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Abstract

Research in belief revision has been dominated by work that
liesfirmly within the classic AGM paradigm, characterized by
awell-known set of postulates governing the behavior of “ra-
tional” revision functions. A postulate that israrely criticized
isthe successpostulate: the result of revising by an observed
proposition ¢ resultsin belief in ¢. This postulate, however,
is often undesirable in settings where an agent’s observations
may be imprecise or noisy. We propose a semantics that cap-
tures a new ontology for studying revision functions, which
can handle noisy observations in a natural way while retain-
ing the classical AGM model as a special case. We present
a characterization theorem for our semantics, and describe a
number of natural special casesthat allow easeof specification
and reasoning with revision functions. In particular, by mak-
ing the Markov assumption, we can easily specify and reason
about revision.

1 Introduction

The process by which an agent revises its beliefs when it
obtai ns new information about theworld, that is, the process
of belief change, has been the focus of considerable study
in philosophy and artificia intelligence. One of the best
known and most studied theories of belief changeistheclas-
sic AGM theory of belief revision of Alchourron, Gardenfors
and Makinson [2, 18]. Recent years have seen many exten-
sions and refinements of the AGM paradigm, including the
distinction between revision and update[ 23, 32], the proposal
of model sthat combinethetwo [8, 15], and the acceptance of
the notion that epistemic states are much richer than simple
belief sets[4, 17, 27, 29].
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All of these advances can be viewed as refinements of
the AGM paradigm, for none contradict the basic, if—in
retrospect—somewnhat limited, view of revision profferred by
AGM. However, asnotedin[14], therearereasonsto question
some of their rationality postulates, even some that have
been viewed as “beyond controversy”. One example is the
success postulate, which asserts that when an agent revises
its beliefs based on new information ¢, the resulting belief
set should contain ; that is, the revision should “succeed”
in the incorporation of the new information. Generaly, this
requiresthat, in order to accept ¢, the agent give up some of
itsold beliefs to remain consistent.

As argued in [14], to justify the success postulate (or any
other postulate), we must carefully consider the particular
process we hope to characterize as well as the ontology
adopted in that characterization. Gérdenfors [18] provides
oneinterpretation of belief revisionfor whichthesuccesspos-
tulate is appropriate. Under this interpretation, the agent’s
beliefs consist of those propositionsthe agent accepts as be-
ing true and the agent revises by ¢ only if it accepts ¢ as
being true. In this case, the success postulate holds almost
by definition.

In much work on revision, it is implicitly assumed that
an agent should revise by  after observing . The reason-
ableness of this assumption depends in part on the language
being used. For example, if the agent is a robot making
observations and ¢ talks about the reading of a sensor—for
example, saying that a particul ar sensor had a high reading—
then the success postulate may again be deemed acceptable.
Of course, the rel ationshi p between the propositionsthat talk
about the robot’s sensors and more interesting propositions
that talk about what is actualy true in the “externa” world
must be modeled if therobot isto draw useful inferences|[8].
The relationship will generaly be complicated because of
sensor noise, unreliability, and so on. One may instead wish
to model a situation of this type by assuming the robot can
directly observe the truth values of external propositions, but
that these direct observations may be corrupted. Adopting
this ontology, the success postulate is no longer reasonable:
an observed proposition may contradict such strongly held
beliefs that the robot has no choice but to dismiss the obser-
vation as incorrect.

As another example where the success postulate may be
guestionable, imagine an agent conducting a market survey

LAswe shall see, “dismiss’ istoo strong aword, for an observa-
tion that is not incorporated into the agent’s belief set will still have
an impact on its epistemic state, for instance, by predisposing it to
the future acceptance of that proposition.



by having people fill in on-line questionnaires. By sending
several different questionnairesto the same person, the agent
can obtain multiple observations of, say, the person’s salary.
None of these observationsmay bethe person’sactual salary;
in fact, the agent might believe that most people tend to
exaggerate their salarieswhenfilling out such questionnaires.

Notice also that the success postulate imposes an over-
whelming bias toward accepting the most recently observed
propositions. An agent that observes a sequence of propo-
sitions containing some number of s and —¢ys is bound
to accept ¢ or -y depending on which it observed most
recently, regardless of any feature of the actua history of
observations. For instance, the robot will ignorethe fact that
twice as many  observationsas — observationswere made;
and our survey agent must ignore the fact that men tend to
inflate their reported salaries over time and accept the most
inaccurate observation. Clearly what is required is a model
of revisionthat | ets us understand when the success postul ate
is reasonable and allows us to discard it when it is not.

In this paper, we propose a model of belief revision that
deal swith impreci se observations by adopting the second on-
tology mentioned above. We assume that an agent has access
to a stream of observed propositions, but that it is under no
obligationto incorporateany particular observed proposition
into its belief set. Generally, a proposition will be accepted
only if the likelihood that the proposition is true given the
agent’s current sequence of observations “outweighs’ the
agent’s prior belief that it wasfalse. The basic intuitionsare
drawn from the standard Bayesian model of belief change.
Roughly speaking, once we have represented in our model
the correlation between a given stream of observations and
the truth of various propositions, we can simply condition
on the observations. The key point is that conditioning on
the event of observing ¢ is very different from conditioning
on the event . After conditioning on ¢, the probability of
¢ is1; after conditioning on observing ¢, the probability of
 depends on the prior probability of ¢ and the correlation
between the observation and  actually being true.

