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Abstract

Monitoring plan preconditions can allow for re-
planning when a precondition fails, generally
far in advance of the point in the plan where
the precondition is relevant. However, moni-
toring is generaly costly, and some precondi-
tion failures have a very smal impact on plan
quality. We formulate a model for optima pre-
condition monitoring, using partially-observable
Markov decisions processes, and describe meth-
ods for solving this model effectively, though
approximately. Specifically, we show that the
single-precondition monitoring problem is gen-
eraly tractable, and the multiple-precondition
monitoring policies can be effectively approxi-
mated using single-precondition solutions.

1 Introduction

Uncertainty in planning problems is often handled by
modeling the problem deterministically—enabling classi-
cal planning techniquesto be used—nbut using methods for
execution monitoring and replanning to handle situations
that arise when the plan fails (e.g., when a precondition at
some point fails to hold). Two extreme approaches can be
adopted: The first requires monitoring all preconditionsre-
quired by future actions in the plan (once they are estab-
lished); when onefailsreplanning isinvoked. Refinements
of this scheme are, of course, possible.! The second, and
much more common, approach simply monitorsthe current
state and should an unanticipated state be reached replan-
ning in invoked [8, 13, 7, 16, 2]. Variants of this scheme
includethe use of universa plans[14], essentially perform-
ing replanning in advance.

While both of these approaches have a certain appeal, they
each have some rather serious drawbacks. The first ap-
proach alowsoneto anticipate preconditionfailureswell in
advance and replan as soon as one notices that the current
plan will not work. However, it does not alow for the fact
that precondition failure may be temporary or intermittent

! For example, Veloso[16] monitors selected conditionsfor op-
portunitiesto construct better plans.

(e.g., atrafficjam may render aplan infeasible, but perhaps
should not be taken into account if it occurs on aroute that
will not be reached for several hours). Even worse it does
not factor inthecost of monitoring. Generally, precondition
monitoring is not cost-free (e.g., tasking an agent to mon-
itor a route, or obtaining information from a Web source,
has some cost). As a consequence, the value of monitoring
aprecondition from thetimeit is established until the time
it is used may not be worth the cost (e.g., knowing about
traffic many hoursin advance isnot likely to be much more
useful than learning of it just before reaching the desired
route, assuming areasonabl e alternative route can be found
at thelater pointintime). The second approach suffersfrom
the oppositeproblem: though monitoringcostsplay norole,
one cannot anticipate failures in advance. This generally
means that the best repaired plan isnot as good as one con-
structed when the failure is known in advance (e.g., if the
traffic jam is not discovered until oneisin it, the best re-
paired plan is likely of poor quality compared to one that
avoided the jammed route entirely).

Thedecision of whether to monitor aplan precondition, and
when to monitor it, involvesbalancing the cost of monitor-
ing and the value of monitoring information. Specifically,
the value of a monitoring report at any point in time de-
pends on the odds that a report could change the plan, and
thevalue of the best plan should that report not be received.
As such, we can formulate the problem of monitoring as
apartially-observable Markov decision process (POMDP).
To do so requires that we have available the following in-
formation prior to plan execution time:

o the probability that preconditions may fail

o thecost of attempting to execute a plan action when its
precondition has failed

¢ thevaue of the best alternative plan at any point dur-
ing plan execution (i.e., giventhat we abandon the cur-
rent plan at that point)

e amodel of monitoring processes and their accuracy
(e.g., the probability that a preconditionis reported to
be OK when it hasin fact failed).

We assume that such information can be obtained or esti-
mated, and discuss these assumptions further bel ow.



Unfortunately, though optimal monitoring can be formu-
lated as a POMDRP, for any nontrivia plan, the size of the
required POMDP takes it far from the realm of practical
solution. Plans of only three steps (and three precondi-
tions) severely tax state-of-the-art algorithms. For thisrea
son we propose a class of heuristic techniques for solv-
ing the optima monitoring problem. These methods in-
volve solving the monitoring problem for individual pre-
conditions, then constructing an (onling) monitoring policy
based on these component solutions. Though theindividual
problemsal so involve solving POMDPs, theseremain very
small and tractable. Thus the construction of monitoring
policies for plans involving hundreds of steps is rendered
feasible using our heuristic methods. We demonstrate em-
pirically on a small selection of problems that the solution
quality of our techniquesis generally quite good.

The main contributions of this work are twofold. We
first provideadecision-theoreticmodel of plan monitoring.
This model makes clear the role that value of information
playsin optimal plan monitoring and the sequential nature
of the decision problem. Neither of these characteristicsis
present in the existing plan-monitoring literature. The sec-
ond contribution is a tractable class of methods for solv-
ing the plan monitoring problem. Though these methods
are heuristic and we currently explore their quality empir-
ically, we expect that they should yield to theoretica er-
ror analysis. These algorithms make the abstract monitor-
ing problem computational ly manageabl e, thus making our
decision-theoretic modd a practical aternative to standard
classical plan-monitoring methods.

