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Abstract
Vendors of all types face the problem of selecting a slate
of product offerings—their assortment or catalog—that will
maximize their profits. The profitability of a catalog is deter-
mined by both customer preferences and the offerings of their
competitors. We develop a game-theoretic model for analyz-
ing the vendor catalog optimization problem in the face of
competing vendors. We show that computing a best response
is intractable in general, but can be solved by dynamic pro-
gramming given certain informational or structural assump-
tions about consumer preferences. We also analyze condi-
tions under which pure Nash equilibria exist and provide sev-
eral price of anarchy/stability results

Introduction
Vendors of retail products and services typically plan their
offerings to maximize the revenue/profits obtainable from
a (predicted or actual) customer population. In many cases,
the prices of these items are fixed or strongly suggested ex-
ogenously (e.g., a vendor opening a new branch of a retail
chain in a mall). The problem of optimizing the collection
of products offered or presented to customers is often subtle:
highly profitable products may appeal only to a small subset
of customers, while offering lower-value products that ap-
peal to a larger market may undercut both profits and sales
of the higher-value offerings. This problem is known as opti-
mization of assortment (deciding which products to stock),
or catalogs (which products to promote in a catalog, web
site, etc.) and is faced by traditional (offline and online) re-
tailers as well as multi-seller platforms like Amazon or Ebay.

Complicating the picture is the presence of competing
vendors. A target customer may choose to purchase from a
vendor’s competitor if the competitor offers a more preferred
product. Thus the selection of the revenue maximizing cata-
log also depends on the offerings of one’s competitors. This
is naturally formulated as a game, the competitive catalog
selection game. In this paper, we formulate and analyze var-
ious aspects of this game. Roughly speaking, the model as-
sumes a collection of strategic vendors, each of whom can
select a catalog, i.e., a subset of some underlying collection
of products within a specific category, for sale to a target au-
dience or market of unit-demand customers. All prices are
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fixed exogenously and are beyond the control of the ven-
dors. Each customer has preferences over products (which
can depend on the prices), and purchases her most preferred
from the set of all offered products.

We analyze several key properties of this game under a
variety of conditions w.r.t. the structure of, and vendor in-
formation about, consumer preferences. We consider two
conceptually distinct models of information. In the complete
information model, vendors know the true consumer pref-
erence profile, i.e., the precise ranking of each consumer
for all products. In the partial information model, vendors
have (common, prior) probabilistic beliefs over profiles and
must maximize expected revenue. We first consider the al-
gorithmic task of computing a vendor’s best response, i.e.,
the optimal catalog given the catalogs of her competitors.
We show that this is hard to compute and to approximate
in the complete information model. However, we provide an
efficient dynamic programming (DP) method for the partial
information model when preferences are drawn i.i.d. from
the widely used Mallows model (and mixtures thereof). In
the special case of uniformly random preferences, or impar-
tial culture, DP reduces to a simple greedy algorithm. We
also describe a special case of single-peaked truncated pref-
erences that admits a DP algorithm under full information.

We then analyze the stability of the game. We describe
(straightforward) instances of the complete information cat-
alog game where no pure Nash equilibrium exists, and show
this instability persists even if vendors are restricted to small
sets of items (even singletons). In contrast, under impartial
culture, we show that pure equilibra exist using simple best-
response dynamics, and can be computed efficiently. Finally,
we provide several Price of Anarchy/Stability results, show-
ing that vendor welfare in the best/worst pure equilibrium in
a partial information game may be linear in the total number
of products, and provide additional analysis of special cases
in which all vendors have identical product sets.

Preliminaries
We consider a game with k strategic vendors, each ven-
dor j having access to a set Cj = {cj1, . . . , cjmj

} of mj

items. We do not require disjointness of these sets, though
we sometimes assume this in some of the exposition below
(w.l.o.g.). Let C =

⋃
j=1,...,k C

j , and m =
∑k
j=1mj . Let



Lm denote the set of all possible ordinal preference rank-
ings over (or permutations of) C. We assume that each item
c ∈ C has an exogenously fixed, bounded price p(c) ≥ 0. Let
p denote the price vector over C. W.l.o.g., we assume p ∈
[0, 1]m. Each vendor offers a catalog Rj ⊆ Cj from which
consumers can purchase items. Let R = (R1, . . . , Rk).

We assume a set of unit-demand consumers N =
{1, . . . , n}. Each consumer i has a strict preference order-
ing πi ∈ Lm, representing her preferences over items C.
If πi(c) < πi(c

′), then i prefers c to c′ (given their fixed
prices); i.e. i ranks c above c′. While we focus on ordinal
preferences, πi can be a ranking induced by i’s intrinsic val-
uation for items and the prices. Let π = (π1, . . . , πn) be
the preference profile. We could generalize the model to al-
low consumers to “truncate” their preferences (e.g., consider
certain products unacceptable or too expensive) and to allow
ties/indifference; we do not do so for ease of exposition, but
our results here can be generalized as appropriate.

We assume a simplified supply/demand model: each ven-
dor has unlimited inventory of any product she offers and
no production cost.1 Given a (non-empty) set of offered
items A =

⋃k
j=1R

j , each i ∈ N her their most pre-
ferred item in A, i.e., topi(A) = arg minc∈A πi(c). Let
topi(R) = topi(

⋃k
j=1R

j). This determines a game G =

(C1, . . . , Ck,p, N,π), in which vendor j’s strategies are
catalogs Rj ⊆ Cj , and her revenue (payoff) is determined
by the strategy profile R. If the Cj are not disjoint and con-
sumer i selects a c that occurs in several vendor catalogs,
we assume p(c) is split evenly among them (as if i random-
ized her purchase). Let oc(R) = |{j | c ∈ Rj , j ≤ k}| be
the number of occurrences of item c across all catalogs. The
revenue/payoff of vendor j is:

rj(R) = rj(R
j ,R−j) =

∑
i∈N :topi(R)∈Rj

p(topi(R))

otopi(R)(R)
.