To use these ideas in the context of belief revision, we
must use a more qualitative measure of uncertainty than
probability—here we adopt Spohn’s[31] ranking functions.
Nevertheless, the basic intuitions are drawn from the stan-
dard probabilistic approach. Indeed, it is remarkable how
littlework is needed to apply these intuitionsin a qualitative
setting. This emphasizes how small the gap is between be-
lief revision and probability kinematics. We note, however,
that our model differs from qualitative adaptations of Jef-
frey’s Rule[22] devised for belief revision [11, 19, 31] (see
Section 2 for further discussion).

Therest of thispaper isorganized asfollows. In Section 2,
we discuss the AGM model, and describe generalized revi-
sion functionsfor dealing with sequences of observations. In
Section 3, we present our basic framework, which is taken
from Friedman and Halpern [16, 17]. We define observation
systems that allow unreliable observations, show how condi-
tioning can be used to effect belief revision, and characterize
the class of generalized revision functionsdetermined by ob-
servation systems. In Section 4, we consider the important
class of observation systems that satisfy the Markov assump-
tion, allowing revision functions to be specified concisaly
and naturally. In Section 5, we consider two further special
cases where (a) observations are more likely to be true than
fdse and (b) observations are known to be accurate. We
conclude with a brief discussion of related and future work.

2 The AGM Theory of Belief Revision

Throughout, weassumethat an agent hasadeductively closed
belief set K, aset of sentences drawn from some logical lan-
guage reflecting the agent’s beliefs about the current state
of the world. For ease of presentation, we assume a clas-
sical propositional language, denoted £, and conseguence
operation Cn. The belief set K will often be generated by
some finite knowledge base KB (i.e, K = Cn(KB)). The
identically true and false propositionsare denoted T and L,
respectively. Given a set of possibleworlds W and ¢ € £,
we denote by [¢] the set of x-worlds, the elements of W
satisfying .2

Givenabelief set K, an agent will often obtaininformation
@ not present in K. In this case, K’ must be revised to
incorporate . If ¢ is consistent with K, one expects ¢ to
simply be added to K. More problematic is the case when
K F —p; certain beliefsmust be given up before ¢ isadopted.
The AGM theory provides a set of postulates governing this
process. We use K} to denote the revision of K by ¢. Of
interest here isthe following:
(R2) v € K.

R2 is the success postulate mentioned in the introduction;
it says that o is believed after revising by ¢. We refer the
reader to [18] for the remaining postulates and a discussion
of the AGM theory.

Unfortunately, while the postul ates constrain possible re-
visions, they do not dictate the precise beliefs that should
be retracted when ¢ is observed. An aternative modd of
revision, based on the notion of epistemic entrenchment [18],
has a more constructive nature. Given abdlief set &', we can
characterize therevision of K by ordering beliefs according
to our willingnessto give them up. If one of two beliefs must
be retracted in order to accommodate some new fact, the
less entrenched belief will be relinquished, while the more
entrenched persists.

Semantically, an entrenchment relation (hence a revision
function) can be modeled by associating with each set of
possible worlds a plausihility, in any of a number of ways
[5, 10, 17, 20]. For the purposes of this paper, we adopt
Spohn’sordinal conditional functionsor x-rankings[19, 31].
A function x : W — N U {oo} assigns to each world a
ranking reflecting its plausibility: if x(w) < x(v) then w
is more plausible than v. We insist that x~1(0) # @, so
that maximally plausible worlds are assigned rank 0. If
k(w) = oo, we say w isimpossble. If U C W, then
K(U) = mingep £(u).

Following [4, 16, 27, 29], we distinguish the agent’s epis-
temic state from its belief set. We define the form of the
epistemic state carefully in Section 3. For now we simply
requirethat it includes aranking «. This ranking then deter-
minesthe agent’s belief set K asfollows:

K ={pel:x 10 C [} (1)
Thus, the formulasin K are precisely those that are true in
all worldsof rank O.

The ranking « aso induces a revision function: to revise
by ¢ an agent adopts the most plausible ¢-worlds as epis-
temically possible. Thus, using min(y, ) to denote this set,
we have

Ky ={¢ € L:ming,x) C [¥]}

2In our setting, we can safely identify the possible worlds with
valuationsover £, although in general we must distinguish the two.



If [e]l "W = 0, we set min(p,x) = 0 and K = L
(the inconsistent belief set). It is normaly assumed that
[e] "W # 0 for every satisfiable ¢ — thusevery satisfiable
proposition isaccorded somedegreeof plausibility. Itiswell-
known that this type of model induces the class of revision
functions sanctioned by the AGM postulates[5, 19, 20].

We define conditional plausibility, for U,V C W and
k(U) # o0, &8s

r(VIU) =V AU) —&(U).

Intuitively, this denotes the degree to which V' would be
considered plausibleif U were believed.

