
Automated Design of Multistage Mechanisms∗

Tuomas Sandholm
Carnegie Mellon University

Computer Science Department
sandholm@cs.cmu.edu

Vincent Conitzer
Duke University

Dept. of Computer Science
conitzer@cs.duke.edu

Craig Boutilier
University of Toronto

Dept. of Computer Science
cebly@cs.toronto.edu

Abstract

Mechanism design is the study of preference ag-
gregation protocols that work well in the face
of self-interested agents. We present the first
general-purpose techniques for automatically de-
signingmultistagemechanisms. These can reduce
elicitation burden by only querying agents for in-
formation that is relevant given their answers to
previous queries. We first show how to turn a given
(e.g., automatically designed using constrained op-
timization techniques) single-stage mechanism into
the most efficient corresponding multistage mech-
anism given a specified elicitation tree. We then
present greedy and dynamic programming (DP) al-
gorithms that determine the elicitation tree (opti-
mal in the DP case). Next, we show how the query
savings inherent in the multistage model can be
used to design the underlying single-stage mecha-
nism to maximally take advantage of this approach.
Finally, we present negative results on the design
of multistage mechanisms that do not correspond
to dominant-strategysingle-stage mechanisms: an
optimal multistage mechanism in general has to
randomize over queries to hide information from
the agents.

1 Introduction
In multiagent settings, often anoutcome(e.g., presidents,
joint plans, allocations of resources) must be chosen based
on the preferences of a set of agents. Since the preference
aggregator generally does not know these preferencesa pri-
ori, the agents must report their preferences to the aggregator.
Unfortunately, an agent may have an incentive to misreport
its preferences in order to mislead the aggregator into select-
ing an outcome that is more desirable to the agent than the
outcome that would be selected if the agent revealed its pref-
erences truthfully.

Mechanism designis concerned with the creation of prefer-
ence aggregation rules that lead to good outcomes in spite of
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such strategic behavior by agents. Classical mechanism de-
sign provides some general mechanisms, which, under certain
assumptions, satisfy some notion of nonmanipulability and
maximize some objective. Typically, such mechanisms do
not rely on (even probabilistic) information about the agents’
preferences (e.g., the Vickrey-Clarke-Groves (VCG) mecha-
nism[29; 7; 12]), or can be easily applied to any distribution
over preferences[11; 1; 21; 19]. However, these general algo-
rithms only work in restricted settings (e.g., they may require
the possibility of side payments, or work only for specific ob-
jectives) and may not reflect the designer’s objectives.

Recently,automated mechanism design (AMD)has been
proposed as a means to design mechanisms automatically
for the setting at hand[8; 3]. This approach, based on
constrained optimization, produces optimal special-purpose
mechanisms even in settings for which no good general mech-
anisms are known, or for which impossibility results pre-
clude the existence of good general mechanisms for the class
of instances. While AMD is a relatively new approach, it
has already started to be adopted in applications, for ex-
ample, in strategic sourcing, reserve price setting in as-
set recovery, and recommender systems[14]. However, all
prior work on general-purpose AMD has focused on single-
stage mechanisms, in which all agents reveal their prefer-
ences completely and simultaneously. This is problematic
for several reasons. First and foremost, agents may need
to invest significant computational, cognitive or other re-
sources to determine their preferences over outcomes[24; 25;
16]. For instance, when bidding on trucking tasks in a com-
binatorial reverse auction, an agent needs to solve, for each
subset of tasks, a complex vehicle-routing problem). Second,
the agents lose all privacy about their preferences. Third, it
can require a large amount of communication. While the third
reason applies only when the space of possible preferences is
large, the first two reasons are significant even in settings with
few outcomes or possible preference functions.

Much of this computation, communication, and privacy
loss is unnecessary when certain aspects of an agent’s pref-
erences have no influence on the final outcome. For instance,
if a second agent can perform a task at much lower cost than a
first, we need not determine precisely how suboptimal assign-
ing the task to the first agent is. Unfortunately, single-stage
mechanisms cannot take advantage of this: we cannota priori
rule out the need to know the first agent’s precise preferences



for the task—this only becomes apparent after receiving in-
formation from the second.