Vendor j’s best response to R−j is the subset Rj ⊆ Cj that
maximizes her revenue, given catalogs of the other vendors.

Probabilistic preference models. In the full information
game, we assume vendors have full knowledge of the con-
sumer preference profile π. In the partial information set-
ting, vendors instead have only a common prior belief, or a
distribution over profiles. We assume consumer preferences
are drawn i.i.d. from a Mallows ϕ-distribution (or a mixture
thereof), a probabilistic model of rankings widely used in
statistics, machine learning, econometrics and social choice
(Mallows 1957; Marden 1995). The Mallows model is spec-
ified by two parameters, a reference ranking π̂ ∈ Lm and
a dispersion parameter ϕ (controlling variance). The proba-
bility of a ranking π in this model is Pr(π) = ϕτ(π,π̂)/Tm,
where τ is the Kendall-tau (or swap) distance between two
rankings, and Tm =

∏m
t=1 Zt is a normalization constant,

where Zt =
∑t
d=1 ϕ

d−1. When ϕ = 1, one obtains the
uniform distribution over Lm, or the impartial culture (IC)
model, widely used in social choice.

1Prices can also be considered to reflect net revenue, so this is
w.l.o.g. if costs are fixed and per-unit.

Related Work. Work on assortment optimization is preva-
lent in management science, and several models bear tight
connection to ours. Some models consider non-strategic op-
timization on the part of single vendors (e.g., Schön (2010)),
where the aim is to select a revenue-maximizing catalog as-
suming some consumer preference model. More relevant is
work addressing the strategic aspects of this problem in the
face of competition, assessing both computation and exis-
tence of equilibria. Martı́nez-de Albéniz and Roels (2011)
study the efficiency of equilibria of vendors competing for
limited shelf space (under both exogenous and endogenous
prices). Our approach differs w.r.t. the consumer preference
model and shelf-space constraints. Li et al. (2013) simi-
lar models. Hohnon et al. (2012) address (non-competitive)
variants of the problem using a rank-based preference model
similar to ours.

Our model can also be thought of an extension multi-
winner social choice (MWCS). In MWSC, the goal is to se-
lect a “slate” of items given a set of agent preferences, and
has application to legislature/committee selection (Cham-
berlin and Courant 1983; Monroe 1995), facility location,
and group (e.g., consumer) decision-making (Kleinberg, Pa-
padimitriou, and Raghavan 2004; Lu and Boutilier 2011;
Skowron, Faliszewski, and Slinko 2013). In our setting, we
have multiple decision makers rather than a single social
choice mechanism, and each of these are strategic. Many of
the computational tasks in MWSC can be implemented as
extensions of our model (e.g., imposing different combinato-
rial restrictions on the strategies, considering various classes
of preference models). Our model is somewhat related to
the task of optimal price-setting mechanisms for auctioning
items in unlimited supply to unit-demand bidders (Goldberg
et al. 2006; Guruswami et al. 2005).

Best Responses under Full Information
We begin with the task of computing a vendor best response
to a competitors’ strategy profile, i.e., given profile R−j,
finding the catalog Rj that optimizes j’s payoff. In the non-
competitive version of this problem, in which no other ven-
dors offer products, j’s optimal catalog is trivial: she should
offer only her product with the maximal price.2 Also notice
that if all of her prices are identical, trivially she should offer
her entire setCj . In general, however, best-response compu-
tation is hard to approximate beyond a constant factor.

Theorem 1. Computing a best response is Max-SNP hard.

Proof. We provide an approximation-preserving reduction
from 3SAT-5, which is Max-SNP hard (Feige 1998). Take
as input m DNF clauses (φ1, . . . , φm) over n variables
(x1, . . . , xn), where each variable is contained in exactly
five clauses. For the reduction, create a set of items Cj with
two items for each variable: ai, bi, corresponding to a True
assignment to either xi or its negation, plus one auxiliary
item t. Set the price of all items in {ai, bi}i≤n to 1 and of t
to 1.5. Create two sets of consumers:
Set 1: Validity rankings. These consumers encode validity
constraints on assignments to x1, . . . , xn, i.e., that exactly

2This is not the case if preferences are truncated.



one of {ai, bi} is True . For i ≤ n create partial rankings:

πi1 : ai � t, πi2 : bi � t, πi3 : ai � bi,

(The competitors’ items are always ranked below the items
in Cj). Including t can never hurt, so we assume it is always
chosen. If both or neither of ai and bi are selected, payoff is
3. If only one is selected, payoff is 3.5.
Set 2: Clause rankings. For each clause of the form φj =
`j1 ∨ `j2 ∨ `j3 , create a ranking: πj : f(`j1) > f(`j2) >
f(`j3), where f(`ji) = aji if `ji corresponds to variable
xji in its non-negated form, and bji otherwise. If φj is sat-
isfied, at least one item corresponding to `j1 , `j2 , and `j3 is
selected, which gives an extra payoff of 1 from ranking πj .