These notions are strongly reminiscent of standard con-
cepts from probability theory. Indeed, therole of + in prob-
ability is assumed by min in the theory of rankings, while
therole of x isassumed by + (so, in the definition of condi-
tioning, division becomes subtraction). In fact, a x-ranking
can be interpreted as a semi-qualitative probability distri-
bution. Using the ¢-semantics of Adams [1], Goldszmidt
and Pearl [19] show how one can interpret the « values of
propositionsas “order of magnitude” probabilities.

It has been remarked by a number of authors that models
of revision based on epistemic entrenchment or x-rankings
are not strong enough to adequately captureiterated revision
[4, 16, 27, 29]. Specificaly, while these models determine
the content of a new belief set when ¢ is observed, given
an epistemic state, they do not determine the new epistemic
state (or ranking) associated with the new belief set. To dea
with iteration semantically, we need a way of determining
a new epistemic state, given an observation [7, 9, 26, 30].
Spohn’s conditioning operation [31] does just this. When an
observation ¢ ismade, al —¢-worldsare deemed impossible
and removed from the ranking (or set to oo). The remaining
p-worldsretaintheir relative plausibilities, with the resulting
ranking «7, renormalized; formally we have

K’;(w) — { K(w) - K(Qp) !f w =@ )

00 if wE e

Thus each observation determines not just a revised belief
set, but a new epistemic state which can be used to model
subsequent revisions.

Spohn also proposed a more genera model of revision
caled «-conditioning. Rather than accepting an observed
proposition ¢ with certainty, ¢ is accepted with degree «,
with —-worlds retaining a certain plausibility. This model
can be viewed as away of dealing with noisy observations
(and has been developed further in [11, 19]). In fact, this
model is a qualitative analogue of Jeffrey’'s Rule [22] for
probabilistic belief update. Jeffrey’s ruleis a generaization
of conditioning where a piece of evidence can be accepted
with agiven probability.

Goldszmidt and Pearl [19] argue that Jeffrey’s ruleis un-
reasonable since it requires that the observation ¢ is associ-
ated with the agent’s posterior degree of belief in . Asan
alternative, they propose L-conditioning, where the strength
associated with observing ¢ conveys the difference in the
evidential support that the observation gives to worlds that
satisfy ¢ and to worldsthat satisfy —. They use a qualita
tive version of Bayes' rule that combines this support with
the agent’sprior ranking of ¢ and — to get aposterior rank-
ing over both propositions. Then they apply Jeffrey’sruleto
update the ranking over worldsto match this posterior.

The approach we proposeis different from and, in asense,
more general, than both of these qualitative update rules.

Unlike Jeffrey’s rule, we do not assume that there is any
doubt that ¢ has been observed but, as we said earlier, we
distinguishabserving ¢ from ¢ being true. Like Goldszmidt
and Pearl’s approach, our approach relies on Bayes rule to
combinetheevidence with aprior rankings. However, unlike
thelr approach, we assume that the evidence provides support
for each possible world (rather than to the propositions ¢
and —¢), and thus we do not have to appea to Jeffrey’s
rule. Inthis sense, our proposa has more in common with
probabilisticobservation model sthat are standard in decision
and control theory [3, 24].

A general way of thinking about iterated revision is not
to think of revision functions as mapping from (belief set,
observation) pairsto belief sets, but as mapping from finite
observation sequencesto belief sets. More precisaly, assume
that an agent’s observations are drawn from language £. We
use {¢1, p2, - -, n) to denote the length » sequence con-
sisting of o1, 2, . . .; and () denotes the length-0 sequence.
Let O denote the set of dl finite sequences of observations,
and let B denotethe set of all belief sets over L.

Definition 2.1: A generalized revision function B is a
mapping B : O — B.

This definition deals naturally with iterated revision. Fur-
thermore, thereis no need to specify aninitial belief set: the
agent’sprior beliefs are captured by the belief set B((})).2

3 An Ontology for Imprecise Observations
3.1 Observation Systems

In this section, we present aframework that allows us to de-
scribewhat istruein the world, what the agent observes, and
the plausibility of these observations. The framework is es-
sentially that of Friedman and Halpern[17, 16], whichinturn
is based on the multi-agent framework of [21]. We briefly
review thedetailshere; further discussion and motivation can
befoundin[12].

The key assumption in the multi-agent system framework
isthat we can characterizethe system by describingitinterms
of astatethat changes over time. Formally, we assumethat at
each point intime, theagentisin somelocal state. Intuitively,
thislocal stateencodestheinformationtheagent hasobserved
thusfar and itsranking. There isalso an environment, whose
stateencodesrel evant aspectsof the systemthat are not part of
the agent’sloca state. In this case, the relevant information
is simply the state of the world. A global state (s., sq)
consists of the environment state s, and the local state s, of
theagent. A runof the system isafunctionfromtime (which
hereranges over N) to global states. Thus, if » isarun, then
r(0), (1), . .. isasequence of global states that completely
describes a possible system execution. A system consists of
a set of runs that dictates al the possible behaviors of the
system.

