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Abstract

Research in belief revision has been dominated by work that
lies firmly within the classic AGM paradigm, characterized by
a well-known set of postulates governing the behavior of “ra-
tional” revision functions. A postulate that is rarely criticized
is the success postulate: the result of revising by an observed
proposition ' results in belief in '. This postulate, however,
is often undesirable in settings where an agent’s observations
may be imprecise or noisy. We propose a semantics that cap-
tures a new ontology for studying revision functions, which
can handle noisy observations in a natural way while retain-
ing the classical AGM model as a special case. We present
a characterization theorem for our semantics, and describe a
number of natural special cases that allow ease of specification
and reasoning with revision functions. In particular, by mak-
ing the Markov assumption, we can easily specify and reason
about revision.

1 Introduction

The process by which an agent revises its beliefs when it
obtains new information about the world, that is, the process
of belief change, has been the focus of considerable study
in philosophy and artificial intelligence. One of the best
known and most studied theories of belief change is the clas-
sic AGM theory of belief revision of Alchourrón, Gärdenfors
and Makinson [2, 18]. Recent years have seen many exten-
sions and refinements of the AGM paradigm, including the
distinction between revision and update [23, 32], the proposal
of models that combine the two [8, 15], and the acceptance of
the notion that epistemic states are much richer than simple
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All of these advances can be viewed as refinements of
the AGM paradigm, for none contradict the basic, if—in
retrospect—somewhat limited, view of revision profferred by
AGM. However, as noted in [14], there are reasons to question
some of their rationality postulates, even some that have
been viewed as “beyond controversy”. One example is the
success postulate, which asserts that when an agent revises
its beliefs based on new information ', the resulting belief
set should contain '; that is, the revision should “succeed”
in the incorporation of the new information. Generally, this
requires that, in order to accept ', the agent give up some of
its old beliefs to remain consistent.

As argued in [14], to justify the success postulate (or any
other postulate), we must carefully consider the particular
process we hope to characterize as well as the ontology
adopted in that characterization. Gärdenfors [18] provides
one interpretation of belief revision for which the success pos-
tulate is appropriate. Under this interpretation, the agent’s
beliefs consist of those propositions the agent accepts as be-
ing true and the agent revises by ' only if it accepts ' as
being true. In this case, the success postulate holds almost
by definition.

In much work on revision, it is implicitly assumed that
an agent should revise by ' after observing '. The reason-
ableness of this assumption depends in part on the language
being used. For example, if the agent is a robot making
observations and ' talks about the reading of a sensor—for
example, saying that a particular sensor had a high reading—
then the success postulate may again be deemed acceptable.
Of course, the relationship between the propositions that talk
about the robot’s sensors and more interesting propositions
that talk about what is actually true in the “external” world
must be modeled if the robot is to draw useful inferences [8].
The relationship will generally be complicated because of
sensor noise, unreliability, and so on. One may instead wish
to model a situation of this type by assuming the robot can
directly observe the truth values of external propositions, but
that these direct observations may be corrupted. Adopting
this ontology, the success postulate is no longer reasonable:
an observed proposition may contradict such strongly held
beliefs that the robot has no choice but to dismiss the obser-
vation as incorrect.1

As another example where the success postulate may be
questionable, imagine an agent conducting a market survey

1As we shall see, “dismiss” is too strong a word, for an observa-
tion that is not incorporated into the agent’s belief set will still have
an impact on its epistemic state, for instance, by predisposing it to
the future acceptance of that proposition.



by having people fill in on-line questionnaires. By sending
several different questionnaires to the same person, the agent
can obtain multiple observations of, say, the person’s salary.
None of these observations may be the person’s actual salary;
in fact, the agent might believe that most people tend to
exaggerate their salaries when filling out such questionnaires.

Notice also that the success postulate imposes an over-
whelming bias toward accepting the most recently observed
propositions. An agent that observes a sequence of propo-
sitions containing some number of 's and :'s is bound
to accept ' or :' depending on which it observed most
recently, regardless of any feature of the actual history of
observations. For instance, the robot will ignore the fact that
twice as many ' observations as:' observations were made;
and our survey agent must ignore the fact that men tend to
inflate their reported salaries over time and accept the most
inaccurate observation. Clearly what is required is a model
of revision that lets us understand when the success postulate
is reasonable and allows us to discard it when it is not.

In this paper, we propose a model of belief revision that
deals with imprecise observations by adopting the second on-
tology mentioned above. We assume that an agent has access
to a stream of observed propositions, but that it is under no
obligation to incorporate any particular observed proposition
into its belief set. Generally, a proposition will be accepted
only if the likelihood that the proposition is true given the
agent’s current sequence of observations “outweighs” the
agent’s prior belief that it was false. The basic intuitions are
drawn from the standard Bayesian model of belief change.
Roughly speaking, once we have represented in our model
the correlation between a given stream of observations and
the truth of various propositions, we can simply condition
on the observations. The key point is that conditioning on
the event of observing ' is very different from conditioning
on the event '. After conditioning on ', the probability of' is 1; after conditioning on observing ', the probability of' depends on the prior probability of ' and the correlation
between the observation and ' actually being true.