Since 3SAT-5 is Max-SNP hard, there exists a constant
ε > 0 s.t. it is NP-hard to distinguish a satisfiable formula
from a formula that is at most (1 − ε)-satisfiable. By def-
inition, each variable is in exactly five 3CNF clauses, and
so m = 5n/3. If φ is only (1− ε)-satisfiable, the maximum
value we can obtain is (1−ε)m+3.5n = (1−ε)m+21m/10,
hence it is NP-hard to distinguish between cases with a profit
of m+ 3.5n from cases with only a (1− δ) fraction of that
m+ 3.5n profit, where δ = ε/(1 + 21/10).

The construction uses preferences of length at most 3, and
item prices a factor of 1.5 from each other. Thus, selecting
all items gives a 1.5-approximation to the optimal catalog.
In general, if there is a constant β > 1 s.t. for every two
distinct items a, b ∈ Cj , p(a)

β
≤ p(b) ≤ β ·p(a), then selecting

all items in Cj is a β-approximation to the optimal catalog.
The above hardness result suggests two directions for fur-

ther investigation. The first is developing approximations, a
topic we leave to future research. The second is the study
of the best-response problem under various restrictions on
items, prices, or preferences. In the following section, we
consider a restriction in which agent preferences are single-
peaked, which we address in the next section.

Single-Peaked, Truncated Preferences
We now consider an important restriction on the preferences
of consumers. Suppose consumers are single-peaked, which
we define below. The class of single-peaked preferences has
been deeply studied in social choice (Black 1948), and is
well-suited for modeling preferences in a variety of domains
(including those based on distances). The single-peaked as-
sumption has a variety of attractive computational and in-
centive properties as well (Gaertner 2002).

In addition to single-peakedness, we impose an additional
restriction on preferences that interacts with the items being
offered. Consider a setting in which any individual consumer
i’s preference tends to be such that the items of a number of
different vendors are near its peak. Even further, suppose
that no matter what i’s most preferred item is from the set
R of those actually offered by all vendors, there are items
offered by competing vendors that are reasonably highly
ranked as well. This would be the case, for example, in rea-
sonably competitive environments in which, for any product
offered by some vendor j, there is a competitor j′ with a
similar product at a similar price point. This would also be
the case when most vendors have small sets of items; no

one vendor can “dominate” too many of the top positions of
i’s preference ranking. In such cases, consumer preferences
are effectively truncated; i.e., from the perspective of any
vendor j, each consumer i’s preference will have an offered
item from at least one competitor j′ that is highly ranked.
This means any of j’s items falling below this competitive
item in i’s ranking will never selected by i, even if offered.

We now formally define the notion of truncated, single-
peaked preference profiles (combining both notions):

Definition 2. For vendor j, and strategy profile R−j for
other vendors, preference profile (π1, . . . , πn) is single-
peaked, L-truncated if:

1. For every i ∈ N , letting ti = arg minc∈
⋃

j′ 6=j R
j′ πi(c),

we have that ti ≤ L + 1. For convenience, define Sji =
{c ∈ Cj : πi(c) < ti} to be those items in Cj that are
“relevant” to i.

2. There is an ordering σ ∈ Lm of the items in C (i.e., an
axis) s.t. for each i ∈ N : there is some c ∈ C (the peak)
s.t. for any c′, c′′ ∈ Sji \ {c}, if σ(c) > σ(c′) > π(c′′) or
σ(c) < σ(c′) < σ(c′′), then πi(c′) < πi(c

′′).

The first condition ensures that there are at most L relevant
items per consumer in Cj . The second is the usual single-
peaked condition, except that we only impose the restriction
on the preference prefixes of j-relevant items (not the whole
set C or Cj).

Assume that items in Cj are labeled according to their
order along the axis σ (i.e., for cjt, cj` ∈ Cj , t < ` iff
σ(cjt) < σ(cj`)). Recall that we can assume w.l.o.g. that no
items in Cj are also offered by a competitor. The following
theorem shows that optimizing a vendor’s best-response is
tractable under these two conditions.

Theorem 3. Let R−j be a strategy profile of all ven-
dors except j. If a preference profile is single-peaked, L-
truncated, then j’s best response to R−j can be computed in
O(2Lnm2) time.

The following claim is instrumental in efficiently finding
a best response for a given vendor.

Claim 4. If i ∈ N has a single-peaked L-truncated prefer-
ence πi over Sji ⊆ Cj , then maxc,c′∈Cj |σ(c)−σ(c′)| < L.

Proof. Suppose consumer i has such a preference, but there
are two c′, c′′ ∈ Sji s.t. |σ(c′)− σ(c′′)| > L. By the pigeon-
hole principle there must be a c∗ ∈ C \ Sji that lies between
c′ and c′′ on the axis σ. This contradicts the fact that i’s pref-
erence is single-peaked.

Intuitively, Claim 4 implies that the decision to include
(or not) an item c cannot affect consumers with truncated
preferences over sets that contain items distance greater than
L from c w.r.t. σ.

We now describe a dynamic programming algorithm,
see Alg. 1, for optimizing a vendor’s best-response. Let
L ≤ t ≤ m. Suppose that for each subset S′ of items in
{σ−1(t − L), . . . , σ−1(t − 1)} we have computed the op-
timal slate that includes all items in S′ and some subset



of {σ−1(1), . . . , σ−1(t − L − 1)}. To compute the opti-
mal value for some S ⊆ {σ−1(t − L + 1), . . . , σ−1(t)}
we only need to consider at most two subsets: S \ {σ−1(t)},
and S \ {σ−1(t)} ∪ {σ−1(t− L)} .