Given asystem R, we refer to apair (r, m) consisting of
arunr € R and atimem asapoint. If »(m) = (s, sa),
we define r,(m) = s, and r.(m) = s.. A (ranked) in-
terpreted systemisatupleZ = (R, «, ), consisting of a
system R, aranking « ontherunsinr, and an interpretation
7, which associates with each point atruth assignment for £.
The ranking « represents the agent’s initial ranking of runs.
Notice that in the previous section, the agent simply ranks
possibleworlds; here the agent ranksthe relative plausibility

30ur definition of generalized revision functions is similar to
that of Lehmann [26].



of entire “evolutions’ of both itslocal state and the environ-
ment state. Of course, in general, itisinfeasiblefor the agent
to come up with a complete ranking over al possible runs.
Later, we discuss some simplifying assumptions that make
obtai ning such aranking more feasible.

To capture belief revision, we consider a special class of
interpreted systems called observation systems.* We assume
that the agent makes observations, which are characterized
by formulasin £, and that itslocal state consists of the se-
guence of observationsthat it hasmade. We al so assume that
the environment state is a truth assignment for £, reflecting
the actual state of the world. As observed by Katsuno and
Mendelzon [23], the AGM postul ates assume that the world
isstatic; to capturethis, werequirethat the environment state
does not change over time. An observation system (OS) isa
ranked interpreted system (R, «, ) that satisfies the follow-
ing three assumptions for every point (r, m):

e The environment state r.(m) is a truth assignment to
the formulas in £ that agrees with = at (r, m) (that is,
n(r,m) = r.(m)), and r.(m) = r.(0).

e The agent’s state r,(m) is a sequence of the form
(¢1,. .., omyof formulasin£; andif m > landr,(m) =
<S0]_, B gpm>, then ra(m - 1) = <§01a B SDm_1>.

o If Fisasequence {¢1, ..., pm) Of observations such that
rqe(m) = & for some run r, then ([Obs(g)]) # oo,
where [Obs(@)] = {+' : v, (m) = &}. Intuitively, this
says that any sequence of observationsthat actually arises
inthe system isinitially considered possible.

Notice that the form of the agent’slocal state makes explicit
an important implicit assumption: that the agent remembers
all of its previous observations. Its local state “grows’ at
every step.®

We introduce the following notation before proceeding.
Sincethe environment stateisfixed throughoutagiven run r,
we use r. to denote this state, dropping the time index from
r.(m). We use the notation [C] to denote the set of runsin
R that satisfy condition C'. In particular:

e For any length-m observation sequence , [Obs(F)] =
{r 1 rq(m) = g} denotesthe set of runsin R inwhich &
istheinitia sequence of observations.

e For any ¢ € L, [Obs™ ()] = {r : rq(m) = &-
4, for somelength-(m — 1) sequence 3} istheset of runs
in which ¢ isthe mth observation.

o Forany ¢ € L, [¢] = {r: re E ¢} istheset of runsin
which the (fixed) environment state satisfies

o For any truthassignment w, [w] = {r : 7. = w} isthesat
of runswhose (fixed) environment state is w.

e For any length-m sequence ¢ and truth assignment w,
[[w, Obs(gﬁ)]] = {r Te =W, ra(m) = QE}

We stress again the difference between [Obs™ ()] and [].
The former is the event of observing v a time m; the latter
isthe event of > being true.

In the analysis of the AGM framework in [16], an extra
requirement is placed on OSs. it is required that, in any
run r, if ro(m) = (@1,..., om), then g A ... A ¢, iStrue

4Observation systems are a special case of the belief change
systems consideredin [13, 16].

5This is analogous to the assumption of perfect recall in game
theory [28] and distributed computing [12].

according to thetruth assignment at r. (). Thisreguirement
forces the observationsto be accurate; if  isobserved, then
it must be true of the world. It is precisdly this requirement
that we drop here to allow for noisy observations. Theinitial
x ranking specifies (among other things) the likelihood of
such noisy observations.

We can now associate with each point (r, m) a ranking

k™™ ontheruns. Wetake x™0 = &, and define
KT U) = &PU | [Obs(ra(m + 1))])

for each subset U/ of runs. Thus, x>+ is the result of
conditioning ™™ on the observations the agent has made
up to the point (r, m + 1). Because the agent has perfect
recal, it is easy to see that conditioning on the sequence of
observationsr,(m + 1) is equivaent to conditioning on the
last observation '. More precisely,

Lemma3.L If ry(m+1) = (p1, -, ma1), then
KPR = KPTHU | [0S (p)]).

It isimmediate from the definition that <™ depends only
on the agent’s local state r,(m); if ro(m) = v, (m), then
k"™ = g™ Thus, we usualy write x# to denote the
ranking ™™ such that r,(m) = ¢. We take the agent’s
epistemic state at the point (r, m) to consist of itslocal state
rq(m) andtheranking ™™ . Sincetheranking isdetermined
by thelocal state, we can safely identify theagent’ sepistemic
state with its loca state. We note that we can generalize
our model by embedding the agent’s «-rankingsin the local
state without difficulty, allowing different initial rankingsin
different situations. For simplicity of exposition, we consider
only afixed ranking.