Our solution is to usemultistagemechanisms, where the
aggregator queries the agents about certain aspects of their
preferences, and chooses the next query to ask (and who to
ask it of) based on answers to earlier queries. In a non-
game-theoretic setting, a move to multistage protocols can
yield an exponential savings in bits communicated[15]. In
mechanism design settings, such a move can yield an expo-
nential savings in communication and the aggregator’s com-
putation[10].

Multistage mechanisms have beenmanuallydesigned for
several applications, such as voting[9], single-item auc-
tions (e.g.,[5]), and combinatorial auctions (see reviews[26;
22]). Automated design of multistage mechanisms has been
addressedfor specific settingsin parallel with our work[17;
27; 13]. Prior work has studied the design of multistage
mechanisms in strategic multi-party computation[28; 2], but
the issues in that setting (e.g., that an agent may be tempted
not to invest the effort necessary to determine its private in-
formation) are very different from those we address. In this
paper, we introduce the firstgeneraltechniques forautomated
design of multistage mechanisms. We adopt a very specific
methodology: first design a single-stage mechanism using ex-
isting techniques for AMD; this is then converted into a mul-
tistage mechanism using one of several techniques we pro-
pose. We also show how the multistage model can be used
to to influence the design the underlying single-stage mecha-
nism to maximally take advantage of the savings inherent in
the multistage model. As such, relying on an intermediate
single-stage mechanism incurs no loss.

2 The model
2.1 Automated design of single-stage mechanisms
In this subsection, we review the relevant definitions and re-
sults from the single-stage AMD literature. In a single-stage
AMD setting, we are given: 1) a finite set of outcomesO
(payments to/from agents can be part of the outcome); 2) a
finite set ofN agents; 3) for each agenti, (a) a finite set of
typesΘi, (b) a probability distributionγi overΘi (in the case
of correlated types, there is a single joint distributionγ over
Θ1× . . .×ΘN ), and (c) a utility functionui : Θi×O → R;4)
an objective functiong : Θ1× . . .×ΘN ×O → R whose ex-
pectation the designer wishes to maximize. Note that utility
functions are parameterized by type; while theui are com-
mon knowledge, the types encode (private) preferences[18].
The restriction to a finite type space is somewhat limiting.
However, continuous spaces can be handled via suitable dis-
cretization of the type space.1 Possible designer objectives
are many (e.g.,social welfare, or maximizing the sum of
agent utilities for the chosen outcome).

By the revelation principle[18], we can restrict attention
to truthful, direct revelation mechanisms, where agents re-
port their types directly and never have an incentive to mis-

1The discretization can be fixed in advance with an analysis of its
impact on incentives and efficiency (as in recent research on limited
revelation auctions[4]). Or, it may be optimized within the AMD
model itself; this latter point is the subject of current research.

report them. In general, mechanisms may choose the out-
come randomly. Thus, a mechanism consists of a distribu-
tion selection functionp : Θ1 × . . . × ΘN → ∆(O), where
∆(O) is the set of probability distributions overO. A mech-
anism is adominant strategy mechanismif truthtelling is op-
timal regardless of what other agents report. In other words,
for any agenti, type vector(θ1, . . . , θi, . . . , θN ), and alter-
native reportθ̂i ∈ Θi, we haveEo|θ1,..,θi,..,θn

ui(θi, o) ≥
Eo|θ1,..,θ̂i,..,θn

ui(θi, o). If telling the truth is optimal only
giventhat the other agents are truthful, we have aBayes-Nash
equilibrium (BNE)mechanism. That is, in a BNE mecha-
nism, for anyi, θi ∈ Θi, and alternative report̂θi ∈ Θi,
we have E(θ1,..,θi−1,θi+1,..,θN )|θi

Eo|θ1,..,θi,..,θn
ui(θi, o) ≥

E(θ1,..,θi−1,θi+1,..,θN )|θi
Eo|θ1,..,θ̂i,..,θn

ui(θi, o).
In settings where participation is voluntary, the AMD for-

mulation also includes participation (orindividual rational-
ity) constraints: no agent is worse off participating in the
mechanism than not. Techniques for handling them in single-
stage AMD can be applied to our multistage case without
modification.