2 ThePlan Monitoring Problem

Classica planning techniques have advanced to the point
where large planning problems involving hundreds of ac-
tionsin sophisticated domains (e.g., logistics, process plan-
ning) can be solved effectively. However, these modelsin-
variably assume away uncertainty, modeling problems de-
terministically. Even though thismodeling assumption may
be reasonable, uncertainty (e.g., in action effects, or exoge-
nous events) must be dealt with when it impacts the ability
to execute the plan. Plan and execution monitoring and re-
planning are often used in the regard.

The simplest monitoring mode! involvesmonitoringthe es-
tablished preconditionsof every action at each pointintime
until that action is executed. If a precondition has failed
(e.g., due to unanticipated exogenous events) then we re-
plan from the current point in the plan subject to the ob-
served congtraints. Unfortunately, despite offering opti-
mal object-level performance, thismodel may betoo costly
to implement. If precondition monitoring has some cost,
the expected benefit in terms of improved object-level (re-
paired) plan quality may not outwei gh the monitoring costs.
Furthermore, if the monitoring reports are subject to error
(e.g., unreliable Web sources, or faulty sensors), this ap-
proachisnot satisfactory. A morerefined decision-theoretic
mode! isrequired, onewherethe probability of precondition
failureand the cost of precondition monitoringare balanced
against the expected improvement in plan quality offered
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Figure1: A Sample Scenario

by timely information about the status of that precondition.
Thisallowsoneto optimally decideif and when to monitor a
given precondition. In this section, we formul ate a specific
version of the plan monitoring problem and describe how it
can be solved optimally when cast asa POMDP.

It isimportant to note that a planning problem where pre-
condition failure and monitoring are both possible can be
directly posed and solved asa POM DP. Specifically, assum-
ing the availability of the information required for optimal
plan monitoring(e.g., preconditionfailure probabilitiesand
monitoring accuracy models), a POMDP for the planning
problem—as opposed to the plan monitoring problem—can
be formulated readily. Forcing the problem into a classi-
ca framework, even with good execution monitoring and
replanning strategies, will generally lead to suboptimal be-
havior. Despitethis, breaking up the problem by construct-
ing aclassical plan together with a monitoring policy can
prove fruitful for several reasons. Most importantly, the
POMDP formulation will generally prove impossible to
solvefor al but themost trivial problems. Assuch, theclas-
sical model can be viewed as a way of approximating the
solution of the underlying POMDP. This isn’t to say that
other ways of approximating the POMDP's solution would
not also be appropriate; and there has been littleif any re-
search on how to directly form a deterministic relaxation
of a POMDP or bound the quality of the classical plans so
formed. But thisform of solution has the advantage of rely-
ing on widely-used (and often very efficient) classica plan-
ning technology. Apart from this, the monitoring model we
propose can be used with any classical plan, regardless of
how it was constructed (e.g., it may simply be a plan con-
structed by a human expert). Since the classica view of
plans as sequences of actions is often very natural in many
domains, plan monitoring remains an important problemto
be tackled using decision-theoretic techniques.

2.1 A Motivating Example

Toillustratethe typesof tradeoffsthat must be addressed in
plan monitoring, consider the following simple route plan-
ning example, illustratedin Figure 1. The best (e.g., lowest
cost) plan 7 to reach goal location C' frominitial location A
traverses the bottom-most linksthrough location B. Wein-
formally say that action A movesfrom A to B, thustheplan
consists of two actions, A and B. If thelink B — (' fails
(e.g., becomeimpassable), thebest plan from A involvesan
alternative route w4, and similarly the best plan from B is
mg. We can monitor thislink at any pointintimefor acer-
tain cost, say, just before execution of A or B. If welearn
that alink hasfailed, we can adopt the best aternative plan
for the point at which failure was discovered.



Intuitively, one should monitor the link B — €' a some
point if the expected value of information (EV OI) obtained
by monitoring outwei ghsthe cost of obtaining that informa:
tion. For example, suppose we monitor B — (' just prior
to execution of action B. If welearn of link failure, the best
“repaired” plan rp hasvaluev(mg). If we had not learned
of thisfailure, we would have continued execution of the
origina plan =, with afailure occurring when we try to ex-
ecute B. We assume that this failurewill be repaired when
it occurs, giving us an plan with value v( ¢4 ). Therefore,
the value of learning of link failure at point B is given by
v(mg) — v(mpai).2 EVOL isgiven by

EVOI(B) = Pr(B) - (v(7p) — v(Ttail))

where Pr(B) isthe probability of link failure occurring by
“time” B. Monitoringjust prior to B isthen worthwhileif
the EVOI isgreater than the monitoring cost.