The beliefs an agent holds about the world at any point
(r, m) are determined by therunsit considers most plausible
at that point. Mirroring (1), we define the agent’s belief set
Bel(Z,r, m) at point (r,m) inasystemZ as

Bel(Z,r,m) = {p € L:((+"™)7H0) C[e]}. (3

Again, notice that an agent’s belief set depends only on its
local state; that is, if r,(m) = v, (m'), thenB(Z, r,m) =
Bel(Z, ', m'). However, it may well be that the agent hasthe
same belief set at two pointswhere it has quite distinct local
states;, moreover, revisions of these belief sets can proceed
differently. Thus, an observation system 7 defines a gener-
alized revision function that maps epistemic states to belief
sets

- e(Z,r,m
Br(9) :{ (B;n((JI_) )

Example3.2 Asanexampleof an OS, consider the market-
ing survey example discussed in the introduction. Suppose
our marketing agent sends three different surveysto one per-
son. In each of them, the respondent must mark his salary,
in multiples of ten thousand. Initialy, the agent considers
the person’s annua sadary to be either $30,000, $40,000, or
$50,000, each equdly plausible. The agent also knows how
plausible various observation sequences for these three sur-
veys are—if the person’s sdary 1s $10,000z, he will report
one of the foll owing sequences:

o (x+ 12+ 2 x4+ 3): theincremental exaggerator
o (x4 2,2+ 2,z + 2): the consistent exaggerator

for (r, m) suchthat r,(m) = &
if x([Obs(B)]) = oo.



o (x,z+ 1 z 4+ 1): thereluctant exaggerator
o (x,x,x): the non-exaggerator.

The agent considersit most likely that the survey recipient is
an incrementa or consistent exaggerator, less likely that he
is areuctant exaggerator, and quite implausiblethat heis a
non-exaggerator. The ranking of any run with environment
state (salary) = € {3, 4,5} and sequence of survey answers
(21, 2, #3) is. 0 if the sequence follows the incremental or
consistent pattern (given state «); 1 if it followsthe reluctant
pattern; 2 if it is unexaggerated; and 3 if it followsany other
pattern. In addition, for z ¢ {3, 4, 5}, we set « of any run r
with r. = x tobe 3.

In the resulting system Z, the agent’s initia belief set,
Bz ({)), isCn(x € {3,4,5}). The agent’s belief set af-
ter getting a response of 6 to the first survey, Bz((6)), is
Cn(z € {4,5}). This observation rules out the most plau-
sible runs where the agent’s actual saary is $30,000, since
they are incompatiblewith the agent being an incrementa or
consistent exaggerator. After then observing 7, the agent’s
belief set is Bz ({6, 7)) = Cn(xz = 5); he believes that he is
dealing with an incremental exaggerator. Finaly, if he then
observes7 again, hisbelief setis Br((6, 7, 7)) = Cn(x = 6);
he believes that he is dealing with a rel uctant exaggerator.

3.2 Expressive Power

We now examine propertiesof therevision functionsinduced
by OSs, and the expressive power of OSs. We might ask
whether the (ordinary) revision function determined by Bz
satisfies the AGM postulates. The answer is, of course, no.
Not surprisingly, the success postulateis not satisfied, for an
agent may observe ¢y and till believe =1 (as illustrated in
our example above).

With respect to expressive power, wemight ask whether all
possiblegeneralized revision functions(mapping observation
sequences to belief sets) can be represented by OSs. Thisis
not the case in general, but a particular class of revision
functions does correspond to OSs.

We say that an observation is unsurprising if it does not
cause the agent to retract any of its previous beliefs. That
is, itsbelief set after the observation is a superset of itsprior
belief set. We impose the following rationality postulate on
generalized revision functions:

(O1) For any finite observation sequence ¢ there exists a
nonempty set of observations Plaus() such that

Cn(N{B(7-v) : ¢ € Plaus(#)}) = B().

According to O1, for every observation sequence ¢, there
isaset Plaus() of observations, each of whichisunsurpris-
ing with respect to the belief set B(7). To seethis, notethat
Ol impliesthat if ¥ € Plaus(g), then B(@) C B(& - ¥),
that is, the agent retains al of its beliefs after observing .
Moreover, thisset of unsurprising observations“ covers’ the
possibilities embodied by the belief set, in that any formula
consistent with B(g) must be consistent with B(¢ - ¢) for
some ¢ € Plaus(#).

With O1, we now can show the desired characterization
theorems.

Theorem 3.3:  For any OS Z, the revision function Bz
induced by 7 satisfies O1.

Theorem 3.4 Let B be an revision function satisfying O1.
There existsan OSZ such that B = Bs.

This shows that «-rankings over runs are sufficient to rep-
resent any coherent revisionfunction (i.e., satisfying O1) and
thus can be viewed as a suitable semantics for revision based
on unreliable observations.

4 Markovian Observation Models

To thispoint, we have placed few restrictionson the initial «
ranking on runs. Thisgenerality can cause severa problems.
First, the specification of such a « ranking can be onerous,
requiring (potentially) the individua ranking of al possible
observation historieswith respect to al possibletruth assign-
ments. Second, maintaining and updating such an explicit
model imposes severe computational demands. Fortunately,
there are a number of natural assumptions that can be made
about the form of the observation model that make both the
specification and reasoning tasks much more tractable.

