 1 /\ 1 /*W
| | /\
HC w we we HC weoo | HC
/\ /\ PN ! T W R
w1 we W W Vi
w w1 0 0 I /\ /\ u w
VANVAN N
we R we R weoo weoo
W
vozs 2 PR W
U U
/\ /\

HC10 HC10 HC09 HCO9
Initial Value Tree Stepl Sep2 W00 Wi0 Step3 W00 W10

Figure 5: Generating Explanation of Future Value

then those states have identical expected future value and
need not be distinguished in the function ,. We construct
the tree o* so that only these relevant distinctions are made.

Construction of @, proceeds abductively: given the tree
«, we want to generate the conditions that, prior to the per-
formance of action a, could cause the outcome probabilities
(with respect to the partitions induced by «) to vary. We
proceed in a stepwise fashion, “explaining” each of the in-
terior nodes of « in turn, beginning with the root node and
proceeding recursively with its children. It is important to
remember that al of the propositionsin « refer to the state
at stage k, and that each of the propositionsin @, refer to
stage k + 1. These propositions are related to each other via
the state-transition trees for action a. Space precludes a fulll
exposition of the method—uwe refer to [4] for details of this
method (applied to fully observable MDPs)—so we present
asimple example.

Example To illustrate this process, consider the following
example, illustrated in Figure 5. We take the immediate
reward function (see Figure 2) to be atree o° (the initial
value tree), and we wish to generate the expected future
value tree for stage 1 assuming action GetC is taken and
that o.° determinesvalueat stage 0. Webegin by explaining
the conditions that influence the probability of WC' under
GetC (Step 1 of Figure5). This causes Tree(WC'|GetC) to
be inserted into the tree «: asindicated by Figure 1, WC'
isnot affected by the action GetC, and thusremainstrue or
false with certainty. The leaves of this partial tree denote
the probability of WC' being true after the action given
its value (WC) before the action. We then explain HC'
(Step 2). Sincetheinitia valuetree assertsthat HC isonly
relevant when WC istrue, the new subtree Tree(HC'|GetC)
is added only to the left branch of the existing tree, since
WC' has probability zero on the right.

Again, the probabilities labeling the leaves describe the
probability of the variable in question after the action,
while the labels on interior nodes of the branches re-
late the conditions before the action under which these
probabilities are valid. This becomes clear in Step 3,
where we consider the conditions (prior to GetC) that af-
fect the occurrence of W' (wet) after GetC: the relation
(Tree(W'|GetC)) is complex, depending on whether the
robot had an umbrella and whether it was raining. This
final tree has al the information needed to compute ex-
pected future value at each leaf—the probabilities at each
leaf uniquely determine the probability of landing in any

HC

E R
S TT— 0 /3 T~ 25 05
W W -1.0 w w
/N U /N
10 R 34 R _fo/_zo 15 35 -65 -45
e
U U
PN PN
30 20 14 24
C(l: Treefor GetC u2: Treefor TestC

Figure 6: a-treeswith 1 Stage-to-go

partition of initial value tree under GetC.

Finally, we note that to get the true expected value (not just
future value), we must add to each of these trees both the
current state value R(s) and the action cost C'(a, s). This
will generally require the ssimple addition of cost/reward to
the values labeling the leaves of the current tree, though
occasionally a small number of additional distinctions may
be required. Figure 6 shows the expected (total) value tree
for GetC obtained by adding R(s) and C(a, s) to the future
valuetree of Figure 5. Figure 6 also showsthetreefor TestC.

4.2 Incorporating Observations

To account for observations, every element of X* must corre-
spond to a given action choice a and an observation strategy
that assigns a vector in X*~1 to each o € Obs(a). We now
consider the problem of generating the actual a-tree corre-
sponding to action a and the strategy assigning a; € RF—1
to the observation o;.