We will develop a model bel ow that makes precisely these
tradeoffs. However, there are a number of subtleties that
must be dealt with to provide an accurate account. First,
as presented above, we have assumed that perfect informa-
tion is available, when, in fact, monitoring information is
likely to be error-prone or uninformative. To deal with this
we assume the existence of “sensor models’ that describe
the probability that a monitoring report is faulty in various
ways. This also requiresthat we maintain a belief state de-
scribing the probability of precondition failures based on
previous monitoring reports; we will seldom know of fail-
ure with certainty. We must a so account for the sequential
nature of the problem. Applying thisreasoning to monitor-
ing prior to action A might suggest that monitoring at that
point is also useful. But, in fact, this decision depends on
whether one should monitor at point B. If itisworthwhile
monitoring a B, it may not be worthwhile to additionally
monitor at A. Intuitively, if v(rp) iscloseto v(m,), then
monitoringat A isprobably not worthwhile, whileif v(r 4 )
ismuch greater, it probably is. The sequentia nature of the
problem demands a dynamic programming formul ation of
monitoring policy construction.

2.2 Modeing Assumptions

We assume that we have a deterministic planning problem,
which has been solved with a classicad plan «; thisis a
sequence of (deterministic) actions {(ay, as, - - -, a,). We
somewhat loosely use the term time ¢ to refer to the point
just prior to the execution of a, (thustime rangesfrom 1 to
n + 1). The preconditionsfor action a, al hold a timet in
normal plan execution. For simplicity we assume each ac-
tion has asingle precondition; thus we use the terms “mon-
itoring an action” and “monitoring a precondition” inter-
changeably.

In genera, preconditions should only be considered for
monitoring at certain pointsin the plan. Themonitoringin-
terval for a; istheinterval between the establishment of the
precondition of «; and timet.3 There isno point consider-
ing the monitoring of a,; outside of thisinterval. Again for

*We require that v(r5) > v(7saa) since one could always
ignorefailure if it is discovered.

A precondition p for a; is established by action az, 3 < t,

expository purposes, we assume that rel evant preconditions
have been established prior to the execution of theplan; that
is, no action a, establishesthe (monitored) precondition for
afuture action a;4x. Thisis merely to keep notation to a
mi nimum—the techniques that follow make no important
use of thisfact.

We assume a plan value or cost model: for any aternative
plan 7', we know the value v(=’) of that plan. This may,
for instance, simply ascribe higher valueto planswith lower
total action cost. Apart from knowing v(r) for the original
plan 7, we also assume that we can determine by planning,
or estimate by some other means, the value of the best alter-
nativeplansat each timet. Specificaly, if weknow that the
preconditionfor a; € = hasfailed, the best alternative plan
m; isknown—or &t |east some estimate of itsvaluev(r;)—
foreach 1 < j < k. Soif we abandon = at time j because
some future precondition hasfailed, the best alternative has
a known value. We aso know the value of attempting to
execute an action inthe original plan when its precondition
does not hold, and subsequently implementing the best re-
paired plan. We dub this plan 7r£. (If the truth of precon-
ditionscan’'t be unknown before an action is attempted, we
simply need to set 7r£ = m.)

Though actions are model ed as though they have determin-
istic effects, certain exogenous events can occur that de-
stroy established preconditions. In order to construct op-
timal monitoring strategies, we must have some model of
the likelihood of precondition failure. We adopt a genera
model of exogenous events, using a spontaneous transi-
tion modd T'(s'|s), where s and s’ denote arbitrary system
states. The quantity 7'(s’|s) denotesthe probability that the
systemstate s will transitionto state s’ dueto the occurrence
of some exogenous event (or events).* From the point of
view of plan monitoring, we are interested only in precon-
dition failure, so the required state space & simply consists
of all truth assignments to plan preconditions.” To ease the
modeling burden, we adopt the assumption of precondition
failure independence, requiring that the probability of one
precondition changing its state isindependent of any other.
Thus we can model transitionsusing n 2 x 2 transition ma
trices, where 77 denotes the dynamics of the jth precondi-
tion. Specifically, 77 (—p|p) denotes the probability of pre-
conditionfailure, whileT? (p|—p) denotesthe probability of
spontaneous precondition repair (e.g., clearing of a traffic
jam). Dealing with complex eventsthat induce correl ations
in thefailures of different preconditionscan be modeled in
probabilistic STRIPS notation [9, 10], dynamic Bayes nets
[6, 3], or other representations. We need not move to full
2" x 27 transition matrices.

A set of monitoring actions. M isassumed, each action pro-

if a; makes p true and no intervening action ax, j < k < ¢ af-
fects p. If no such a; makesp true, it is established by the initial
state. More generally, we can define the monitoring interval for
each precondition p;(a. ).

*The stationarity assumption, where the transition probabili-
ties are fixed at each time step, can easily be relaxed.