Algorithm 1: The best response finding algorithm for
single-peaked, L-truncated preferences.

Input: A single-peaked, L-truncated preference profile
(π1, . . . , πn) ∈ Lnm. An underlying axis σ ∈ Lm, The
preferences profile R−j, composed of strategies of all
vendors j′ 6= j.

1 Notation: For a binary vector v ∈ {0, 1}L, we let B(v)

denote the decimal representation of v: B(v) =
∑k
t=1 2t−1.

2 For a subset S ⊆ {cj(t−L+1), . . . , cjt} we let 1S,t denote the
length-L characteristic vector of S w.r.t.
{cj(t−L+1), . . . , cjt}. That is, 1S,t(d) = 1 iff cj(t−L+d) ∈ S
and 0 otherwise, for d = 1, . . . , L.

3 Let M be an mj by 2L table.
4 For t ∈ {1, . . . ,mj} and S ⊆ {cj(t−L+1), . . . , cjt},
M [t, B(1S,t)] contains the optimal solution for the problem
of optimizing the slate using items from {cj1, . . . , cjt}, such
that M [t, B(1S,t)] \ {cj1, . . . , cj(t−L)} = S.

5 for t→ 1 to L do
6 foreach S ⊆ {cj1, . . . , cjt} do
7 M [t, B(1S,t)]← S
8 for t← L+ 1 to mj do
9 foreach S ⊆ {cj(t−L+1), . . . , cjt} do

10 S1 ←M [t− 1, B(1S\{cjt},t−1)]

11 S2 ←M [i− 1, B(1S\{cjt}∪{cj(t−L)},t−1)]

12 if rj(S1 ∪ S,R−j) ≥ rj(S2 ∪ S,R−j) then
13 M [t, B(1S,t)]← S1 ∪ S
14 else
15 M [t, B(1S,t)]← S2 ∪ S
16 return arg maxS⊆{cj(mj−L+1),...,cjmj

}M [m,B(1S,mj )]

The correctness of Alg. 1 follows immediately from
Claim 4: the decision to include item cjt doesn’t affect the
revenue derived from consumers whose peaks are further
than L from cjt, implying the required optimal substructure
property. The running time of the algorithm is O(2Lnm2),
i.e., polynomial in n and m if L = O(logm).

Best Responses under Partial Information
The full information model in which vendors know con-
sumer preferences precisely is unrealistic in many settings.
We now address best response computation in the partial
information game, under several distinct forms of beliefs.
While we do not require disjointness of vendor item sets, it
is not hard to see that, for the purpose of selecting a best
response, if a vendor’s set contains an item that is currently
offered by a competitor, that item must be included in the
vendor’s best response. Hence, for ease of exposition, in this
section we assume that C1, . . . , Ck are all disjoint.

Impartial culture
We begin with the case where consumer preferences are
(believed to be) distributed according to IC, i.e., each con-
sumer’s preference is drawn i.i.d. from Lm. Computing a

best response for vendor j under IC is straightforward: as-
sume competitor profile R−j, and let `j =

∑
j′ 6=j |Rj

′ |. We
relabel the items in Cj so that p(cj1) ≥ · · · ≥ p(cjmj

),
and define the length t prefix of this item vector as Tt =
{cj1, . . . , cjt} and T0 = ∅.

For any catalog Rj ⊆ Cj , j’s expected profit
is rj(R,R

−j) =
∑
c∈R p(c)/(`

j + |R|). Let t∗ =

arg max1<t≤mj{rj(Tt,R
−j) > rj(Tt−1,R

−j)}. The best re-
sponse is then Tt∗ , i.e., greedily add items in decreasing or-
der of price as long as the expected revenue is increased by
these additions. Adding any other items cannot contribute to
j’s expected profit. The optimality of this algorithm can be
proven using an elementary exchange argument.

Mallows models
We now address a broader class of distributions, preferences
drawn i.i.d. from a Mallows model (note that IC is a special
case). Vendor j’s best response can be computed by dynamic
programming in this case, see Alg. 2. Assume a competitor
strategy profile R−j, and beliefs given by Mallows model
(π̂, ϕ). For convenience, assume that π̂ is restricted to ele-
ments of R−j. As above, let `j =

∑
j′ 6=j |Rj

′ |. We assume
w.l.o.g. that items in Cj are ordered based on their ranks in
π̂.

For s ≤ mj and index t = s, . . . ,mj , Alg. 2 recur-
sively computes the optimal catalog of size s consisting
of items from subset {cj1, . . . , cjt}. Given Rj ⊆ Cj and
c ∈ Rj , let π̂Rj (c) be the rank of c in the reduced rank-
ing π̂Rj , obtained by deleting all items in Cj \ Rj . We
use the recursive nature of the Mallows model to compute
j’s revenue. For cjt ∈ Cj , and a set of previously se-
lected items S ⊆ {cj1, . . . , cj(t−1)}, s.t. |S| = s − 1,
the probability that cjt is selected (i.e., ranked first) can be
shown to be ϕπ̂S(cjt)−1/Z`j+s, where Z`j+s is the normal-
izing term. Thus, if the expected revenue of selecting S is
rj(S,R

−j), that of adding cjt to S is: rj(S ∪ {cjt},R−j) =

(rj(S,R
−j) · Z`j+s−1 + ϕ

π̂S∪{cjt}−1 · p(cjt))/Z`j+s.

Proposition 5. Alg. 2 returns a best response.