Given that the mechanism is allowed to choose the out-
come at random, the problem of designing an optimal single-
stage mechanism can be solved in polynomial time (given
that the number of agents is constant) using linear program-
ming[8]. The decision variables of that linear program are the
following: for every type vectorθ and every outcomeo, there
is a decision variablep(θ, o) that determines the probability
of that outcome given that type vector. It is straightforward
to check that the incentive compatibility constraints above, as
well as the expectation of the objective, are linear functions
of these variables, which gives us the linear program. Gener-
ating and solving this linear program is all that is required to
have a basic approach to automatically designing single-stage
mechanisms, and it is in fact the approach that we use in this
paper to generate single-stage mechanisms.

2.2 Automated design of multistage mechanisms
In multistage AMD, the input includes—in addition to the
input for single-stage AMD—a set of queriesQ and a set
of answersA. Assuming a single answer set (rather than
distinct Aq for each queryq) comes without loss of gener-
ality. One set of special interest isA = {yes, no}. Each
query q is associated with a particular agenti (of whom q
would be asked),2 and the answer that the agent would give
to q (when answering truthfully) is given by the function
a : Q × Θi → A, wherea(q, θi) is i’s truthful answer to
queryq wheni’s type isθi. This implies that there is only one
truthful response to anyq ∈ Q; thus, each query partitions the
agent’s type space. Upon receiving answera to q from agent
i, the mechanism can infer (assuming truthfulness)i’s type is
in {θi ∈ Θi : a(q, θi) = a}.

A multistage mechanismM correspondsto a given single-
stage mechanismS if, for each type vectorθ reported by

2In this paper we will restrict our attention to the case where we
query one agent at a time; however, our approach is easily extended
to settings where we query multiple agents at the same time. We
note, however, that querying agents one at a time leads to the largest
possible savings in the number of queries.



the agents, bothM andS choose each outcomeo with the
same probability. SupposeM corresponds to someS where
truth-telling is dominant. It is not hard to see thatM has
truthtelling as anex-postequilibrium, regardless of the the
results of previous queries revealed. (A vector of strategies is
an ex-post equilibrium if for each agent, following the strat-
egy is optimal regardless of the types of the other agents
given their strategies.) That is, truth-telling is optimal (re-
gardless of an agent’s beliefs) whenever all other agents an-
swer queries truthfully.This implies that we never need to ran-
domize over query choice (though this no longer holds ifS is
not a dominant-strategy mechanism, as we will see later). Ex
post implementation is weaker than dominant strategies, but
stronger than BNE. Note that even ifS is a dominant-strategy
mechanism,M need not be: if an agent makes her answer
dependent on the history of queries asked, another agent may
have an incentive to lie about her type in order to influence
which queries the former is asked.

For these reasons, apart from the last technical section in
the paper, we focus exclusively on multistage mechanisms
that correspond to dominant-strategy single-stage mecha-
nisms. Thus, we can restrict ourselves to mechanisms that
select the next query deterministically based on answers to
prior queries; moreover, we need not worry about incentives.

Under these restrictions, amultistage mechanismis defined
by: 1) a tree with nodesV and edgesE; 2) for each internal
(non-leaf) nodev, an agenti and a queryq to that agent; 3)
a one-to-one correspondence between possible answers to the
query at nodev and children of nodev; 4) for each nodev and
outcomeo, a probability that, given that we reachv, we stop
asking queries and choose outcomeo. (In the case wherev
is a leaf, these probabilities must sum to one.) Anelicitation
tree is a multistage mechanism without outcome probabili-
ties. We denote byIv the information setat nodev (i.e., the
set of type vectors consistent with the answers that lead tov).
We generally assume an elicitation tree iscomplete: Il is a
single type vector for any leafl.3

We study several variants of multistage AMD. We consider
the possibility starting with agivensingle-stage mechanism
(e.g., computed by single-stage AMD software) and turning it
into a corresponding multistage mechanism, as well as allow-
ing our multistage perspective to influence the choice/design
of the underlying single-stage mechanism. We also consider
multistage design when the elicitation tree (hence the query
order) is given beforehand, and when we impose no con-
straints on the form of the tree.