5We assume preconditions are boolean variables for ease of
presentation; however, our model can easily be extended to deal
with discrete failure modes.
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Figure2: Sequencing of Decision Stages and Belief Update

viding information about a particular precondition and hav-
ingafixed cost. We useasensor model of monitoringaction
m to determine its influence on our degree of belief in the
precondition (i.e., estimate of the probability that the pre-
condition holds). For any action m that monitors precon-
dition p, we assume: (a) afinite set of possible observation
values 7, that can be returned by m; and (b) a stochastic
sensor model that specifies, for each = € Z,,, both Pr(z|p)
and Pr(z|—p). To keep the presentation simple, we assume
that observationsarerestricted to “true” and “false,” andthe
sensor model dictates the probability of false positive and
fa se negativereportson aprecondition. Thistype of model
derives from the standard model used in partialy observ-
able MDPs [1, 15, 11]. Monitoring actions have no influ-
ence on the underlying state of the world (thoughthis could
easily be incorporated, as it isin the general POMDP for-
mulation). Rather they influence only our assessment of a
precondition’struth. We assume a fixed monitoring cost ¢,
for the monitoring of each action a;.°

The sequence of object-level and monitoringdecisions, and
the pointsat which one' s belief state will be updated, areil-
lustrated graphically in Figure 2 (other models of sequenc-
ing are possible however). At any pointintime1 <t < n,
assuming the agent is still able to execute the original plan
m, the agent makes two decisionsin sequence. First it can
request the monitoring of any action a; for any &£ > t.
The observation reports obtained are used to updateits cur-
rent belief state P, to obtain a new distribution over pre-
conditions P;*. Precondition independence means that this
distribution can be factored into » distributions over indi-
vidua preconditions. Given this updated belief state, the
agent now makes an object-level action choice: it can e-
ther continue with the original plan = and execute action
a, or it can abandon the plan and execute the alternative
plan 7. If the original plan is abandoned due to the pos-
sihility of link failure, then no future decisions need to be
made: we assume that 7; can be executed without diffi-
culty to providevalue v(m;). If a; isexecuted, any precon-
dition’sstatus can change: the system dynamics determine
the probability with which this occurs. The agent can up-
dateitsbelief state from P;’ to P, reflecting the possible
changes. As a consequence, there are two decision stages
for each plan step: a monitoring stage with a decision at

%More realistic modelsthat distinguish the costs of continuing
vs. intermittent monitoring could also be adopted.

time ¢, where one decides which preconditionsto monitor;
and an action stagedecision at timet¢*, the decision regard-
ing which object-level action to execute (i.e., to continueor
abandon the plan).

2.3 A POMDP Formulation

Optimal monitoring decisions can be determined by cast-
ing the problem as a POMDP and solving using standard
dynamic programming methods[15, 11].

A POMDP can be viewed as a fully observable Markov
decision process whose state space consists of probability
distribution over underlying system states, or belief states.
Whilethe set of belief statesis continuous (with dimension
|S| — 1), Sondik [15] showed that the k-stage-to-go value
functionsV'* of afinite-horizon POMDPis piecewiselinear
and convex (p.w.l.c.) and thus can be represented finitely
using a collection of linear functions over belief space, or
a-vectors. Specificaly, given such a collection 8* of |S|-
dimensiona a-vectors, V*(b) = max{b-a : a € R*}.
The sequence of value functions V* (or more accurately,
their representation as sets X*) can be computed by dy-
namic programming. We describe thebasicintuitionsusing
Monahan’'s[12] algorithm sinceit is conceptually straight-
forward. However, we tailor the presentation to our mon-
itoring problem. We assume an n-step plan monitoring
problem with n action stages and » monitoring stages. The
final decision occurs at time n+. A decision to continue
withthelast step of the original plan or to abandon the plan
is made based on the belief state " *. The value of aban-
doning the planisv(, ) regardless of the true state: hence
the Q-function Q7+, for action aban, where Q7 (b) isthe
valueof aban at belief state b, can berepresented by thecon-
stant vector avapan Withentriess(r,, ). Thevalueof cont (i.e.,
attempting to continue the original plan) issimply v(x) if
the final precondition holds and v(})) if it does not. Thus

whi(b) = b - ccont, Where aont IS the vector with entries
v(r) for each state wherethe precondition holds, and v (/)
where it doesn’t. The value function V"* is thus repre-
sentable by 8"+ comprising these two vectors. It is clear
that VV* is p.w.l.c. We note that each vector is associated
with a specific action: if

b - acont > b - aban

then the optimal choiceis cont, otherwiseit is aban. More
generally, as we see below, vectors denote the value of ex-
ecuting a complete course of action (or conditional plan)
over the remainder of the problem horizon.