Very oftenthestate of theworld completely determinesthe
plausibility of various observations at a given point in time.
In such acase, the history of past observationsisirrelevant to
the determination of the plausibility of the next observation
if the state of the world is known. For instance, our agent
conducting market surveys may know that a respondent pro-
vides independent salary reports at different pointsin time,
the plausibility of aparticular report being determined solely
by the respondent’s actual salary, not by their previous re-
ports. In such a case, the “exaggeration patterns’ described
above no longer make sense. Instead the agent might assess
the plausibility of arespondent reporting = + & given that his
sdaryisz.

Wesay an OSZ = (R, x, ) is Markovian if it captures
thisintuition, which can be expressed formally asfollows.

Definition 4.1 TheOSZ = (R, k, ) isMarkovian if

(8) the likelihood of observing ¢ is independent of history
and depends only on the state of the world, i.e., for al m,

length-m sequences 1/7 and worlds w, we have

w([ObS™ ()] | [w, Obs()]) = w([ObS™ ()] | [w]).

(b) thelikelihood of observing ¢ isindependent of time, given
the state of theworld, i.e., for al m and m’, we have

#([0bs™ ()] | [w]) = £([ObS™ (£)] | [w])-

The Markov assumption is standard in the probabilistic
literature and has been argued to be widely applicable [25].
Itisaso adopted implicitly in much work in reasoning about
action, planning, control and probabilisticinference with re-
spect to system dynamics. Although it plays a key role in
the observation models adopted in control theory and prob-
abilistic reasoning [3, 24], it has received little attention in
thisrespect within the qualitative planning literature.

The Markov assumptionisalso very powerful, allowing us
to specify aranking over runsrelatively compactly. We need
specify only two components: a prior ranking over worlds,
i.e., x([w]) for each truth assignment w, and afamily of con-
ditional observation rankings of theform «([Obs" () ]|[w])
for any observation ¢ and world w (we use the x to indicate
that the observation plausibility is independent of m). Note
that our conditional observation rankings differ dramatically
fromthe general model, requiring that we rank individual ob-
servations, not infinite sequences of observations. Thesetwo
components, however, determine the x-ranking over runs.



Lenmmad4.2: LetZ = (R, «,w) beaMarkovian OS. Then
the plausibility of therun (w, {¢1, ¢2, . . .)) isgiven by

w(w, (g, 92, ) = w([w]) + Y w([0bS"(2)]Iw]).

=1
(4)
Notethat theinfinitesuminthelemmamay beco; thissimply

means that therun (w, {1, @2, - - -)) isimpossible.
We can aso easily characterize the ranking of an agent

who has observed 1/7: (Y1, ..., Ym)y @timem:

Kjlp (wa <§01a fZa o >)

OO_If 1/) ;é <§01a .. ,gpm>

w7 ([w]) + 32572 41 #([00S™ ()] [w]) otherwise.
()

Thus, after observing v, the agent’s posterior over runs re-

tains its Markovian structure, except that instead of using

£ ([«]), the prior over truth assignments, the agent now uses
its posterior over truth assignments.

Example4.3:  We now reexamine the survey example. It
is easy to verify that the system described in the previous
example is not Markovian.® Instead, imagine that the agent
believes a respondent with salary $z is most likely reply
z + 2, then 4+ 1 then z, regardless of the number of times
they are questioned. Thiscan be modeledinaMarkovian OS
by (e.g.) assessing «([Obs"(z + 2)]|[«]) = O, x([Obs"(z +
]I=]) = 1, x([Obs*(z)]|[«]) = 2, and arank of 3 to all
other observations. Given an initial ranking over worlds, this
fixes aranking over runs. il

Fromacomputational perspective, the Markov assumption
admits further advantages, particularly if we are interested
in modeling the agent’s beliefs about propositions. We see
from (5) that if the agent cares only about runsthat extend the

observations seen so far, then the term «¥ ([w] ) summarizes
the influence of the past observations on current and future
beliefs. This means that instead of examining an arbitrarily
long sequence of past observations, the agent can reconstruct
its beliefs using its posterior over truth assignments.

The following theorem shows how the agent can update
thisranking of assignmentswhen anew observationis made.

Theorem 4.4 LetZ = (R, &, 7) bea Markovian OS. Then

w7 ([u]) = )
#([Obs™ ()] 1[w]) + ¥ ([w]) - .
MmN ooy (FOBS (2)1[w]) + £¥ ([w])).-
This is the qualitative analogue of standard Bayesian up-
da_te of a probability distri_bution using Bayes rule. Since
&V ([e]) = mingepoy(s¥?([w])) for o € L, this theo-
rem shows that al we need to know to compute /-:J'V’([[a]])

is nlﬁ([[w]]) for each world w, together with the transition
likelihoods. Thus, in many cases, the information an agent
needs needs to be able to do revision in this setting, given

5Note that this example can be captured by a Markovian system
if we model the state of the world so that it encodesthe recipient’s
response history aswell as her salary.

the Markov assumption, isfeasible. Of coursg, it isstill non-
trivial to represent al thisinformation. But thisis precisely
the same problem that arises in the probabilistic setting; we
would expect the techniques that have proved so successful
inthe probabilistic setting (for example, Bayesian networks)
to be applicable here as well [19].