To use these ideas in the context of belief revision, we
must use a more qualitative measure of uncertainty than
probability—here we adopt Spohn’s [31] ranking functions.
Nevertheless, the basic intuitions are drawn from the stan-
dard probabilistic approach. Indeed, it is remarkable how
little work is needed to apply these intuitions in a qualitative
setting. This emphasizes how small the gap is between be-
lief revision and probability kinematics. We note, however,
that our model differs from qualitative adaptations of Jef-
frey’s Rule [22] devised for belief revision [11, 19, 31] (see
Section 2 for further discussion).

The rest of this paper is organized as follows. In Section 2,
we discuss the AGM model, and describe generalized revi-
sion functions for dealing with sequences of observations. In
Section 3, we present our basic framework, which is taken
from Friedman and Halpern [16, 17]. We define observation
systems that allow unreliable observations, show how condi-
tioning can be used to effect belief revision, and characterize
the class of generalized revision functions determined by ob-
servation systems. In Section 4, we consider the important
class of observation systems that satisfy the Markov assump-
tion, allowing revision functions to be specified concisely
and naturally. In Section 5, we consider two further special
cases where (a) observations are more likely to be true than
false; and (b) observations are known to be accurate. We
conclude with a brief discussion of related and future work.

2 The AGM Theory of Belief Revision
Throughout,we assume that an agent has a deductively closed
belief set K, a set of sentences drawn from some logical lan-
guage reflecting the agent’s beliefs about the current state
of the world. For ease of presentation, we assume a clas-
sical propositional language, denoted L, and consequence
operation Cn. The belief set K will often be generated by
some finite knowledge base KB (i.e., K = Cn(KB)). The
identically true and false propositions are denoted > and ?,
respectively. Given a set of possible worlds W and ' 2 L,
we denote by [[']] the set of '-worlds, the elements of W
satisfying '.2

Given a belief setK, an agent will often obtain information' not present in K. In this case, K must be revised to
incorporate '. If ' is consistent with K, one expects ' to
simply be added to K. More problematic is the case whenK ` :'; certain beliefs must be given up before' is adopted.
The AGM theory provides a set of postulates governing this
process. We use K�' to denote the revision of K by '. Of
interest here is the following:
(R2) ' 2 K�'.

R2 is the success postulate mentioned in the introduction;
it says that ' is believed after revising by '. We refer the
reader to [18] for the remaining postulates and a discussion
of the AGM theory.

Unfortunately, while the postulates constrain possible re-
visions, they do not dictate the precise beliefs that should
be retracted when ' is observed. An alternative model of
revision, based on the notion of epistemic entrenchment [18],
has a more constructive nature. Given a belief set K, we can
characterize the revision of K by ordering beliefs according
to our willingness to give them up. If one of two beliefs must
be retracted in order to accommodate some new fact, the
less entrenched belief will be relinquished, while the more
entrenched persists.

Semantically, an entrenchment relation (hence a revision
function) can be modeled by associating with each set of
possible worlds a plausibility, in any of a number of ways
[5, 10, 17, 20]. For the purposes of this paper, we adopt
Spohn’s ordinal conditional functions or�-rankings [19, 31].
A function � : W ! N [ f1g assigns to each world a
ranking reflecting its plausibility: if �(w) < �(v) then w
is more plausible than v. We insist that ��1(0) 6= ;, so
that maximally plausible worlds are assigned rank 0. If�(w) = 1, we say w is impossible. If U � W , then�(U ) = minu2U �(u).

Following [4, 16, 27, 29], we distinguish the agent’s epis-
temic state from its belief set. We define the form of the
epistemic state carefully in Section 3. For now we simply
require that it includes a ranking �. This ranking then deter-
mines the agent’s belief set K as follows:K = f' 2 L : ��1(0) � [[']]g: (1)
Thus, the formulas in K are precisely those that are true in
all worlds of rank 0.

The ranking � also induces a revision function: to revise
by ' an agent adopts the most plausible '-worlds as epis-
temically possible. Thus, using min('; �) to denote this set,
we have K�' = f 2 L : min('; �) � [[ ]]g

2In our setting, we can safely identify the possible worlds with
valuations overL, although in general we must distinguish the two.



If [[']] \ W = ;, we set min('; �) = ; and K�' = L
(the inconsistent belief set). It is normally assumed that[[']]\W 6= ; for every satisfiable ' — thus every satisfiable
proposition is accorded some degree of plausibility. It is well-
known that this type of model induces the class of revision
functions sanctioned by the AGM postulates [5, 19, 20].

We define conditional plausibility, for U; V � W and�(U ) 6= 1, as:�(V jU ) = �(V ^ U ) � �(U ):
Intuitively, this denotes the degree to which V would be
considered plausible if U were believed.