Given R for the tth action stage, we can compute X! for
the preceding monitoring stage as follows. One can choose
to monitor any subset of the remaining ¢ preconditions,;
thus a monitoring action refers to some collection of indi-
vidua monitoring actions. Any such compound monitoring
action chosen involving & < ¢ preconditions gives rise to
2% possible observations (2 observations for each observed
condition). Since a different course of action can be pur-
sued after each distinct observation, we define the set ob-
servation strategies OS),, for time ¢ and monitoring action
m to be the set of mappingso : 7, — Nt that associate



asubsequent «-vector with each possible observation (note
that each vector has a conditional plan associated with it).
The value of executing m together with o isagain alinear
function of the belief state. Specifically, for each state s the
probability Pr(z|s) of any observation z is fixed, and the
Q-vaueof o a sis

Q(o,s) = ¢(m) + Z{Pr(z s)o(z

The Q-value of & can thus be represented by the vector «”
with sth component Q (o, 5); and Q* (o, b) = b - o for any
belief state b. The best monitoring action and observation
strategy at belief state b is simply that which has maximum
expected value at b; thus the value of optimal monitoring
can be represented by the collection of «-vectors induced
by the strategiesin {OS,, : m € M }. For each a-vector in
this set we record the appropriate monitoring action: if «”
correspondsto o € OS,,, we associate m with .7

Finally, given the valuefunction R*+! for thet 4+ 1st moni-
toring stage, itisasimplematter to computethe valuefunc-
tionN* for thetth action stage. The decisionattimet- is,
again, whether to continue the origina plan = or abandon
it (executing ;). If the agent persistswith = for one addi-
tional step, valueisgiven almost directly by V:+1: oncethe
specific step of 7 isexecuted, theagent can act optimally by
sel ecting the subsequent course of action dictated by Vi+1.
Each course of action correspondsto some o € X*+1, The
value of continuing with = at a specific state s followed by
implementing « isgiven by:

Q" (a,5) =

> T(s

s'eS

for any s where the precondition for a; holds. At dl other

s, Q' (e, s) = v(x). Thevalueof continuingwith r can

therefore be represented by:
cont {< ( ):SES>:aENt}

With each such vector we associate the action cont. If  is

abandoned, the value obtained is the constant ¢(r;) (inde-
pendent of the state s). Thus

Nt = {< 7Tt }UQcont

wherethe action aban isassoci ated with the constant vector.

Apart from the division into action and monitoring stages,
thisalgorithmisessentially that proposed by Monahan with
one exception. The collections of «-vectors defined above
typically contain many dominated vectors that do not max-
imize value at any belief state. Monahan's algorithm in-
volves an additional pruning phase where dominated vec-
tors are removed at each stage before moving to the next
stage. This provides tremendous computational benefit.

“We note that not monitoring any precondition correspondsto
choosing the empty subset of conditions above. The @-value of
this action is simply identical to the value function V**, thus the
set R*+ can be copied directly into R,

Other agorithms, including linear support [5] and Witness
[4] proceed by directly identifying only (or primarily) non-
dominated vectors and thusrequirelittleor no pruning, and
tend to be more efficient still. Our resultsin Section 4 are
all based on the Witness algorithm.

Given a collection of R-sets, implementation of the moni-
toring and execution policy requiresthat the agent maintain
and updateits belief state b over time. At each (monitoring
or action) stage k, b is applied to each vector o € R* to de-
termine - «, and the action associated with the maximiz-
ing vector is executed. Actions are either monitoring deci-
sions for the remaining preconditions, or “continue”’ deci-
sions. At action stages, the single aban-vector has constant
value, so the cont-vectors need only be searched until one
better than the sole aban-vector isfound.

While thismodel is conceptually appedling, it is computa-
tionally intractablefor all but the most trivial plan monitor-
ing problems. For plansinvolving n preconditions, there
are 2" states, as many as 2" monitoring actions, and up to
2" observations. Present (exact) POMDP a gorithms can at
best deal with problemsinvolvingathousand states and are
highly sensitive to the number of actions and observations.
The solution of the plan monitoring POMDP can be well
beyond thereach of state-of-the-art algorithmslike Witness
for three step plans. Clearly, some problem decomposition
and approximation is required if the decision-theoretic ap-
proach isto be practical.

3 Heuristic Monitoring

In this section we consider two alternative model sfor solv-
ing the monitoring problem that are vastly superior to the
full POMDP formulation computationaly. Intuitively, for
aplanning problem with n stages, we solve n independent
monitoring problems, onefor each precondition (recall that
we assume a single precondition per action). The solutions
to these individua problems are then combined online. In
particular, at agiven decision stage, whether action or mon-
itoring, we have access to theval ue functionsand policy de-
cisionsfor theindividual problems at that stage, as well as
the current belief state. These are used to determine an ap-
propriate choice of action for the origina monitoring prob-
lem at that point.