The correctness of Prop. 5 follows from the following op-
timal substructure property, which can be easily proved us-
ing properties of the Mallows distribution.

Claim 6. Let R−j be a competitor strategy profile. If Sst ⊆
{cj1, . . . , cj} is vendor j’s revenue maximizing set of size s
consisting of items in {cj1, . . . , cjt} and cjt ∈ Sst, then Sst\
{cjt} is the revenue maximizing set of size s − 1 consisting
of items from {cj1, . . . , cj(t−1)}.

Mallows mixtures
The modeling power of the Mallows distribution can be ex-
tended by considering mixtures of such models, e.g., reflect-
ing a population with several diverse types of consumers.
A Mallows mixture is given by: d Mallows distributions
D1(π̂1, ϕ1), . . . , Dd(π̂d, ϕd); and a vector q = (q1, . . . , qd)

(qj ∈ (0, 1), and
∑d
t=1 qt = 1). Each preference π is sam-

pled i.i.d. from the mixture distribution by first selecting



Algorithm 2: Dynamic programming algorithm for
best-response given a Mallows distribution.

1 Assume `j =
∑
j′ 6=j |R

j′ |, and for a non-negative integer q,

let τq = Z`j+q =
∑`j+q−1
d=0 ϕd.

2 for s← 1 to mj do
3 Let vs, Ss ← OptimizeSlate(s, s)
4 Return Ss with maximal value vs.

5 OptimizeSlate (s, t)
Input: A Mallows distribution with parameters (π̂, ϕ).
Output: Optimal slate Rj ⊆ {cj1, . . . , cjt}, s.t. |Rj | = s.

6 if s = 0 then
7 return 0, ∅
8 if s = t then
9 S ← {cj1, . . . , cjt}

10 V ←
∑s
d=1 p(cjd) · ϕ

π̂S(cjd)−1/τs
11 return S, V
12 v0, S0 ← OptimizeSlate(s, t− 1)
13 v1, S1 ← OptimizeSlate(s− 1, t− 1)
14 S1 ← S1 ∪ {cjt}
15 v1 ← (v1 · Zs−1 + p(cjt) · ϕπ̂S1

(cjt)−1)/τs
16 if v0 ≥ v1 then
17 return v0, S0

18 else
19 return v1, S1

a distribution Dt with probability qt, and then sampling a
ranking using Dt(π̂t, ϕt).

Alg. 2 can be modified to handle Mallows mixtures as fol-
lows. We first sort the items in Cj = {cj1, . . . , cjmj

} based
on their weighted ranks, where the weighted rank of c ∈ Cj
is π(c) =

∑d
d=1 qt · π̂t(c). Similarly, vendor j’s revenue w.r.t.

catalog S ⊆ Cj is defined using a linear combination of the
revenues for each Mallows component:

rj(S,R
−j) =

d∑
t=1

rtj(S,R
−j) =

d∑
t=1

qt
∑
c∈S

ϕ
`j+|S|−1
t

Zt
`j+|S|

,

where the normalizing term is Ztm =
∑m
q=1 ϕ

q−1
t .

Equilibria and Stability
We have seen that (deterministic) best response computation
is difficult in some cases, and easy in others. We now turn
our attention to the existence pure Nash equilibria and ana-
lyze their welfare properties. We first consider games with
disjoint vendor sets, then examine the special case where all
vendors have identical products from which to choose.

Disjoint Vendor Sets
In this section we assume all vendor sets Cj are disjoint. We
assume familiarity with Nash equilibria, but briefly, a pure
Nash equilibrium (PNE) in our setting is a vendor strategy
profile R = (R1, . . . , Rk) s.t. Rj is a best response to R−j,
for each j ≤ k. A PNE is a stable solution in which each
vendor offers a catalog that maximizes her revenue given
the catalogs of all other vendors. While in any finite normal
form game such as ours, Nash equilibria are guaranteed to

exist in mixed strategies (i.e., where vendors may random-
ize their choice of catalog), it is not a priori clear that our
catalog selection games always admits pure equilibria.

In the full information case, there are games where all best
response paths are cyclic, hence there is no PNE:

Claim 7. There are instances of full-information catalog se-
lection games which admit no pure Nash equilibrium.

Proof. A simple counterexample suffices: consider two ven-
dors 1 and 2, with C1 = {a1, a2}, C2 = {b1, b2}. Let
p(a1) = 2x, p(a2) = x+ ε, for some x > 0, and 0 < ε < x.
Similarly, let p(b1) = 2y, p(b2) = y + ε′, for y > 0 and
0 < ε′ < y. Assume three consumers with preferences:

a2 �1 b2 �1 a1 �1 b1, b2 �2 b1 �2 a2 �2 a1,

a2 �3 a1 �3 b1 �3 b2

Vendor 1’s best response includes a2 in R1 iff 2 includes b2
in R2. On the other hand, 2’s best response includes b2 iff 1
does not include a2. This shows the game has no PNE.

Lack of PNE can occur even when one restricts vendor
strategies. For instance, if vendors are limited to catalogs of
size 1, one can construct games where no PNE exist.

The counterexamples to PNE above rely on precise ven-
dor knowledge of the preference profile. We now anlayze the
partial information game, assuming consumer preferences
are drawn i.i.d. from a Mallows model (π, ϕ). If ϕ = 0 (i.e.,
all consumers have the same preference π), the game clearly
admits a single (type of) PNE: Let π−1(1), . . . , π−1(t) be
the longest prefix of π whose items belong to a single ven-
dor j; j’s dominant strategy is to select only items in this set
with maximal price. The revenue of any other vendor is 0,
regardless of her strategy.