41 Expressive Power of Markovian Systems

One property that immediately follows from the definition
of a Markovian OS is the fact that the order in which the
observations from a sequence are made does not influence
the beliefs of the agent; only their presence and quantity do.
This suggests the following exchangability postul ate:

(O2) For any finite observation sequence ¢4, . . ., @, and
for any permutationp of 1,...,m
B((p1,- - om)) = BUep), -+ Po(m)))-

It iseasy to verify that O2 is sound in Markovian OSs.

Theorem 4.5 For any Markovian OSZ, the revision func-
tion Bz induced by 7 satisfies O2.

Unfortunately, O1 and O2 do not suffice to characterize the
propertiesof revisionfunctionsin Markovian systems. Aswe
show in the full paper, we can construct revision functions
that satisfy both O1 and O2 yet cannot be modeled by a
Markovian OS. The question of what conditions are needed
to completely characterize Markovian OSs remains open.

5 Credible Observation Models

We have not (yet) put any constraints on the plausibility of
observationsin different runs. Thus, we can easily construct
systems that obey the “opposite”’ of the success postulate.
Consider, for example, a Markovian system where an obser-
vation ¢ is maximally plausiblein aworld where = holds,
and impossible otherwise. That is,

#([Obs™ ()] | [a]) = { SO :;g 'lz ;?0

It iseasy to verify that in this system, after observing ¢, the
agent believes —¢.

Of course, thisbehavior runs counter to our intuitionabout
the role of observations. In this section we examine condi-
tions that attempt to capture the intuition that observations
carry useful information about the true state of the world.

We start by considering a very simple condition. We say
that an OS isinformativeif an agent is more likely to make
accurate observations (ones that are true of the environment
state) than inaccurate ones.

Definition 5.1: A Markovian OSZ = (R, «, 7) is infor-
mativeif for al ¢, ¢ € £ and environment states w, if w =
A\ =, then k([Obs™ ()] | [w]) < #([Obs* ()] | [w]).

Informativeness is clearly a nontrivia requirement, and
it does seem to go some of the way towards capturing
the intuition that observations are usually not miseading.
Unfortunately, informative systems need not satisfy even a
weak form of success. Consider the OS Z where there are
two environment states, p and —p, such that «([Obs*(T)] |

[p]) = #([0bs'(T)] | [p]) = O, w([Obs ()] | [s]) = 3,
w([0bs (~p)] | [p]) = 4, w([ObS'(=p)] | [-p]) = 1.
w([0bs ()] | [~p]) = 2. and w([ObS (L)] | [p]) =



&([Obs"(L)] | [=p]) = oco. In this system, the only ob-
servation the agent islikely to make isthetrivia observation
T; both p and —p are unlikely. 7 isinformative, since p is
more likely to be observed than —p if p istrue (and —p is
more likely to be observed than p if —p is true). Unfortu-
nately, the agent is still more likely to observe p when p is
false than when p istrue. Suppose now that the initia rank-
ing issuch that both environment statesare equally plausible,
i.e, «([p]) = «([-p]) = O. Itiseasy to verify that after m
successive observations of p, we have

k([p, Obs((p,....p))I) = 3m
k([=p, Obs((p,....p))]) = 2m.
Thus, Bz ({p,...,p)) = Cn(—p). Moreover, observing more

instances of p only strengthensthe belief that p isfalse.

In our marketing example, this type of situation might
arise if we take into account that respondents may be unre-
sponsive (i.e., provide no saary information). Suppose that
people with a salary of over $100,000 are most likely to be
unresponsive, while peoplewith asalary of $90,000 are more
likely to report “10” than those that actually have a salary of
$100,000. (The system isinformative as long as people with
asalary of $90,000 aremorelikely toreport “9” than“10.") If
we take p to denote “10 or more,” then thissituationis mod-
eled by the system 7 above. With each observation “10,” our
agent (correctly) $90,000 to be more likely.

Informativenessfailsto lead to the recovery of the success
postul ate because it requires only that we compare the plau-
sibilities of different observations at the same environment
state. For an observation ¢ to provide evidencethat increases
the agent’ sdegree of belief iny, wemust compare the plausi-
bility of the observation across different states. Thissuggests
the following definition.

Definition 5.2 A Markovian OSZ = (R, x, w) is credible
if, for al ¢ and environment states w, v such that w = ¢
En]t]ﬂ)v = —, we have x([Obs" ()] | [w]) < #([Obs(¢)] |
v

Intuitively, credibility says that an observation ¢ provides
stronger evidence for every p-world than it does for any —-
world. Intheexampleabove, thisrequirementisnot satisfied,
for an observation “10” is most likely to be made in a state
where $90,000 holds.

This reguirement allows OSsto satisfy certain wesk vari-
ants of the success postul ate.

(03) If ~p ¢ B(¥), thenp € B() - ).

(O4) For dll finite observation sequences Jsuch that —¢ &
B(J . 1/7’) for some 1/7’, there is a number n such that
RS B(1/7~ "), where " denotes n repetitions of .