3.1 Solving Single-Failure POMDPs

For each precondition (or action) a; in an n-stage plan, we
consider the problem of optimally monitoring a; over the
interval [1,¢] under the assumption that thisisthe only pre-
condition that can fail. Thisis at-stage POMDP with ac-
tion and monitoring stages as above. The key differenceis
that decisions are based on belief in the state of that pre-
condition aone. As such the corresponding POMDP has
only two states, one monitoring action, and two observa
tions. Thistth single-failure monitoring problemis there-
fore generally very easily solved. The solution of each of
n single-failure problems provides us with a ¢-stage value
function for the ¢tth problem, thisvalue function consisting
of ¢ sets of a-vectors, N}, - - -, N, Thusthe valuefunctions
for al n problems can be represented in O(l - n?) space,



where [ isabound on the size of any N-set.

3.2 NaivePolicy Combination

Assume that the n single-failure monitoring POMDPs for
an n-stage planning problem have been solved. At any
given monitoring stage ¢, the individua policies for each
action a, (t < k < n) will each reguire that their action
either be monitored or not. At each action staget+, the po-
licesfor each a;, will either suggest that the original plan be
abandoned or continued.

Our Naive Policy Combination (NPC) agorithm works
as follows. The agent maintains a factored belief state
(by,---,by) over the n individua preconditions (since
these are independent). At each monitoring stage ¢, thein-
dividual value functions®!, (¢ < k < n) are applied to the
b, , and themonitoring decision for each a; made onthisba
sis. Thusthe actual monitoring action m = (my, - - -, my)
executed hasmy, assignedto“monitor” iff monitoringisop-
timal for the kth subproblem. At each action staget+, the
individual value functions X;* (¢ < k < n) are applied
to the b, and the aobject-level action decision for each ay,
determined. The action cont isexecuted if each of theindi-
vidual policiessuggest continuing. The action abanis exe-
cuted if any of theindividual policiessuggest abandonment.

3.3 Value Function Adjustment

In the NPC strategy described above, if any monitoring
problem requiresthat the plan be abandoned, then abandon-
ment is (globally) optimal. However, continuing may not
necessarily be optimal. Consider for instancethat each pre-
condition may be probable enough that the “abandonment
threshold” for theindividual problemis not reached. How-
ever, when the probability of failure as a wholeis consid-
ered, abandonment may, infact, be appropriate.

We can perform some simple adjustments to the individ-
ual value functionsto attain amore accurate estimate of the
value of continuing a plan. Consider the decision at action
stage t+, with individual value functions Xt (¢t < k < n)
and belief state b, (1 < k < n). ThevaueV,!*(b,) isan
accurate reflection of value assuming that all preconditions
a;(j < n) preceding a,, are OK. Specifically, the course of
action associated with any o € R%+ doesin fact have value
b, - . Thevalue V!t (b,_1) isaso accurate under the as-
sumption that the preceding conditionsa;(j < n — 1) are
OK aswdll as conditiona,,. However, if wewishto account
for thefact that a,, may havefailed, we can adjust thevalue
function to reflect the fact that the impact of a,, falingis
captured by the value V! * (b,,) just calculated.

This adjustment can be effected by noting that for any « €
N't | itsith component «; isgivenby p&v(m) + (1 —p?)z,
where p$* denotes the probability of successfully reaching
and executing action a,,_; under the conditiona plan re-
flected by o a state s;, and = is some indeterminate quan-
tity (reflecting average value of plan abandonment/failure).
Once we execute a,, 1, however, the value v(7) isnot as-
sured for action a,, may fail, or be abandoned, etc. To ap-
proximate the influence of this possibility, we can replace
v(m) inthe above expression with the expected va ue of the

nth monitoring problem, V,:* (b,,); we replace each compo-
nent «; of o with

o — pf'(v(m) = V" (bn))

This value-adjusted estimate offers a better picture of the
overall value of executing the conditional plan associated
with «, taking into account the influence of the later pre-
condition. We then take V'™, (b,,_1) to be computed w.r.t.

the adjusted a-vectors X' .

Our Value-Adjusted Policy Combination (VAPC) agorithm
works as follows. Monitoring decisions are made precisely
asinNPC. Theaction decision at staget+ ismade by work-

ing backwards from stage n to stage . We define R!* for
eacht < k < n tobe the set of value-adjusted vectors

using ﬁgjl(bkﬂ) (i.e, exch o € X' isreplaced by its
value-adjusted counterpart using 17,511 (b +1) asthe substi-
tutefor v(r)). ¥+ isin turn defined as the value function
induced by the value-adjusted R-set ®;* | . This recursion
is grounded at stage n where R+ = N+, Algorithmi-
caly, this process can be implemented efficiently. Starting
at stage n, the continue/abandon decisionismadefor a,,. If

the decision isaban, aglobal abandon decisionis made and
weterminate. Otherwise, we move to stage n — 1, comput-

ingthe adjusted set R'™ | using V!+ (b,,) (notethat V! + (b,,)

iscomputed asaby-product of thedecisionfor a,,). A deci-
sion to continue or abandon isthen computed for a,,_; us-

ing R+ . If aban is chosen, again we abandon the plan,
otherwise we move to stage n — 2, adjusting its a-vectors
usingthe (already-computed) value V' (b, _,). Thisisre-
peated back to a,, terminating whenever one action callsfor
abandonment, or when a, isreached with all actionscalling
for continuation.