Now consider impartial culture, where ϕ = 1. W.l.o.g.,
relabel each Cj so they are ordered in non-increasing or-
der of price: p(cj1) ≥ p(cj2) · · · ≥ p(cjmj

). Using simple
best-response dynamics, we show that a PNE exists. First,
by properties of IC, we have:

Observation 8. Given R−j, vendor j’s (expected) revenue
maximizing catalog of size t is {cj1, . . . , cjt}.

This can be shown by noticing that if j selects another cat-
alog Rj of size t, replacing any item c ∈ Rj \{cj1, . . . , cjt}
with an item c′ ∈ {cj1, . . . , cjt} \Rj only (non-strictly) in-
creases j’s expected revenue (with no change only if both
have equal prices). Obs. 8 implies that specifying the size of
a vendor’s best response immediately determines the maxi-
mal profit achievable by a catalog of this size. While best-
response computation need not be tractable to prove the exis-
tence of a PNE, Obs. 8 implies that we can use best-response
dynamics—see Alg. 3—to efficiently compute a PNE.

Claim 9. Let R and T be strategy profiles s.t. (a) Rj and
T j are best responses to R−j and T−j , resp., as in Alg. 3,;
and (b)

∑
j′ 6=j |Rj

′ | ≤
∑
j′ 6=j |T j

′ |. Then |Rj | ≤ |T j |.

Proof. Consider two profiles R,T, and let d =∑
j′ 6=j(|T j

′ | − |Rj′ |). Suppose the claim is false, so |T j | =
` < |Rj |. By Obs. 8 we have:



rj(T
j ,T−j) =

∑
c∈T j p(c)

`+
∑
j′ 6=j |Rj

′ |+ d
=

∑`
t=1 p(cjt)

`+
∑
j′ 6=j |Rj

′ |+ d

≥
∑|Rj |
t=1 p(cjt)

|Rj |+
∑
j′ 6=j |Rj

′ |+ d
= rj(R

j ,T−j)

(the inequality follows by best response). This means:

∑̀
t=1

p(cjt) · (|Rj |+
∑
j′ 6=j

|Rj
′
|) ≥

|Rj |∑
t=1

p(cjt) · (`+
∑
j′ 6=j

|Rj
′
|)

+ d · (
|Rj |∑
t=1

p(cjt)−
∑̀
t=1

p(cjt)) >

|Rj |∑
t=1

p(cjt) · (`+
∑
j′ 6=j

|Rj
′
|)

where the last inequality follows since |Rj | > `. This im-

plies
∑`

t=1 p(cjt)

`+
∑j′ 6=j |Rj′ |

>
∑|Rj |

t=1 p(cjt)

|Rj |+
∑j′ 6=j |Rj′ |

, a contradiction.

Algorithm 3: Best response dynamics under IC
1 Initialize: Rj ← ∅
2 while (R1, . . . , Rk) is not a pure Nash equilibrium do
3 Let j ∈ [k] = {1, . . . , k} with a profitable deviation.
4 Let t = maxR⊆Cj rj(R,R

−j).
5 Set Rj = arg maxR:rj(R,R−j)=t(|R|).

Claim 9 implies that the size of best-response catalogs can
only increase during execution of best response dynamics,
leading to a PNE.

Proposition 10. Any catalog selection game in which ven-
dors sets are disjoint and consumer preferences are drawn
from an impartial culture admits a pure Nash equilibrium.

Furthermore, the number of iterations of Alg. 3 is at most
O(m). Since a vendor requires at most O(m) steps to find a
best response, a PNE can be computed in O(m2) time.

Given that PNE exist under Mallows distributions when
ϕ = 0 and ϕ = 1, we might hope this holds for ϕ ∈ (0, 1).
We have yet to resolve this, but conjecture the following,
rather strong monotone-consistency property:

Conjecture 11. Let G1 = (C1, . . . , Ck,p, N,D1) and
G2 = (C1, . . . , Ck,p, N,D2) be two catalog selection
games that differ only in the dispersion of their underlying
Mallows distributionsD1(π, ϕ1), D2(π, ϕ2), with ϕ1 > ϕ2.
Then if G1 admits a PNE, so does G2.

If true, Conj. 11 implies the existence of PNE for all ϕ.
While games under IC admit PNE, some of these equilib-

ria may be extremely inefficient due to asymmetries in ven-
dor item sets. As an efficiency metric, we use vendor social
welfare, swG(R) (i.e., expected total vendor revenue given
the preference prior under profile R), and both the price of
anarchy and the price of stability:
Definition 12. Let of H be the set of games with k vendors
with disjoint item sets, m total items, and IC priors. The

price of anarchy (PoA), and the price of stability (PoS) are:

PoA = max
G∈H

max
R∈2C1×···2Ck swG(R)

min R:
R is a PNE

swG(R)

PoS = max
G∈H

max
R∈2C1×···2Ck swG(R)

max R:
R is a PNE

swG(R)

PoA (PoS) is the worst-case ratio of optimal, non-strategic
social welfare realizable by any strategy profile to the worst
(best) social welfare in some PNE. Both PoA and PoS can
grow linearly with the number of items:

Claim 13. There are catalog selection games with partial
information in which the PoA and PoS are both Ω(m).