These notions are strongly reminiscent of standard con-
cepts from probability theory. Indeed, the role of + in prob-
ability is assumed by min in the theory of rankings, while
the role of� is assumed by + (so, in the definition of condi-
tioning, division becomes subtraction). In fact, a �-ranking
can be interpreted as a semi-qualitative probability distri-
bution. Using the "-semantics of Adams [1], Goldszmidt
and Pearl [19] show how one can interpret the � values of
propositions as “order of magnitude” probabilities.

It has been remarked by a number of authors that models
of revision based on epistemic entrenchment or �-rankings
are not strong enough to adequately capture iterated revision
[4, 16, 27, 29]. Specifically, while these models determine
the content of a new belief set when ' is observed, given
an epistemic state, they do not determine the new epistemic
state (or ranking) associated with the new belief set. To deal
with iteration semantically, we need a way of determining
a new epistemic state, given an observation [7, 9, 26, 30].
Spohn’s conditioning operation [31] does just this. When an
observation ' is made, all :'-worlds are deemed impossible
and removed from the ranking (or set to 1). The remaining'-worlds retain their relative plausibilities, with the resulting
ranking ��' renormalized; formally we have��'(w) = � �(w) � �(') if w j= '1 if w 6j= ': (2)

Thus each observation determines not just a revised belief
set, but a new epistemic state which can be used to model
subsequent revisions.

Spohn also proposed a more general model of revision
called �-conditioning. Rather than accepting an observed
proposition ' with certainty, ' is accepted with degree �,
with :'-worlds retaining a certain plausibility. This model
can be viewed as a way of dealing with noisy observations
(and has been developed further in [11, 19]). In fact, this
model is a qualitative analogue of Jeffrey’s Rule [22] for
probabilistic belief update. Jeffrey’s rule is a generalization
of conditioning where a piece of evidence can be accepted
with a given probability.

Goldszmidt and Pearl [19] argue that Jeffrey’s rule is un-
reasonable since it requires that the observation ' is associ-
ated with the agent’s posterior degree of belief in '. As an
alternative, they propose L-conditioning, where the strength
associated with observing ' conveys the difference in the
evidential support that the observation gives to worlds that
satisfy ' and to worlds that satisfy :'. They use a qualita-
tive version of Bayes’ rule that combines this support with
the agent’s prior ranking of ' and :' to get a posterior rank-
ing over both propositions. Then they apply Jeffrey’s rule to
update the ranking over worlds to match this posterior.

The approach we propose is different from and, in a sense,
more general, than both of these qualitative update rules.

Unlike Jeffrey’s rule, we do not assume that there is any
doubt that ' has been observed but, as we said earlier, we
distinguish observing ' from ' being true. Like Goldszmidt
and Pearl’s approach, our approach relies on Bayes rule to
combine the evidence with a prior rankings. However, unlike
their approach, we assume that the evidence provides support
for each possible world (rather than to the propositions '
and :'), and thus we do not have to appeal to Jeffrey’s
rule. In this sense, our proposal has more in common with
probabilisticobservation models that are standard in decision
and control theory [3, 24].

A general way of thinking about iterated revision is not
to think of revision functions as mapping from (belief set,
observation) pairs to belief sets, but as mapping from finite
observation sequences to belief sets. More precisely, assume
that an agent’s observations are drawn from languageL. We
use h'1; '2; � � � ; 'ni to denote the length n sequence con-
sisting of '1; '2; : : :; and hi denotes the length-0 sequence.
Let O denote the set of all finite sequences of observations,
and let B denote the set of all belief sets over L.
Definition 2.1: A generalized revision function B is a
mappingB : O ! B.
This definition deals naturally with iterated revision. Fur-
thermore, there is no need to specify an initial belief set: the
agent’s prior beliefs are captured by the belief set B(hi).3
3 An Ontology for Imprecise Observations
3.1 Observation Systems
In this section, we present a framework that allows us to de-
scribe what is true in the world, what the agent observes, and
the plausibility of these observations. The framework is es-
sentially that of Friedman and Halpern [17, 16], which in turn
is based on the multi-agent framework of [21]. We briefly
review the details here; further discussion and motivation can
be found in [12].

The key assumption in the multi-agent system framework
is that we can characterize the system by describing it in terms
of a state that changes over time. Formally, we assume that at
each point in time, the agent is in some local state. Intuitively,
this local state encodes the information the agent has observed
thus far and its ranking. There is also an environment, whose
state encodes relevant aspects of the system that are not part of
the agent’s local state. In this case, the relevant information
is simply the state of the world. A global state (se; sa)
consists of the environment state se and the local state sa of
the agent. A run of the system is a function from time (which
here ranges over N) to global states. Thus, if r is a run, thenr(0); r(1); : : : is a sequence of global states that completely
describes a possible system execution. A system consists of
a set of runs that dictates all the possible behaviors of the
system.