Since the conditions that influence the probability of a
given observation affect expected future value (since they
affect the subsequent choice of a-vector with k — 1 stages-
to-go), the new tree o must contain these distinctions. Thus
« ispartialy specified by Tree(Obs|a), the observation tree
correspondingto action a. Recall that the branchesof thistree
correspondto the conditionsrel evant to observation probabil -
ity, and the leaves are |abeled with the probability of making
any observationo;. Totheleavesof T'ree(Obs|a) weaddthe
weighted sum of the explanation trees (see also [16]). More
specifically, at each leaf of Tree(Obs|a) we have a set of
possible (honzero probahility) observations; for exposition,
assume for some leaf these are o; and o;. Under the condi-
tions corresponding to that |eaf, we expect to observe o; and
oj with the given probabilities Pr(o;) and Pr(o;), respec-
tively. We thus expect to receive the value associated with
the explanation tree for «; with probability Pr(o;), and that
for a; with probability Pr(o;). We thus take the weighted
sum of these trees and add the resulting merged tree to the
appropriate leaf nodein T'ree(Obs|a).

SComputing theweighted sum of thesetreesisrelatively straight-
forward. We first multiply the value of each leaf node in a given
tree by its corresponding probability. To add these weighted trees
together involves constructing a smallest single tree that forms a
partition of the state space that subsumes each of the explanation
trees. This can be implemented using a simple tree merging opera-

Yes0.8 Yes0.1
No 0.2 No 0.9

Step 1 Step2 € Step 3

Figure 7: New «a-treefor Stagen — 2

Example Consider the following exampleillustratedin Fig-
ure 7. We assume that trees a1 and aip, the treesfor GetC
and TestC in Figure 6, are elements of X1. We consider
generating the new tree o to be placed in X? that corre-
sponds to the action TestC and invokes the strategy that
associates ai; with the observation Yes and o, with the ob-
servation No. We begin by using the observation tree for
TestC: the observation probability depends only on WC
(see Step 1 of Figure 7). We then consider the weighted
combination of the trees a; and «, at each leaf: to the
leaf WC we add the tree 0.8a4 + 0.2a» and to WC we
add 0.1« + 0.9a,. Thisgivesthe “redundant” treein the
middle of Figure 7. We can prune away the inconsistent
branches and collapse the redundant nodes to obtain the
final tree «, shown to the right.

We notethat this simple combination of treesisduein part
to the dependence of observationson only the pre-action state
(asisthe “separation” in Equation 3). Thisallows the direct
useof T'ree(Obs|a) inassessing theinfluence of observations
on the values of pre-action states. However, should observa-
tions depend instead on the post-action state asis usual inthe
POMDRP literature[17, 6], our algorithm is complicated only
in dight detail. In thiscase, T'ree(Obs|a) refersto variables
in the state following the action, (recall we are interested in
the values of states prior to the action). Generating the prob-
ability of the observations based on pre-action variablesiis,
however, asimple matter: wesimply generatean explanation
for the observation in a manner similar to that described in
Section 4.1 (though, in fact, much less complicated). The
standard explanation trees are then merged together within
this slightly more complicated tree instead of T'ree(Obs|a).

4.3 Generation of X; and Pruning

The algorithm for construction of the structured value func-
tion proceedsexactly asMonahan’salgorithmin the previous
section. Thesubstantial differenceisthat we start with atree-
structured initial reward function as the sole a-tree at stage
0, and generate collections X* of a-trees rather than sim-
ple (e.g., vector-represented) a-functions. The process de-
scribed above involves some overhead in the construction of
explanation trees and piecing them together with observation
probabilities. We note, however, that we need not generate
the trees for @, = for each observation strategy individu-

ally. Thistree depends only on a and 0/370, not on o. Thus,
tion (for example, see [4] where similar tree merging is used for a
different purpose). Interms of rules[16], this effect is obtained by
explaining the conjunction of the roots of the trees.

we need only construct |.A||N*| such trees; the | A||O]|R¥|
different trees in X¥+1 are simply different weighted com-
binations of these (corresponding to different observational
strategies). Further savings are possible in piecing together
certain strategies (e.g., if OS, associates the same vector
with each observation, the explanation tree for a can be used
directly).