3 A small example
In this section, we illustrate various notions for automatically
designing multistage mechanisms using a simple example.
Suppose a divorcing couple jointly owns a painting, and an
arbitrator has to decide the fate of the painting. There are
5 options: (1) the husband keeps the painting; (2) the wife
keeps it; (3) the painting remains jointly owned, but is hung

3This does not imply that the mechanism will ask all queries and
uniquely determine a type vector: the concrete outcome probabili-
ties, specifically, the possibility of terminating at an interior node
will typically preclude this.

in a museum; (4) it is cut into pieces which are given to the
husband; and (5) it is cut up with pieces given to the wife.
The husband and wife each have two possible types: type
L (“Low”) is associated with relative indifference toward the
painting, and typeH (“High”) with deep attachment. Each
has typeL with probability0.8 and typeH with probability
0.2. To maximize social welfare, the arbitrator would like to
give the painting to whomever cares for it more; but since a
party who cares little would prefer having it over not, the ar-
bitrator must design appropriate incentives to ensure truthful
reporting. The utility function for each party is the “same.”
Keeping the painting gives utility2 (typeL) or 100 (H). The
other party getting the painting gives utility0 (for either type).
The museum outcome gives utility1.5 (L) or 40 (H). Receiv-
ing pieces gives utility−9 while not even getting the pieces
gives utility−10 (for either type).4

Our goal is to find a dominant-strategy (possibly ran-
domized) mechanism (without payments) that maximizes ex-
pected social welfare. First we find the optimal single-stage
mechanism. Solving this example using the methodology de-
scribed earlier yields the following randomized mechanism
(the probabilities are rounded):

wife L wife H

husbandL Museum 0.96 Wife keeps;
0.04 Husband gets pieces

husbandH 0.96 Husband keeps; 0.47 Husband keeps;
0.04 Wife gets pieces 0.40 Wife keeps;

0.13 Wife gets pieces

In spite of the symmetry between the husband and the wife,
the mechanism is asymmetric. Of course, other optimal so-
lutions exist (e.g., where the roles of husband and wife are
interchanged).

Now we consider how to turn this single-stage mechanism
into a corresponding multistage mechanism (i.e., with the
same outcome probabilities). First, suppose the elicitation
tree is given, with the wife’s type elicited first. Fig. 1 shows
the optimal multistage mechanism. (Why this is so will be-
come apparent.) This mechanism saves one query with prob-
ability 0.2 · 0.4 = 0.08.

If the elicitation tree (query order) is not fixed, the optimal
mechanism is that given in Fig. 2. It turns out that greater
savings can be obtained by eliciting the husband’s type first:
this mechanism saves a query with probability0.2 · (0.04 +
0.47) = 0.10. (This is due to the asymmetry of the single-
stage mechanism from which we are starting.)

Suppose queries to the husband are slightly more expensive
than those to the wife, so that we would rather save on hus-
band queries (unlike the previous mechanism). If we allow a
different optimal single-stage mechanism, namely the analog
of the one above with the husband and wife roles switched
(which remains optimal due to the problem symmetry), then
the optimal multistage mechanism that corresponds to this

4This problem has some similarity to King Solomon’s dilemma;
however, when that dilemma is discussed in the economics litera-
ture [23], it is assumed that there is only one rightful mother, and
both women know who it is—unlike our problem, where the agents
do not know each others’ types.