Given a system R, we refer to a pair (r;m) consisting of
a run r 2 R and a time m as a point. If r(m) = (se; sa),
we define ra(m) = sa and re(m) = se. A (ranked) in-
terpreted system is a tuple I = (R; �; �), consisting of a
systemR, a ranking � on the runs in r, and an interpretation�, which associates with each point a truth assignment forL.
The ranking � represents the agent’s initial ranking of runs.
Notice that in the previous section, the agent simply ranks
possible worlds; here the agent ranks the relative plausibility

3Our definition of generalized revision functions is similar to
that of Lehmann [26].



of entire “evolutions” of both its local state and the environ-
ment state. Of course, in general, it is infeasible for the agent
to come up with a complete ranking over all possible runs.
Later, we discuss some simplifying assumptions that make
obtaining such a ranking more feasible.

To capture belief revision, we consider a special class of
interpreted systems called observation systems.4 We assume
that the agent makes observations, which are characterized
by formulas in L, and that its local state consists of the se-
quence of observations that it has made. We also assume that
the environment state is a truth assignment for L, reflecting
the actual state of the world. As observed by Katsuno and
Mendelzon [23], the AGM postulates assume that the world
is static; to capture this, we require that the environment state
does not change over time. An observation system (OS) is a
ranked interpreted system (R; �; �) that satisfies the follow-
ing three assumptions for every point (r;m):� The environment state re(m) is a truth assignment to

the formulas in L that agrees with � at (r;m) (that is,�(r;m) = re(m)), and re(m) = re(0).� The agent’s state ra(m) is a sequence of the formh'1; : : : ; 'mi of formulas inL; and ifm � 1 and ra(m) =h'1; : : : ; 'mi, then ra(m � 1) = h'1; : : : ; 'm�1i.� If ~' is a sequence h'1; : : : ; 'mi of observations such thatra(m) = ~' for some run r, then �([[Obs(~')]]) 6= 1,
where [[Obs(~')]] = fr0 : r0a(m) = ~'g. Intuitively, this
says that any sequence of observations that actually arises
in the system is initially considered possible.

Notice that the form of the agent’s local state makes explicit
an important implicit assumption: that the agent remembers
all of its previous observations. Its local state “grows” at
every step.5

We introduce the following notation before proceeding.
Since the environment state is fixed throughout a given run r,
we use re to denote this state, dropping the time index fromre(m). We use the notation [[C]] to denote the set of runs inR that satisfy condition C. In particular:� For any length-m observation sequence ~', [[Obs(~')]] =fr : ra(m) = ~'g denotes the set of runs in R in which ~'

is the initial sequence of observations.� For any  2 L, [[Obsm( )]] = fr : ra(m) = ~' � ; for some length-(m�1) sequence ~'g is the set of runs
in which  is the mth observation.� For any  2 L, [[ ]] = fr : re j=  g is the set of runs in
which the (fixed) environment state satisfies  � For any truth assignment w, [[w]] = fr : re = wg is the set
of runs whose (fixed) environment state is w.� For any length-m sequence ~' and truth assignment w,[[w;Obs(~')]] = fr : re = w; ra(m) = ~'g.

We stress again the difference between [[Obsm( )]] and [[ ]].
The former is the event of observing  at time m; the latter
is the event of  being true.

In the analysis of the AGM framework in [16], an extra
requirement is placed on OSs: it is required that, in any
run r, if ra(m) = h'1; : : : ; 'mi, then '1 ^ : : :^ 'm is true

4Observation systems are a special case of the belief change
systems considered in [13, 16].

5This is analogous to the assumption of perfect recall in game
theory [28] and distributed computing [12].

according to the truth assignment at re(m). This requirement
forces the observations to be accurate; if ' is observed, then
it must be true of the world. It is precisely this requirement
that we drop here to allow for noisy observations. The initial� ranking specifies (among other things) the likelihood of
such noisy observations.

We can now associate with each point (r;m) a ranking�r;m on the runs. We take �r;0 = �, and define�r;m+1(U ) = �r;m(U j [[Obs(ra(m + 1))]])
for each subset U of runs. Thus, �r;m+1 is the result of
conditioning �r;m on the observations the agent has made
up to the point (r;m + 1). Because the agent has perfect
recall, it is easy to see that conditioning on the sequence of
observations ra(m + 1) is equivalent to conditioning on the
last observation '0. More precisely,

Lemma 3.1: If ra(m + 1) = h'1; � � � ; 'm+1i, then�r;m+1(U ) = �r;m(U j [[Obsm+1(')]]):
It is immediate from the definition that �r;m depends only

on the agent’s local state ra(m); if ra(m) = r0a(m), then�r;m = �r0;m. Thus, we usually write �~' to denote the
ranking �r;m such that ra(m) = ~'. We take the agent’s
epistemic state at the point (r;m) to consist of its local statera(m) and the ranking�r;m. Since the ranking is determined
by the local state, we can safely identify the agent’s epistemic
state with its local state. We note that we can generalize
our model by embedding the agent’s �-rankings in the local
state without difficulty, allowing different initial rankings in
different situations. For simplicity of exposition, we consider
only a fixed ranking.