One can prune away dominated a-trees from R*, as sug-
gested by Monahan. As described in Section 2.6, this too
exploitsthe structured nature of the a-trees.

Finally we note that most POMDP agorithms are more
clever about generating the set of possible a-vectors. For
example, Sondik’sa gorithm does not enumerateall possible
combinations of observational strategies and then eliminate
useless vectors. We focus here on Monahan's approach be-
causeit is conceptually simple and allows usto illustrate the
exact nature of structured vector representationsand how they
can be exploited computationally. We are currently investi-
gating how algorithmsthat use more direct vector generation
can be adapted to our representation. The Witness algorithm
[6] appearsto beapromising candidatein thisrespect, for the
L Ps used to generate “ promising” a-vectors are amenableto
the representations described here.

4.4 Executing Policies

Given R* and a belief state 7, we can determine the optimal
action with k stages-to-go by choosing an a € X* such that
7 - wismaximal, and carrying out the action associated with
«. We can then make our observations, and use Bayes rule
to update our belief state. We are then ready to repeat and
choose an action for the next stage.

The structured representation of value functions, which
will generally be compact, can aid policy execution as well.
This will be especially true if the belief state is itself rep-
resented in a structured way. The expected value of belief
state 7 is the sum of the values at the leaves of the a-tree
multiplied by the probabilities of the leaves. The probability
at each leaf is the probability of the conjunction of propo-
sitions that lead to it (which can be derived from the belief
state). Moreover, this also specifies which probabilities are
required as part of the belief state (and which may be ig-
nored). For instance, if it is discovered in the generation of
the value function that certain variables are never relevant to
value, these distinctions need not be made in the belief state
of the agent.

5 Approximation Methods

While the standard vector representation of a-functions re-
quires vectors of exponential size (in the number of proposi-
tions), computing with decision trees allows one to keep the
size of the representation relatively small (with potentially
exponential reduction in representation size). However, our
example illustrates the natural tendency for these trees to
become more “fine-grained” as the horizon increases. De-
pending on the problem, the number of Ieaves can approach
(or reach) the size of the state space. In such cases, the
overhead involved in constructing trees may outweigh the
marginal decrease in effective state-space size.

However, an additional advantage of tree (or related) rep-
resentations is the ease with which one can impose approx-
imation schemes. If the a-tree makes certain distinctions
of marginal value, the tree can be pruned by deleting inte-
rior nodes corresponding to these distinctions. Replacing the
subtrees rooted at U in tree ay of Figure 6 by a midpoint
value introduces a (maximum) error of 0.5 in the resulting
approximate value function. This may be acceptable given
the shrinkage in the representation size it provides. This
contraction has the effect of reducing the size of new trees
generated for subsequent stages, aswell. In addition, the er-
ror introduced can be tightly controlled, bounded and traded
against computation time.® In this sense, tree-based repre-
sentations provide an attractive basis for approximation in
large discrete problems.

A major difficulty with Monahan’sal gorithmisthefact that
the number of (unpruned) a-functions grows exponentially
with the horizon: R* contains (]A[|O|)* pieces. Of course,
pruning dominated a-functions can help, but does not reduce
worst-case complexity. The methods above address the size
of a-trees, but not (apart from pruning) their number.

A second advantage of the tree-based representation, and
approximation schemes based upon it, is the possibility of
greatly reducing the number of a-trees needed at each stage.
By blurring or ignoring certain distinctions, the number of
dominated vectors (hence the amount of pruning) may be
increased. Inaddition, “approximatedomination” testing can
be aided: for example, if one tree has strictly worse values
than another except for dightly better values in one small
region of the state space, it could be pruned away. Again,
the compactness of the a-trees can be exploited in such tests,
as in Section 2.6. Indeed, this complements certain work
that reduces the number of a-functions, such as[13].” These
suggestions are, admittedly, not developed completely at this
point. However, a firm grasp of optimal decision making
with structured representations provides a sound basis for
further investigation of structured approximation methods.