Condition O3 saysthat if ¢ is considered plausible (i.e, the

agent does not believe —¢), then observing ¢ suffices to
convince the agent that ¢ is true. Condition O4 says that

if ¢ is compatible with observing 1/7 (in that there is some
sequence of observationsthat would make ¢ plausible), then
the agent will believe ¢ after some number of ¢ observations.

Theorem 5.3 If Z iscredible, then Bz satisfies O3 and O4.

We can relateinformativeness and credibility by requiring
an additional property. Suppose that we think of each ob-
servation as arising from an experiment that tests the truth
or falsity of a particular proposition. Specifically, after ex-
periment £, the agent observes either ¢ or —y. In general,

whether or not a particular experiment is performed will de-
pend on the state. An OS is experiment-independent if the
likelihood that a particular experiment is chosen isindepen-
dent of the state.

Definition 5.4 : The Markovian OS Z = (R, &, )
is experiment-independent if, for every observation o,
there is a constant x,, such that min(x([Obs ()] |
[w]). 5([Obs (=] | [w])) = r,, for all w.

We can think of x,, as the likelihood that the experiment
for ¢ is performed (since the experiment will result in ob-
serving either ¢ or =p). The OS Z described above is not
experiment-independent since both observations p and —p
areless plausiblein state p than in state —p.

While the assumption of experiment-independence does
not seem very natural, together with informativeness it im-
pliescredibility.

Lemmabs IfZ = (R, &, 7) isinformative and experiment-
independent Markovian OS, then 7 is credible.

Credibility, while alowing for O3 and 04, is till not
strong enough to recover the success postulate. For this, we
require a yet stronger assumption: we need to assume that
all observations are known to be correct; that is, it must be
impossibleto make an inaccurate observation.

Definition 5.6 : A Makovian OS is accurate if
&([Obs ()] | [w]) = oo whenever w [~ .

In our example, accuracy requires that when our agent ob-
serves, say, “10,” therespondent’s salary isin fact $100,000,
and the agent is aware of thisfact. It isthusimpossibleto
observe two contradictory propositionsin any sequence.
Accuracy amost implies informativeness and credibil-
ity, but doesn't quite: if observing both ¢ and —¢ is
impossible, the system is accurate but neither informative
nor credible. However, as long as min(x([Obs ()] |
[w]), &([Obs (=¢)] | [w])) < o fordl ¢ € £ and en-
vironment states w, then accuracy implies both properties.
More significantly, accuracy implies the success postul ate.

Theorem 5.7 If Z isan accurate Markovian OS, then By
satisfiesR2, that is, ¢ € Bz (¢ - ¢).

Accuracy isnot enough by itself to recover all of the AGM
postulates. As we show in the full paper, we need both
accuracy and astrong form experiment-independence, which
saysthat all experiments are quitelikely (and equally likely)
to be performed; that is, x, = Ofor al ¢.

The key point here is that, while we can impose condi-
tionson OSsthat allow usto recover the full AGM modsdl, it
should be clear that these requirements are not always met by
naturally-occurring OSs. Notions such as informativeness,
credibility and accuracy are often inapplicablein many do-
mains (including our running exampl e of amarketing agent).
The framework of OSs (and Markovian OSs in particular)
provides a convenient and coherent model for examining the
assumptionsthat hold in a given application domain and de-
termining the precise form arevision function should take.

6 Concluding Remarks

We have described a general ontology for belief revision
that allows usto model noisy or unreliable observations and
relax the success postulate in a natural way. By imposing
the Markov assumption, we obtained OSs that can be easily
and naturally described. These give rise to agents whose
epistemic state can be encoded in the “usual” way: as a



ranking over worlds. Further assumptions about the quality
of the observation model allow us to recover the success
postulate (and a wesker version of it); this illustrates the
genera natureof our framework. Theemphasison semantics,
as opposed to postulates, has allowed us to readily identify
these assumptions and examine their conseguences.

Thereisconsiderablerelated work that we survey in detail
in a longer version of this paper. Lehmann [26] describes
a model where observation sequences are treated as epis-
temic statesin order to dedl effectively withiterated revision.
Two proposals impact strongly on this paper. Friedman and
Halpern [16] use interpreted systems to model both revi-
sion and update, and examine the Markov assumptionin this
context. Boutilier [6, 8] develops a less genera model for
revision and update (taking the Markov assumption as given)
and considers several methods for modeling noisy observa-
tions. All of thiswork (with the exception of [8]) essentially
takes the success postulate as a given. Spohn’s method of
a-conditioning [31], a generalization of the notion of condi-
tioning rankings defined above, was one of the first revision
models to explicitly account for strength of evidence. How-
ever, a-conditioning does not provide an account of how
strength of evidence might be derived. Our model allows
usto do thisin a natural way, by adapting well-known tech-
niques from probability theory.

Important future research on observation systemsincludes
theincorporation of system dynamicsthat allowstheenviron-
ment state to change, the development of suitablelanguages
and | ogi csfor reasoning with noi sy observations, and the syn-
tactic characterization of special cases of OSs (in particular,
Markovian OSs). We hope to report on thisin future work.
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