Museum w.p. 1

Husband keeps w.p. .96

Wife gets pieces w.p. .04

Wife keeps w.p. .93
Husband gets pieces w.p. .07

Husband keeps w.p. .78
Wife gets pieces w.p. .22

HUSBAND HIGH

WIFE HIGH

WIFE LOW

HUSBAND LOW

HUSBAND LOW

HUSBAND HIGH

Wife keeps w.p. .40

Figure 1: The optimal elicitation tree given the single-stage
mechanism and given that the wife is queried first. When an
internal node has a probability-outcome pair associated with
it, we terminate early at that node with that probability, with
that outcome; with the remaining probability, we move on to
the next query.

Museum w.p. 1

HUSBAND HIGH

WIFE HIGH

WIFE LOW

WIFE LOW

WIFE HIGH

Wife keeps w.p. .96

Husband gets pieces w.p. .04

HUSBAND LOW

Husband keeps w.p. .47
Wife gets pieces w.p. .04

Wife keeps w.p. .82
Wife gets pieces w.p. .18

Husband keeps w.p. .1

Figure 2: The optimal mechanism when asking the husband
first.

saves a query to the husband (rather than the wife) with prob-
ability 0.10, giving greater cost savings.

Finally, if we are willing to sacrifice optimality of the
single-stage mechanism to obtain greater query savings, this
may again change the mechanism. For example, if we make
the cost of querying sufficiently large, it will be optimal to not
ask any queries, and always choose the same outcome.

One interesting additional motivation for automatically de-
signing multistage mechanisms is that the tree-based repre-
sentation of a multistage mechanism may beeasier to un-
derstandfor a human than the tabular form of a single-stage
mechanism—especially if the tree is relatively small.

The trees in the figures are reminiscent of decision trees in
machine learning[20] and boolean function representation.
In decision tree learning, the tree classifies an example based
on the answers to a sequence of queries about features of the
example. Similarly, a multistage mechanism determines the
outcome for a particular type vector based on the answers to
a sequence of queries about the agents’ types. There are sig-
nificant differences, however, in the form of the trees. For
example, decision trees typically do not use randomization
in determining the classification. Moreover, decision trees
never determine the classification at an internal node of the
tree, whereas we probabilistically terminate the querying pro-

cess in our trees.5 Our tree transformations do have an analog
in decision tree learning, where reordering is often consid-
ered for the purposes of simplicity and generalization[6]; but
again the motivation, details, and meaning of such transfor-
mations are quite distinct.

4 Converting a single-stage mechanism into a
multistage mechanism

In this section we develop methods for converting a given
(e.g., automatically designed) single-stage mechanism into
an equivalent multistage mechanism which saves on elicita-
tion costs. The analog of this in decision trees would be con-
structing a (short) decision tree, given that, for each complete
instantiation of all the features, we have already decided how
we want to classify examples with that instantiation. In the
first subsection we develop methods for the case where the
elicitation tree (query order) is given. In the second subsec-
tion we generalize the approach to the case where the elicita-
tion tree is not given, but can be chosen endogenously.

4.1 Given elicitation tree
We first solve the simplest of our problems: converting a
single-stage mechanism into the most efficient multistage
mechanism for a given elicitation tree. This problem can be
motivated by considering exogenous constraints on query or-
der (e.g., agents available at different times, or when the op-
timal ordering is readily available). More importantly, this
setting serves as a stepping stone to more general techniques
below. Our key technique is to “propagate up” probability
from the leaves to internal nodes where this is possible.

Lemma 1 Let multistage mechanismM correspond to
single-stage mechanismS. Suppose that for some internal
nodev in the elicitation tree (with exit probabilityev) and
outcomeo, all the leaves of the subtreeTv rooted atv assign
a probability of at leastp > 0 to outcomeo (and none of the
internal nodes ofTv have any exit probability). Then the fol-
lowing modificationM ′ of M corresponds toS: (1) At node
v, exit witho with probability(1 − ev)p; (2) Subtractp from
the probability assigned too at each leaf ofTv; (3) Divide all
the outcome probabilities at leavesTv by1− p.