The beliefs an agent holds about the world at any point(r;m) are determined by the runs it considers most plausible
at that point. Mirroring (1), we define the agent’s belief set
Bel(I; r;m) at point (r;m) in a system I as

Bel(I; r;m) = f' 2 L : ((�r;m)�1(0) � [[']]g: (3)

Again, notice that an agent’s belief set depends only on its
local state; that is, if ra(m) = r0a(m0), then Bel(I; r;m) =
Bel(I; r0;m0). However, it may well be that the agent has the
same belief set at two points where it has quite distinct local
states; moreover, revisions of these belief sets can proceed
differently. Thus, an observation system I defines a gener-
alized revision function that maps epistemic states to belief
sets:BI(~') = � Bel(I; r;m) for (r;m) such that ra(m) = ~'

Cn(?) if �([[Obs(~')]]) = 1.

Example 3.2: As an example of an OS, consider the market-
ing survey example discussed in the introduction. Suppose
our marketing agent sends three different surveys to one per-
son. In each of them, the respondent must mark his salary,
in multiples of ten thousand. Initially, the agent considers
the person’s annual salary to be either $30,000, $40,000, or
$50,000, each equally plausible. The agent also knows how
plausible various observation sequences for these three sur-
veys are—if the person’s salary is $10,000x, he will report
one of the following sequences:� hx+ 1; x+ 2; x+ 3i: the incremental exaggerator� hx+ 2; x+ 2; x+ 2i: the consistent exaggerator



� hx; x+ 1; x+ 1i: the reluctant exaggerator� hx; x; xi: the non-exaggerator.

The agent considers it most likely that the survey recipient is
an incremental or consistent exaggerator, less likely that he
is a reluctant exaggerator, and quite implausible that he is a
non-exaggerator. The ranking of any run with environment
state (salary) x 2 f3; 4; 5g and sequence of survey answershx1; x2; x3i is: 0 if the sequence follows the incremental or
consistent pattern (given state x); 1 if it follows the reluctant
pattern; 2 if it is unexaggerated; and 3 if it follows any other
pattern. In addition, for x =2 f3; 4; 5g, we set � of any run r
with re = x to be 3.

In the resulting system I, the agent’s initial belief set,BI (hi), is Cn(x 2 f3; 4; 5g). The agent’s belief set af-
ter getting a response of 6 to the first survey, BI (h6i), is
Cn(x 2 f4; 5g). This observation rules out the most plau-
sible runs where the agent’s actual salary is $30,000, since
they are incompatible with the agent being an incremental or
consistent exaggerator. After then observing 7, the agent’s
belief set is BI(h6; 7i) = Cn(x = 5); he believes that he is
dealing with an incremental exaggerator. Finally, if he then
observes 7 again, his belief set isBI(h6; 7; 7i) = Cn(x = 6);
he believes that he is dealing with a reluctant exaggerator.

3.2 Expressive Power
We now examine properties of the revision functions induced
by OSs, and the expressive power of OSs. We might ask
whether the (ordinary) revision function determined by BI
satisfies the AGM postulates. The answer is, of course, no.
Not surprisingly, the success postulate is not satisfied, for an
agent may observe  and still believe : (as illustrated in
our example above).

With respect to expressive power, we might ask whether all
possible generalized revision functions (mapping observation
sequences to belief sets) can be represented by OSs. This is
not the case in general, but a particular class of revision
functions does correspond to OSs.

We say that an observation is unsurprising if it does not
cause the agent to retract any of its previous beliefs. That
is, its belief set after the observation is a superset of its prior
belief set. We impose the following rationality postulate on
generalized revision functions:

(O1) For any finite observation sequence ~' there exists a
nonempty set of observations Plaus(~') such that

Cn(\fB(~' �  ) :  2 Plaus(~')g) = B(~'):
According to O1, for every observation sequence ~', there

is a set Plaus(~') of observations, each of which is unsurpris-
ing with respect to the belief set B(~'). To see this, note that
O1 implies that if  2 Plaus(~'), then B(~') � B(~' �  ),
that is, the agent retains all of its beliefs after observing  .
Moreover, this set of unsurprising observations “covers” the
possibilities embodied by the belief set, in that any formula
consistent with B(~') must be consistent with B(~' �  ) for
some  2 Plaus(~').

With O1, we now can show the desired characterization
theorems.

Theorem 3.3: For any OS I, the revision function BI
induced by I satisfies O1.

Theorem 3.4: Let B be an revision function satisfying O1.
There exists an OS I such that B = BI .

This shows that �-rankings over runs are sufficient to rep-
resent any coherent revision function (i.e., satisfying O1) and
thus can be viewed as a suitable semantics for revision based
on unreliable observations.

4 Markovian Observation Models
To this point, we have placed few restrictions on the initial �
ranking on runs. This generality can cause several problems.
First, the specification of such a � ranking can be onerous,
requiring (potentially) the individual ranking of all possible
observation histories with respect to all possible truth assign-
ments. Second, maintaining and updating such an explicit
model imposes severe computational demands. Fortunately,
there are a number of natural assumptions that can be made
about the form of the observation model that make both the
specification and reasoning tasks much more tractable.