Proof. Consider a game with two vendors, withC1 = {c11}
and C2 = {c21, . . . , c2T }, for some T . Let p(c11) = 1, and
p(c21 = . . . = p2T ) = ε = O(1/m). Assume consumer
preferences are IC. Clearly, the only PNE has both vendors
select all items. Since each consumer selects item c11 with
probability 1/(T+1) and some item worth εwith probability
T/(T + 1), the claim follows.

While this PNE is highly inefficient from the vendors’
perspective, it is very efficient from the consumers’ side,
since it allows them to choose more desirable items.

Vendors with identical sets
The inefficiency of some equilibria above stems in part from
asymmetry in the item sets. It is thus interesting to consider
the other extreme case, where C1 = . . . = Ck. In both the
full and partial information settings it is easy to see that PNE
always exist:

Observation 14. Any instance of the catalog selection game
with identical vendor item sets admits a PNE.

This can be verified by noticing that if each vendor offers
the entire set C, no vendor benefits by deviating. Moreover,
as discussed above, if an item c is selected by some vendor,
all vendor best responses must include c.

In the full information case, there are instances in which
the only (hence, best) PNE is highly inefficient:

Claim 15. There are full information games with common
item sets in which the PoS is Ω(2m).

Proof. Consider a game with two vendors, C =
{c1, . . . , cm}, and prices: p(c1) = 1; p(ci) = ci−1

2 + ε
for i ≥ 2, where ε = e−m/2. Assume a single consumer
with preference cm � · · · � c1. In any PNE, all ven-
dors select item cm. Hence, the revenue in the best PNE is
p(cm) = 2−(m−1) +O(e−m) = Θ(2−m), in contrast to the
optimal total revenue of 1.

We also consider the partial information case un-
der IC. Given a strategy profile R, and letting A =⋃k
i=1R

i, the revenue of vendor j is rj(R
j ,R−j) =

1
k·|A|

∑
c∈Rj∩T p(c) + 1

|A|
∑
c∈Rj\T p(c).

Theorem 16. Given identical item sets, if preferences are
drawn from IC, then PoA is Θ(m).



Proof. Consider a game with 2 vendors, C = {c1, . . . , cm},
and prices: p(c1) = 1, p(ci) = ε, i ≥ 1. Consider a PNE
where all vendors select C. The revenue in is

∑m
i=1 p(ci)

m =
1
m + (m−1)ε

m . The optimal total revenue is 1.

If the number of vendors is assumed to be constant, then
PoS is a logarithmic factor smaller than PoA.
Theorem 17. Given identical item sets, if preferences are
drawn from IC, then PoS is Θ(m · k/ logm).

Let rj(X,Yk−1) be vendor j’s utility when selecting
set X in response to competitor profile Y . Furthermore, let
Pi = {c1, . . . , ci}. Alg. 4 is a simple procedure for comput-

Algorithm 4: Finding a Nash equilibrium
Input: k vendors, items C = {c1, . . . , cm}, price vector p

such that p(c1) ≥ · · · ≥ p(cm)
1 for i← 2 to m do
2 if r1(Pi−1,P

k−1
i−1 ) ≥ r1(Pi−1 ∪ {ci},Pk−1

i−1 ) then
3 return Pi−1

4 return C

ing a PNE, as the following lemma shows:
Lemma 18. If the algorithm halts at step i < m, then
(Pi, . . . , Pi) is a Nash equilibrium.

Proof. As the items are ordered in a non-increasing order
of price, it suffices to show that no (arbitrary, by symmetry)
vendor would deviate by selecting a prefix Pj , for j > i.
We show inductively that if a vendor improves by deviating
to such a Pj , then she can do so by deviating to Pi+1 too.
Assume w.l.o.g. the first vendor deviates. First, we show that
if a vendor improves her revenue by selecting Pj then she
can improve it by deviating to Pj−1. Suppose by way of
contradiction that r1(Pj ,P

k−1
i ) > r1(Pi,P

k−1
i ), for j > i,

but r1(Pj−1,P
k−1
i ) ≤ r1(Pi,P

k−1
i ). Then by definition∑i

t=1 p(ct)

k · i ≥
∑i
t=1 p(ct)

k · (j − 1)
+

∑j−1
t=i+1 p(ct)

j − 1
,

which implies
∑j−1
t=i+1 p(ct) ≤

j−i−1
i·k

∑i
t=1 p(ct). Then:

r1(Pj ,P
k−1
i ) =

∑i
t=1 p(ct)

k · j +

∑j−1
t=i+1 p(ct)

j
+
p(cj)

j

≤
∑i
t=1 p(ct)

k · j +
(j − i− 1)

∑i
t=1 p(ct)

j · k · i +

∑j−1
t=i+1 p(ct)

j · (j − i− 1)

≤
∑i
t=1 p(ct)

k · j +
(j − i− 1)

∑i
t=1 p(ct)

j · k · i +

∑i
t=1 p(ct)

j · k · i

=

∑i
t=1 p(ct)

k · i = r1(Pi,P
k−1
i )

where the first inequality follows from the bound above and
an averaging argument on p(cj), a contradiction. Hence, de-
viating to Pj−1 also improves vendor revenue. Repeating
this process until i + 1 contradicts the stopping condition
of the for-loop of the algorithm.

Next, we bound the rate of decrease in prices to construct
a lower bound on expected social welfare.

Lemma 19. Suppose Alg. 4 returns set Pi = {c1, . . . , ci}.
Then p(cj) ≥ 1

k·(j−1)
+ Θ( 1

k2
), for 2 ≤ j ≤ i.