Proof: Consider the probabilityp(θ, o′) that outcomeo′
will be selected given type vectorθ in M ′. If θ does
not lead tov, clearly p(θ, o′) is the same inM and M ′;
so assume that it does. Ifo′ = o (the outcome we exit
early with), then the probability of selectingo′ at v is now
the early-exit probabilityp, plus the probability that we
do not exit early but choose outcomeo′ later, which is
(1 − p)(p(θ, o′)old − p)/(1 − p) = p(θ, o′)old − p. Hence
the total probability isp(θ, o′)old; i.e., it did not change. If
o′ 6= o, then the probability of selectingo′ at v is the prob-
ability that we do not exit early witho and choose outcome
o′ later, which is(1 − p)(p(θ, o′)old)/(1 − p) = p(θ, o′)old.
Hence for anyθ, M andM ′ selecto′ with the same probabil-
ity.

5Randomized decision trees in circuit complexity literature can
in some sense be viewed in this light, though the representation is
usually as a distribution of “deterministic” trees.



We note that the ability to propagate probability up in this
manner even when the distributions at the leaves are not iden-
tical makes this different from the standard framework in
communication complexity theory. (In addition, we may have
a restricted query language, and we have a prior distribution
over the inputs.)

If we propagate up as much probability as possible, we ob-
tain the optimal mechanism (for a givenS and tree):

Theorem 1 Suppose we apply Lemma 1 to every pair(v, o),
starting at the root and working our way down to the leaves.
Then the resulting multistage mechanism saves the most
queries (or, in the case of different query costs, the great-
est query cost) among multistage mechanisms corresponding
to the given single-stage mechanism and the given elicitation
tree.

As an example, we derive the mechanism of Fig. 2. We
start from a mechanism that saves no queries (Fig. 3).

Museum w.p. 1

HUSBAND HIGH

WIFE HIGH

WIFE LOW

WIFE LOW

WIFE HIGH

Wife keeps w.p. .96

Husband gets pieces w.p. .04

HUSBAND LOW

Husband keeps w.p. .96
Wife gets pieces w.p. .04

Husband keeps w.p. .47
Wife keeps w.p. .40
Wife gets pieces w.p. .13

Figure 3: Multistage mechanism that saves no queries at all.

At the node after the husband reports “high”, the husband
keeps the painting withp ≥ .47 in all subsequent leaves. So
we can propagate this probability up (Fig. 4).

Museum w.p. 1

HUSBAND HIGH

WIFE HIGH

WIFE LOW

WIFE LOW

WIFE HIGH

Wife keeps w.p. .96

Husband gets pieces w.p. .04

HUSBAND LOW

Husband keeps w.p. .47

Wife keeps w.p. .75
Wife gets pieces w.p. .25

Wife gets pieces w.p. .08
Husband keeps w.p. .92

Figure 4: Some probability propagated up.

At the same node, the wife gets the pieces of the painting
with p ≥ .08 in all subsequent leaves. Propagating this up
results in the mechanism of Fig. 2.

The following corollary characterizes the probability of ex-
iting early at or before a given node. This will be helpful in

our use of the “propagating probabilities up” technique within
all of the algorithms discussed later in the paper.

Corollary 1 In a multistage mechanism that saves a maxi-
mum number of queries, for any type vectorθ such that node
v will be reached if the mechanism does not exit early, the
probability that we will reachv and not exit early atv, given
that θ is the type vector, is1 − ∑

o∈O

minθ∈Iv p(θ, o). Hence,

given thatθ is the type vector and we have not exited early at
or before nodev, and we transition from nodev to nodew,
the probability of exiting early at nodew is
1− (1− ∑

o∈O

minθ∈Iw
p(θ, o))/(1− ∑

o∈O

minθ∈Iv
p(θ, o)).

4.2 Endogenously determined elicitation tree
In this section we develop methods for converting a single-
stage mechanism into a multistage one,without constraints
on the elicitation tree (query order). We first provide a greedy
algorithm, and show two ways in which it can “fail” (i.e.,
yield an arbitrarily small fraction of the query savings avail-
able). We then give an optimal dynamic program.