Very often the state of the world completely determines the
plausibility of various observations at a given point in time.
In such a case, the history of past observations is irrelevant to
the determination of the plausibility of the next observation
if the state of the world is known. For instance, our agent
conducting market surveys may know that a respondent pro-
vides independent salary reports at different points in time,
the plausibility of a particular report being determined solely
by the respondent’s actual salary, not by their previous re-
ports. In such a case, the “exaggeration patterns” described
above no longer make sense. Instead the agent might assess
the plausibility of a respondent reporting x+k given that his
salary is x.

We say an OS I = (R; �; �) is Markovian if it captures
this intuition, which can be expressed formally as follows.

Definition 4.1: The OS I = (R; �; �) is Markovian if

(a) the likelihood of observing ' is independent of history
and depends only on the state of the world, i.e., for all m,
length-m sequences ~ , and worldsw, we have�([[Obsm+1(')]] j [[w;Obs(~ )]]) = �([[Obsm+1(')]] j [[w]]):

(b) the likelihoodof observing' is independent of time, given
the state of the world, i.e., for all m and m0, we have�([[Obsm(')]] j [[w]]) = �([[Obsm0 (')]] j [[w]]):
The Markov assumption is standard in the probabilistic

literature and has been argued to be widely applicable [25].
It is also adopted implicitly in much work in reasoning about
action, planning, control and probabilistic inference with re-
spect to system dynamics. Although it plays a key role in
the observation models adopted in control theory and prob-
abilistic reasoning [3, 24], it has received little attention in
this respect within the qualitative planning literature.

The Markov assumption is also very powerful, allowing us
to specify a ranking over runs relatively compactly. We need
specify only two components: a prior ranking over worlds,
i.e., �([[w]]) for each truth assignmentw, and a family of con-
ditional observation rankings of the form �([[Obs?(')]]j[[w]])
for any observation ' and world w (we use the ? to indicate
that the observation plausibility is independent of m). Note
that our conditional observation rankings differ dramatically
from the general model, requiring that we rank individual ob-
servations, not infinite sequences of observations. These two
components, however, determine the �-ranking over runs.



Lemma 4.2: Let I = (R; �; �) be a Markovian OS. Then
the plausibility of the run (w; h'1; '2; : : :i) is given by�(w; h'1; '2; � � �i) = �([[w]]) + 1Xj=1

�([[Obs?('j)]]j[[w]]):
(4)

Note that the infinite sum in the lemma may be1; this simply
means that the run (w; h'1; '2; � � �i) is impossible.

We can also easily characterize the ranking of an agent
who has observed ~ = h 1; : : : ;  mi at time m:�~ (w; h'1; '2; � � �i)= ( 1 if ~ 6= h'1; : : : ; 'mi�~ ([[w]]) +P1j=m+1 �([[Obs?('j)]]j[[w]]) otherwise.

(5)
Thus, after observing ~ , the agent’s posterior over runs re-
tains its Markovian structure, except that instead of using�([[�]]), the prior over truth assignments, the agent now uses
its posterior over truth assignments.

Example 4.3: We now reexamine the survey example. It
is easy to verify that the system described in the previous
example is not Markovian.6 Instead, imagine that the agent
believes a respondent with salary $x is most likely replyx + 2, then x+ 1 then x, regardless of the number of times
they are questioned. This can be modeled in a Markovian OS
by (e.g.) assessing �([[Obs?(x+ 2)]]j[[x]]) = 0, �([[Obs?(x+
1)]]j[[x]]) = 1, �([[Obs?(x)]]j[[x]]) = 2, and a rank of 3 to all
other observations. Given an initial ranking over worlds, this
fixes a ranking over runs.

From a computational perspective, the Markov assumption
admits further advantages, particularly if we are interested
in modeling the agent’s beliefs about propositions. We see
from (5) that if the agent cares only about runs that extend the
observations seen so far, then the term �~ ([[w]]) summarizes
the influence of the past observations on current and future
beliefs. This means that instead of examining an arbitrarily
long sequence of past observations, the agent can reconstruct
its beliefs using its posterior over truth assignments.

The following theorem shows how the agent can update
this ranking of assignments when a new observation is made.

Theorem 4.4: Let I = (R; �; �) be a Markovian OS. Then�~ �'([[w]]) =�([[Obs?(')]]j[[w]]) + �~ ([[w]])�
minfw:�~ ([[w]]) 6=1g (�([[Obs?(')]]j[[w]]) + �~ ([[w]])):

This is the qualitative analogue of standard Bayesian up-
date of a probability distribution using Bayes rule. Since�~ �'([[�]]) = minw2[[�]] (�~ �'([[w]])) for � 2 L, this theo-

rem shows that all we need to know to compute �~ �'([[�]])
is �~ ([[w]]) for each world w, together with the transition
likelihoods. Thus, in many cases, the information an agent
needs needs to be able to do revision in this setting, given

6Note that this example can be captured by a Markovian system
if we model the state of the world so that it encodes the recipient’s
response history as well as her salary.

the Markov assumption, is feasible. Of course, it is still non-
trivial to represent all this information. But this is precisely
the same problem that arises in the probabilistic setting; we
would expect the techniques that have proved so successful
in the probabilistic setting (for example, Bayesian networks)
to be applicable here as well [19].