The probabilitiespy* can can be computed easily duringthe
dynamic programming solution of the individua monitor-
ing problemfor ay,. For each a-vector (v, , v2) at any stage,
we compute a corresponding probability vector {p$, p5).
(there are two states, one denoting a;’s precondition OK,
and one itsfailure). At stage n, these probabilitiesare e-
ther O or 1 (recall they are afunction of the state, not belief
dtate). At any earlier stage, they are calculated asafunction
of the probabilities associated with the following stage, in
exactly the same way that the values v; for the a-vector are
computed. Thisaddsminimal computationtimetodynamic
programming and requires only that we store an extra col-
lection of vectors: aprobability vector for every «-vector.

Theadditional onlineadjustment phase of VAPC makes on-
line policy combination dightly more complex than NPC:
VAPC requires roughly twice the time to come to a deci-
sion a any stage. Both, however, are linear in the sum of
the sizes of thevaluefunctionsbeing used. If thevector sets
for each subproblem are bounded in size, then thisislinear
in the plan size (number of stages). Thus both methods are
efficient in their online computations.



4 Empirical Results

In this section we describe empirical results suggesting that
the computation time required to solve monitoring prob-
lems using our approximation technique is negligiblewhen
compared to thefull POMDP model, and that it scales very
well to plans involving many hundreds of steps. We also
provide evidence that the solution quality isgenerally quite
good. Our ability to do so is limited however by the fact
that computing optimal solutions for al but the most triv-
ia problemsisapractica impossibility. The Witness algo-
rithm is used to solve al POMDPs (both the full POMDP
and the single-failure POMDPs for each problem).®

We begin with a simple three-stage problem. This problem
has characteristics that make it relatively “easy” to solve:
precondition failure has small probability and no precon-
dition can become OK once it has failed. The failure and
abandonment costs do not impose severe penalties, so the
value function has few components.” This full POMDP
was il very difficult to solve, requiring 9608 seconds (2.7
hrs) of CPU timefor Witness. Despitethisthelargest value
function (at the first monitoring stage) had only eight vec-
tors (each precondition was monitored in some of the cor-
responding actions, though not every combined monitoring
action was part of the optima policy). In contrast, the ap-
proximation algorithm produced the collection of compo-
nent value functions in 5.78 seconds (5.86 seconds if ad-
justment probabilitiesare computed, 2.71 secondsif Mona-
han’s algorithm is used rather than Witness).!° The largest
N-set had only 4 vectors.

On other three-stage problems, we were unable to get Wit-
ness to run to completion in a reasonable time on the full
POMDP. For instance, in one example with a more com-
plex vaue function, Witness was terminated after 76035
seconds (over 21 hours of CPU time) with an agenda (see
[4] for details) of over 10000 vectors (with indications that
the agenda was till growing). In contrast, the approxima-
tion method required only 5.06 seconds (5.08 if adjustment
probabilities are computed).'!

The scaling of the approximation agorithmsis illustrated
in Figure 3, where solution time is plotted as a function of
problem size for a series of related problems. In this se-
guence, the scaling appears to be nearly linear, though in
fact thisis largely due to the fact that the value functions
tendto simplify asthehorizon grows. Ingeneral, we expect

8 Algorithms are implemented in Matlab and run under Linux
on a550MHz PIlI architecture with 512Mb of memory.

° Specifically, each of thethree preconditionshad a0.01 chance
of failing at each stage, and observation of each precondition hasa
0.1 falsenegativerate and a0.3 falsepositiverate. Successful plan
valueis 20; alternative plans havevalue 12, 8 and 4, respectively,
at steps1through 3; planfailure valuesare 10, 5, and 2 (hence plan
failure does not impose great cost); observation costs are 0.5, 0.5
and 0.7 for preconditions 1 through 3, respectively.

12 Monahan’salgorithms tendsto work better than Witnessif the
value functions are very compact.

" This problem is similar to the one above but with a higher
precondition failure rate of 0.05, more accurate observations (0.2
false positive rate), smaller observation costs (0.3), and greater
cost due to plan failure (i.e., greater difference between success-
ful and failed plan values).