Greedy algorithm
Our greedy algorithm chooses the query at each stage so as
to maximize the probability of being able to exit immediately
after this query given the preceding queries and responses.
Letting U(I, q, aq) denote the information state that results
from being in information stateI and then receiving answer
a to queryq, we define the algorithm as follows.

Definition 1 Thegreedy algorithmchooses the query to ask
at nodev from the set
arg maxq∈Q

∑
a∈A

P (a|Iv, q)
∑

o∈O

minθ∈U(Iv,q,a) p(θ, o).

The greedy algorithm does what we intend:

Theorem 2 The greedy algorithm chooses a query that max-
imizes the probability of exiting immediately after it.

Theorem 3 The greedy algorithm chooses the query for node
v in timeO(|Q| · |A| · |O| · |Θ|).

Unfortunately, the greedy algorithm can be arbitrarily far
from optimal (even when all queries have equal cost):

Proposition 1 There exist single-stage mechanismsS for
which the greedy algorithm achieves only an arbitrarily small
fraction of the possible query savings (even whenS is deter-
ministic, there are only three players, two types per player,
and three outcomes; alternatively, even when priors over
types are uniform, there are only three players, two types per
player, and five outcomes).

This is a worst-case result; it is likely that the greedy algo-
rithm will perform quite well in practice.

Dynamic programming algorithm
Unlike the greedy algorithm, the dynamic program must build
the entire tree. The program works by computing, forev-
ery possible information stateI, the minimum possible ex-
pected number of queriesn(I) from that point on,giventhat
we have not exited early. As before, letU(I, q, a) be the in-
formation state that results from receiving answera to q at



I. Let e(I, q, a) be the probability of exiting immediately af-
ter receiving answera to q at I, given that we did not exit
early at I. By Corollary 1, we can computee(I, q, a) as

1−
1− P

o∈O

minθ∈U(I,q,a) p(θ,o)

1− P
o∈O

minθ∈I p(θ,o) . We obtain the recurrence

n(I) = minq∈Qc(q)+
X
a∈A

P (a|I, q)(1− e(I, q, a))n(U(I, q, a))

Using the fact thatn({θ}) = 0 for every type vectorθ, we
use this recurrence to compute the value ofn(I) for everyI,
starting with the smallI and working up to larger ones.

Theorem 4 The dynamic programming algorithm computes
the value ofn(I) for all I in timeO(|Q| · |A| · |O| · |Θ| ·2|Θ|).

We can retrieve the optimal multistage mechanism from
this as follows: when we arrive at information stateI and do
not exit early, choose a query from
arg minq∈Q

∑
a∈A

P (a|I, q)(1− e(I, q, a))n(U(I, q, a)).

5 Designing optimal multistage mechanisms
So far we have discussed how a given single-stage mecha-
nism can be converted into an equivalent multistage mecha-
nism. Here we will no longer take the single-stage design as
a constraint. We develop a method for designing the single-
stage mechanism in such a way that we get large savings in
queries when we transform it into a multistage mechanism
using the techniques described earlier. We focus on the case
where the elicitation tree (query order) is given. It turns out
that, using Corollary 1, we can directly integrate the even-
tual query savings into the linear programming formulation
for AMD described earlier.

We say that nodev is on the elicitation pathfor type vec-
tor θ if θ would lead us to ask the query atv (given that we
do not exit early). For every internal nodev in the tree, we
add a term to the AMD objective (which maximizes the de-
signer’s objective) that indicates the probability of saving the
query corresponding to this node.6 (We say that wesavethe
query corresponding tov whenv is on the elicitation path,
but we exit early at or beforev.) Thus, the term in the objec-
tive for v is c(v)P (v)e(v) wherec(v) is the cost of the query
at nodev, P (v) is the probability ofv being on the elicita-
tion path, ande(v) is the probability that we will exit early
at or beforev, given thatv is on the elicitation path.P (v)
is a constant, bute(v) is a variable that depends on how we
set the outcome probabilities for the leaves. Specifically, by
Corollary 1, we know thate(v) =

∑
o∈O

minθ∈Sv p(θ, o). The

min operator is not linear, so we cannot add this expression
to the LP objective directly. We work around this by letting
e(v) =

∑
o∈O

e(v, o), wheree(v, o) is the probability of exiting

early at or beforev with outcomeo, given thatv is on the
elicitation path. Then, for everyo ∈ O andθ ∈ Sv, we add
the constrainte(v, o) ≤ p(θ, o).