4.1 Expressive Power of Markovian Systems
One property that immediately follows from the definition
of a Markovian OS is the fact that the order in which the
observations from a sequence are made does not influence
the beliefs of the agent; only their presence and quantity do.
This suggests the following exchangability postulate:

(O2) For any finite observation sequence '1; : : : ; 'm and
for any permutation � of 1; : : : ;mB(h'1; : : : ; 'mi) = B(h'�(1); : : : ; '�(m)i):
It is easy to verify that O2 is sound in Markovian OSs.

Theorem 4.5: For any Markovian OS I, the revision func-
tionBI induced by I satisfies O2.

Unfortunately, O1 and O2 do not suffice to characterize the
properties of revision functions in Markovian systems. As we
show in the full paper, we can construct revision functions
that satisfy both O1 and O2 yet cannot be modeled by a
Markovian OS. The question of what conditions are needed
to completely characterize Markovian OSs remains open.

5 Credible Observation Models
We have not (yet) put any constraints on the plausibility of
observations in different runs. Thus, we can easily construct
systems that obey the “opposite” of the success postulate.
Consider, for example, a Markovian system where an obser-
vation ' is maximally plausible in a world where :' holds,
and impossible otherwise. That is,�([[Obs?(')]] j [[�]]) = � 0 if � j= :'1 if � j= '.

It is easy to verify that in this system, after observing ', the
agent believes :'.

Of course, this behavior runs counter to our intuitionabout
the role of observations. In this section we examine condi-
tions that attempt to capture the intuition that observations
carry useful information about the true state of the world.

We start by considering a very simple condition. We say
that an OS is informative if an agent is more likely to make
accurate observations (ones that are true of the environment
state) than inaccurate ones.

Definition 5.1: A Markovian OS I = (R; �; �) is infor-
mative if for all ';  2 L and environment states w, if w j=' ^ : , then �([[Obs?(')]] j [[w]]) < �([[Obs?( )]] j [[w]]).

Informativeness is clearly a nontrivial requirement, and
it does seem to go some of the way towards capturing
the intuition that observations are usually not misleading.
Unfortunately, informative systems need not satisfy even a
weak form of success. Consider the OS I where there are
two environment states, p and :p, such that �([[Obs?(>)]] j[[p]]) = �([[Obs?(>)]] j [[:p]]) = 0, �([[Obs?(p)]] j [[p]]) = 3,�([[Obs?(:p)]] j [[p]]) = 4, �([[Obs?(:p)]] j [[:p]]) = 1,�([[Obs?(p)]] j [[:p]]) = 2, and �([[Obs?(?)]] j [[p]]) =



�([[Obs?(?)]] j [[:p]]) = 1. In this system, the only ob-
servation the agent is likely to make is the trivial observation>; both p and :p are unlikely. I is informative, since p is
more likely to be observed than :p if p is true (and :p is
more likely to be observed than p if :p is true). Unfortu-
nately, the agent is still more likely to observe p when p is
false than when p is true. Suppose now that the initial rank-
ing is such that both environment states are equally plausible,
i.e., �([[p]]) = �([[:p]]) = 0. It is easy to verify that after m
successive observations of p, we have�([[p;Obs(hp; : : :; pi)]]) = 3m�([[:p;Obs(hp; : : :; pi)]]) = 2m:
Thus,BI(hp; : : : ; pi) = Cn(:p). Moreover, observing more
instances of p only strengthens the belief that p is false.

In our marketing example, this type of situation might
arise if we take into account that respondents may be unre-
sponsive (i.e., provide no salary information). Suppose that
people with a salary of over $100,000 are most likely to be
unresponsive, while people with a salary of $90,000 are more
likely to report “10” than those that actually have a salary of
$100,000. (The system is informative as long as people with
a salary of $90,000 are more likely to report “9” than “10.”) If
we take p to denote “10 or more,” then this situation is mod-
eled by the system I above. With each observation “10,” our
agent (correctly) assesses $90,000 to be more likely.

Informativeness fails to lead to the recovery of the success
postulate because it requires only that we compare the plau-
sibilities of different observations at the same environment
state. For an observation' to provide evidence that increases
the agent’s degree of belief in', we must compare the plausi-
bility of the observation across different states. This suggests
the following definition.
Definition 5.2: A Markovian OS I = (R; �; �) is credible
if, for all ' and environment states w, v such that w j= '
and v j= :', we have �([[Obs?(')]] j [[w]]) < �([[Obs?(')]] j[[v]])
Intuitively, credibility says that an observation ' provides
stronger evidence for every '-world than it does for any :'-
world. In the example above, this requirement is not satisfied,
for an observation “10” is most likely to be made in a state
where $90,000 holds.

This requirement allows OSs to satisfy certain weak vari-
ants of the success postulate.