Proof. Alg. 4 stops when r1(Pi,P
k−1
i−1 ) ≤ r1(Pi−1,P

k−1
i−1 ).

Using the definitions of r1(Pi,P
k−1
i−1 ) and r1(Pi−1,P

k−1
i−1 ),

and rearranging the terms, we get that for every 1 < j ≤ i,∑i
t=1 p(ct)

k · (j − 1)
<

∑j−1
t=1 p(ct)

k · j +
p(cj)

j

which implies the recursive inequality: p(cj) >
∑j−1

t=1 p(ct)

k·(j−1)
.

The statement of the lemma can be then be shown to be the
solution of this inequality, using induction.

Proof of Thm. 17. The worst case execution of Alg. 4 occurs
when it reaches the last item. By Lemma 19, expected wel-
fare is bounded below by 1

m
(1 +

∑m
i=2

1
k·(i−1)

) = Ω( lnm
m·k ).

The fact that p(c1) = 1 implies the upper bound on PoS. We
can construct a matching worst-case price vector using the
bound on the p(ci)’s given in Lemma 19.

Conclusions
We have presented a model of competition among vendors
who offer slates or catalogs of products to their consumers
using rank-based models of preferences that have connec-
tions to models in computational social choice and algo-
rithmic game theory. We studied both best response com-
putation (and equlibrium finding in some cases) and various
equilibrium properties under two different informational as-
sumptions w.r.t. consumer preferences.

There are a number of directions remaining to be ex-
plored. The possibility of approximating best responses in
the full information setting remains open. This problem
doesn’t appear to have any of the usual “nice” properties of-
ten used for devising efficient optimization algorithms (e.g.,
symmetry, monotonicity, submodularity). The study of our
model where the strategies are required to satisfy certain
combinatorial constraints (e.g., matroid or knapsack) reflect-
ing limits on individual catalogs would be of interest. Un-
der such restrictions, our worst case PoA and PoS ratios
might be improved. Connections to other game-theoretic
models also bear exploration. For instance, allowing endoge-
nous prices requires vendors to set prices, e.g., in a multi-
vendor platform, offering a competitive extension of profit-
maximizing, envy-free mechanisms (see e.g., (Guruswami
et al. 2005)). Endogenous pricing has been considered in
a recent competitive model related to ours, but where each
vendor has a single item (Babaioff, Nisan, and Leme 2014).

Acknowledgements
This research was supported by the Natural Sciences and
Engineering Research Council (NSERC) of Canada.

References
Babaioff, M.; Nisan, N.; and Leme, R. P. 2014. Price com-
petition in online combinatorial markets. In Proceedings of
the Twenty-Third International World Wide Web Conference
(WWW-14), 711–722.



Black, D. 1948. On the rationale of group decision-making.
Journal of Political Economy 56(1):23–34.
Chamberlin, J. R., and Courant, P. N. 1983. Representative
deliberations and representative decisions: Proportional rep-
resentation and the Borda rule. American Political Science
Review 77(3):718–733.
Feige, U. 1998. A threshold of ln n for approximating set
cover. Journal of the ACM 45(4):634–652.
Gaertner, W. 2002. Domain restrictions. In Handbook of
Social Choice and Welfare, Vol. 1, 131–170. Arrow, K. J.;
Sen, A. K.; and Suzumura, K. (eds.). North Holland.
Goldberg, A. V.; Hartline, J. D.; Karlin, A. R.; Saks, M.;
and Wright, A. 2006. Competitive auctions. Games and
Economic Behavior 55(2):242–269.
Guruswami, V.; Hartline, J. D.; Karlin, A. R.; Kempe, D.;
Kenyon, C.; and McSherry, F. 2005. On profit-maximizing
envy-free pricing. In Proceedings of the Sixteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA-05),
1164–1173.
Honhon, D.; Jonnalagedda, S.; and Pan, X. A. 2012. Opti-
mal algorithms for assortment selection under ranking-based
consumer choice models. Manufacturing & Service Opera-
tions Management 14(2):279–289.
Kleinberg, J.; Papadimitriou, C.; and Raghavan, P. 2004.
Segmentation problems. Journal of the ACM 51:263–280.
Li, X.; Nukala, S.; and Mohebbi, S. 2013. Game the-
ory methodology for optimizing retailers’ pricing and shelf-
space allocation decisions on competing substitutable prod-
ucts. International Journal of Advanced Manufacturing
Technology 68(1-4):375–389.
Lu, T., and Boutilier, C. 2011. Budgeted social choice: From
consensus to personalized decision making. In Proceedings
of the Twenty-Second International Joint Conference on Ar-
tificial Intelligence (IJCAI-11), 280–286.
Mallows, C. L. 1957. Non-null ranking models. Biometrika
44:114–130.
Marden, J. I. 1995. Analyzing and Modeling Rank Data.
London: Chapman and Hall.
Martı́nez-de Albéniz, V., and Roels, G. 2011. Competing
for shelf space. Production and Operations Management
20(1):32–46.
Monroe, B. L. 1995. Fully proportional representation.
American Political Science Review 89(4):pp. 925–940.
Schön, C. 2010. On the product line selection problem under
attraction choice models of consumer behavior. European
Journal of Operational Research 206(1):260–264.
Skowron, P.; Faliszewski, P.; and Slinko, A. 2013. Fully
proportional representation as resource allocation: Approx-
imability results. In Proceedings of the Twenty-Third Inter-
national Joint Conference on Artificial Intelligence (IJCAI-
13), 353–359.