Time to Solve Related
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CPU Time (s)

.
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Problem Size (Plan Stages)

Figure 3: Solution Time as a Function of Problem Size
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Figure4: Solution Timefor Component Subproblems (400
Stage Praoblem)

scaling to be quadratic in problem size. The (rather slow)
quadratic growth is evident in Figures 4 and 5, where the
solution times for the component single-failure monitoring
problemsin a400-step plan are shown, aswell asthe cumu-
lative solution time (thus this 400-step monitoring problem
is solved in about 4 hours).!2

The efficiency gains of this approach cost very little in
terms of solution quality. We compare solution quality of
our approximations to the optimal solution for the three-
stage problem we were able to solve optimally (see details
above). This comparison is made by comparing the ex-
pected va ue of the policy induced by NPC and VAPC with
the optimal value, at anumber of different belief states. We
sampled 1331 belief states uniformly distributed over belief
space: for each of the three variables, each degree of belief
between 0 and 1 wassampled at intervalsof 0.1. Over these
1331 states, theaveragerelativeerror in decision quality for
NPC was 0.049, and for VAPC, 0.047; thuson average both
strategies give rise to policieswhose value is within 5% of
optimal. The maximum relative error a any belief stateis

'2Note that the full POMDP has 2*°° states, 2°° monitoring
actionsand upto 2*°° observationsfor certain monitoring actions.
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0.166 for NPC and 0.142 for VAPC. The sacrifice in deci-
sion quality seems a small priceto pay for the vast differ-
ence in computational effort.

Moreinterestingisthefact that the decision quality tendsto
vary significantly in different parts of belief space. We plot
therelativevalue error for “high prior” belief statesin Fig-
ure 6 (here we only show NPC). At each point p (e.g., 0.7),
we show the relative errors over all sampled belief states
where each precondition is restricted to have prior proba-
bility between p and 1 inincrements of 0.1 (e.g., a 0.7 we
see the error ranging over belief states, for each variable,
intheset {0.7,0.8,0.9,1.0}). We see here that the relative
error for our approximation techniquetendsto decrease sig-
nificantly at belief stateswith high prior precondition prob-
ability. At .9 and above, al decisions are in fact optimal.
At .8 and above, average error isabout 0.1 per cent. Thisis
important because plans involving such preconditions are
likely to be invoked only when the preconditions are rea
sonably likely to hold.

A similar plot for “low prior” states is shown in Figure 7,
where relative error for belief states ranging from p down
toO(againin 0.1 increments) isplotted. Again we notethat
the error tends to be most pronounced in the intermediate
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belief states.

Finally, we compare the rel ative val ue attained by NPC and
VAPC on a dightly larger 5-stage problem.'3 The solu-
tion of thisproblem requires 16.04 seconds (16.09 when ad-
justment probabilities are computed). Figure 8 illustrates
the relative improvement of VAPC over NPC on a num-
ber of belief state ranges. Each point p shows the aver-
age and maximum relative improvement of VAPC over the
243 belief states where each of the 5 variables has proba-
bility in {p — 0.1,p — 0.05, p}. In this problem, the in-
dividua value functionstend to be reasonably sensitivein
the choi ce of whether to continue of abandon in the neigh-
borhood [0.8, 0.9]. VAPC offers considerabl e advantage of
NPC areas around this point, with average improvement in
decision quality of nearly 11% in thisrange and maximum
improvement of 28.5%.

13 Problem parameters: 0.05 probability of precondition failure
and 0.1 chance of precondition repair; observations have a 0.1
false negativeand a0.2 false positive rate; successful planvalueis
40; aternative plan values are 25, 18, 12, 7, and 6; failure values
are12, 11, 7, 5, and 2; observation costs range from 0.3 to 0.5.



5 Concluding Remarks

We have described a decision-theoretic model for optimal
plan monitoring that takes into account monitoring costs,
the probability of precondition failure, and the value of al-
ternative plans. While this model is conceptually appeal-
ing, it iswildly intractable, leading us to develop approxi-
mation methodsthat scale very well with plan sizeand seem
to make small sacrifices in decision quality. This approach
makes decision-theoretic monitoring practical for complex
planning and monitoring problems.

There are a number of simple improvements that can be
made to this approach. Oneinvolves scaling to large plan-
ning problems through the use of critical points. One can
identify a subset of aplan’s actionsto monitor—rather than
monitoring al n actions—by considering the differencein
the vaue of the dternative plans r; a various points. |If
v(m¢) is not much less than v(m;11) it may be reasonable
tosimply ignoreaction a; in one'smonitoring problem. By
judicious selection of such critical points(i.e., pointsin the
plan such that the cost of abandoning the plan once commit-
ting to them isvery high), the number of stagesand precon-
ditions one needs in a monitoring problem can be reduced.

The extension of this model to handle correlated precon-
dition failures is critical for many applications. Dedling
with correlations should prove to be fairly easy, using, say,
Bayesian networks to represent existing independence in
thetransitionmodel and thebelief state. The same basic ap-
proach to decomposing the POMDP into individua moni-
toring problemsis still applicable, though the value adjust-
ment phase in the VAPC technique will require modifica-
tion. Other directions for future research include devel op-
ing forma error bounds for this approach, the incorpora
tion of more sophisticated cost and value model sfor the un-
derlying planning domain, and extending the model to deal
with partially-ordered plans.
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