(O3) If :' 62 B(~ ), then ' 2 B(~ � ').
(O4) For all finite observation sequences ~ such that :' 62B(~ � ~ 0) for some ~ 0, there is a number n such that' 2 B(~ � 'n), where 'n denotes n repetitions of '.
Condition O3 says that if ' is considered plausible (i.e., the
agent does not believe :'), then observing ' suffices to
convince the agent that ' is true. Condition O4 says that
if ' is compatible with observing ~ (in that there is some
sequence of observations that would make ' plausible), then
the agent will believe' after some number of' observations.
Theorem 5.3: If I is credible, thenBI satisfies O3 and O4.

We can relate informativeness and credibility by requiring
an additional property. Suppose that we think of each ob-
servation as arising from an experiment that tests the truth
or falsity of a particular proposition. Specifically, after ex-
periment E', the agent observes either ' or :'. In general,

whether or not a particular experiment is performed will de-
pend on the state. An OS is experiment-independent if the
likelihood that a particular experiment is chosen is indepen-
dent of the state.
Definition 5.4 : The Markovian OS I = (R; �; �)
is experiment-independent if, for every observation ',
there is a constant �', such that min(�([[Obs?(')]] j[[w]]); �([[Obs?(:')]] j [[w]])) = �' for all w.
We can think of �' as the likelihood that the experiment
for ' is performed (since the experiment will result in ob-
serving either ' or :'). The OS I described above is not
experiment-independent since both observations p and :p
are less plausible in state p than in state :p.

While the assumption of experiment-independence does
not seem very natural, together with informativeness it im-
plies credibility.
Lemma 5.5: If I = (R; �; �) is informative and experiment-
independent Markovian OS, then I is credible.

Credibility, while allowing for O3 and O4, is still not
strong enough to recover the success postulate. For this, we
require a yet stronger assumption: we need to assume that
all observations are known to be correct; that is, it must be
impossible to make an inaccurate observation.
Definition 5.6 : A Markovian OS is accurate if�([[Obs?(')]] j [[w]]) =1 whenever w 6j= '.
In our example, accuracy requires that when our agent ob-
serves, say, “10,” the respondent’s salary is in fact $100,000,
and the agent is aware of this fact. It is thus impossible to
observe two contradictory propositions in any sequence.

Accuracy almost implies informativeness and credibil-
ity, but doesn’t quite: if observing both ' and :' is
impossible, the system is accurate but neither informative
nor credible. However, as long as min(�([[Obs?(')]] j[[w]]); �([[Obs?(:')]] j [[w]])) < 1 for all ' 2 L and en-
vironment states w, then accuracy implies both properties.
More significantly, accuracy implies the success postulate.
Theorem 5.7: If I is an accurate Markovian OS, then BI
satisfies R2, that is, ' 2 BI(~ �').

Accuracy is not enough by itself to recover all of the AGM
postulates. As we show in the full paper, we need both
accuracy and a strong form experiment-independence, which
says that all experiments are quite likely (and equally likely)
to be performed; that is, �' = 0 for all '.

The key point here is that, while we can impose condi-
tions on OSs that allow us to recover the full AGM model, it
should be clear that these requirements are not always met by
naturally-occurring OSs. Notions such as informativeness,
credibility and accuracy are often inapplicable in many do-
mains (including our running example of a marketing agent).
The framework of OSs (and Markovian OSs in particular)
provides a convenient and coherent model for examining the
assumptions that hold in a given application domain and de-
termining the precise form a revision function should take.

6 Concluding Remarks
We have described a general ontology for belief revision
that allows us to model noisy or unreliable observations and
relax the success postulate in a natural way. By imposing
the Markov assumption, we obtained OSs that can be easily
and naturally described. These give rise to agents whose
epistemic state can be encoded in the “usual” way: as a



ranking over worlds. Further assumptions about the quality
of the observation model allow us to recover the success
postulate (and a weaker version of it); this illustrates the
general nature of our framework. The emphasis on semantics,
as opposed to postulates, has allowed us to readily identify
these assumptions and examine their consequences.

There is considerable related work that we survey in detail
in a longer version of this paper. Lehmann [26] describes
a model where observation sequences are treated as epis-
temic states in order to deal effectively with iterated revision.
Two proposals impact strongly on this paper. Friedman and
Halpern [16] use interpreted systems to model both revi-
sion and update, and examine the Markov assumption in this
context. Boutilier [6, 8] develops a less general model for
revision and update (taking the Markov assumption as given)
and considers several methods for modeling noisy observa-
tions. All of this work (with the exception of [8]) essentially
takes the success postulate as a given. Spohn’s method of�-conditioning [31], a generalization of the notion of condi-
tioning rankings defined above, was one of the first revision
models to explicitly account for strength of evidence. How-
ever, �-conditioning does not provide an account of how
strength of evidence might be derived. Our model allows
us to do this in a natural way, by adapting well-known tech-
niques from probability theory.

Important future research on observation systems includes
the incorporationof system dynamics that allows the environ-
ment state to change, the development of suitable languages
and logics for reasoning with noisy observations, and the syn-
tactic characterization of special cases of OSs (in particular,
Markovian OSs). We hope to report on this in future work.
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