6 Concluding Remarks

We have sketched an algorithm for constructing optimal poli-
cies for POMDPs that exploits problem structure (as exhib-
ited by rules or decision trees) to reduce the effective state
Space at various pointsin computation. The crucial aspect of
thisapproachistheability to construct the conditionsrelevant
at acertain stage of the processgiventherelevant distinctions
at the following stage. This merging of planning and opti-
mi zation techniques (and related approaches) should provide
significant improvementsin policy construction algorithms.
Of great interest are extensions of this work to algorithms
that enumerate “vectors’ (in our case, trees) in amore direct
fashion (rather than by exhaustive enumeration and elimina-
tion), aswell as empirical evaluation of the overhead of tree

6See[3] on this type of pruning.

"In [13], a continuous approximation of the value function is
adjusted via gradient descent on the Bellman error; but thereis one
adjustable parameter per state. A (dynamic) tree-based representa-
tion of the value function may be exploited here.

congtruction. In addition, the development of approximation
methods such as those alluded to above is an important step.
Acknowledgements: Thanks to Tony Cassandra, Ledie
Kaelbling, Michael Littman and Ron Parr for their help-
ful discussion and comments. This research supported by
NSERC Grants OGP0121843 and OGPO044121.

References

[1] R. E.Bellman. Dynamic Programming. Princeton, 1957.

[2] C. Boutilier, T. Dean, and S. Hanks. Planning under uncer-
tainty: Structural assumptions and computational leverage.
3rd Eur. Workshop on Planning, Assisi, 1995.

[3] C. Botilier and R. Dearden. Approximating value trees in
structured dynamic programming. ML-96, to appear, 1996.

[4] C. Boutilier, R. Dearden, and M. Goldszmidt. Exploiting
structure in policy construction. 1JCAI-95, pp.1104-1111,
Montreal, 1995.

[5] A. R. Cassandra. Optima policies for partialy observable
Markov decision processes. TR CS-94-14, Brown Univ., Prov-
idence, 1994.

[6] A.R. Cassandra, L. P. Kaglbling, and M. L. Littman. Acting
optimally in partially observable stochastic domains. AAAI-
94, pp.1023-1028, Sedttle, 1994.

[7] T.Dean, L. P.Kaelbling, J. Kirman, and A. Nicholson. Plan-
ning with deadlines in stochastic domains. AAAI-93, pp.574—
579, Washington, D.C., 1993.

[8] T. Dean and K. Kanazawa. A model for reasoning about
persistence and causation. Comp. Intel., 5(3):142—-150, 1989.

[9] T. Dean and M. Wellman. Planning and Control. Morgan
Kaufmann, 1991.

[10] R. A.Howard and J. E. Matheson. Influence diagrams. R. A.
Howard and J. Matheson, eds., The Principles and Applica-
tions of Decision Analysis, pp.720-762, 1981.

[11] W. S. Lovegoy. Computationally feasible bounds for partially
observed Markov processes. Op. Res., 39:162-175, 1991.

[12] G. E. Monahan. A survey of partially observable Markov
decision processes: Theory, models and algorithms. Mgnt.
i, 28:1-16, 1982.

[13] R. Parr and S. Russell. Approximating optimal policies for
partially observable stochastic domains. 1JCAI-95, pp.1088—
1094, Montreal, 1995.

[14] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann, 1988.

[15] D. Poole. Probabilistic Horn abduction and Bayesian net-
works. Art. Intdl., 64(1):81-129, 1993.

[16] D. Poole. Exploiting the rule structure for decision making
within the independent choice logic. UAI-95, pp.454-463,
Montreal, 1995.

[17] R. D. Smallwood and E. J. Sondik. The optimal control of
partially observable Markov processes over a finite horizon.
Op. Res,, 21:1071-1088, 1973.

[18] C.J. C. H. Watkinsand P. Dayan. Q-Learning. Mach. Learn-
ing, 8:279-292, 1992.