6Suitable scaling to ensure commensurability with the de-
signer’s objective is straightforward; however, this does assume
query costs can be accounted for additively.

Because linear programs can be solved to optimality in
polynomial time, and the formulation above is polynomial in
the number of outcomes and the number of types per agent
(but not in the number of agents), the following theorem fol-
lows immediately:

Theorem 5 The extension of the single-stage AMD formula-
tion described above computes the optimal multistage mecha-
nism for the given elicitation tree, taking query costs into ac-
count, in time polynomial in the number of outcomes and the
number of types per agent (but not in the number of agents).

This also begets an (inefficient) algorithm for generating
the optimal multistage mechanism when neither the single-
stage mechanism nor the elicitation tree is given: apply the
above algorithm to every possible elicitation tree.

6 Mechanisms without dominant strategies
So far, we have restricted our study to multistage mecha-
nisms whose single-stage correspondents have truth-telling as
a dominant strategy. As discussed, this is helpful because in
such multistage mechanisms, telling the truth is an ex-post
equilibrium, so we need not worry that information revealed
to agents by the mechanism will introduce strategic behav-
ior. Nevertheless, we may also be interested in converting
single-stage mechanisms that do not have dominant strate-
gies, such as BNE mechanisms, to multistage mechanisms
(e.g., because such mechanisms can achieve a higher objec-
tive value than dominant-strategy mechanisms).

Here we present initial results on converting BNE mech-
anisms into multistage mechanisms. These results are nega-
tive: they show that restricting ourselves to particular natural
classes of multistage mechanisms may come at a loss of op-
timality. Thus, to design optimal multistage mechanisms, we
need to search a broader space of mechanisms.

Proposition 2 Even when the primary objective is social
welfare and we use BNE as our solution concept, there ex-
ist settings in which immediately revealing the result of every
query incurs a loss in objective value.

The next result that we establish is that restricting ourselves
to mechanisms that always choose the next query determinis-
tically can come at a loss.

Proposition 3 There exist settings in which:

1. The primary objective is social welfare;

2. The optimal single-stage BNE incentive compatible
mechanism is unique;

3. The unique optimal (in terms of query savings) elicita-
tion tree to ask the queries for this mechanism is not
(even BNE) incentive compatible;

4. There exists an elicitation tree for this mechanism that
randomizes over the next query selected, is (BNE) incen-
tive compatible, and has almost the same query savings
as the optimal elicitation tree (and thus strictly greater
query savings than any deterministic (BNE) incentive-
compatible elicitation tree for this mechanism).



A potential alternative to randomization by the mechanism
is to obtain the randomization from mixed (i.e., randomized)
strategies of the agents in mechanisms that are not truthful
direct-revelation mechanisms.

7 Conclusions
We extended the constrained-optimization based techniques
for automated mechanism design to the design of multi-
stage mechanisms, allowing reduction in elicitation burden
by querying agents sequentially, and only querying them
for information that is relevant given previous query re-
sponses. We focused primarily on the design of multistage
mechanisms that correspond to dominant-strategy single-
stage mechanisms, since these ensure truth-telling is anex-
post equilibrium (no matter what is revealed about other
agents’ answers). We described several techniques for con-
verting single-stage mechanisms into multistage, both with
and without fixed elicitation trees, and also showed how to
augment single-stage AMD to produce single-stage mech-
anisms that can be maximally exploited in the conversion
to multistage. Finally, we presented negative results on the
design of multistage mechanisms that do not correspond to
dominant-strategy single-stage mechanisms.
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