
Approximately Optimal Monitoring of Plan Preconditions

Craig Boutilier
Department of Computer Science

University of Toronto
Toronto, ON M5S 3H5
cebly@cs.toronto.edu

Abstract

Monitoring plan preconditions can allow for re-
planning when a precondition fails, generally
far in advance of the point in the plan where
the precondition is relevant. However, moni-
toring is generally costly, and some precondi-
tion failures have a very small impact on plan
quality. We formulate a model for optimal pre-
condition monitoring, using partially-observable
Markov decisions processes, and describe meth-
ods for solving this model effectively, though
approximately. Specifically, we show that the
single-precondition monitoring problem is gen-
erally tractable, and the multiple-precondition
monitoring policies can be effectively approxi-
mated using single-precondition solutions.

1 Introduction
Uncertainty in planning problems is often handled by
modeling the problem deterministically—enabling classi-
cal planning techniques to be used—but using methods for
execution monitoring and replanning to handle situations
that arise when the plan fails (e.g., when a precondition at
some point fails to hold). Two extreme approaches can be
adopted: The first requires monitoring all preconditions re-
quired by future actions in the plan (once they are estab-
lished); when one fails replanning is invoked. Refinements
of this scheme are, of course, possible.1 The second, and
much more common, approach simply monitors the current
state and should an unanticipated state be reached replan-
ning in invoked [8, 13, 7, 16, 2]. Variants of this scheme
include the use of universal plans [14], essentially perform-
ing replanning in advance.

While both of these approaches have a certain appeal, they
each have some rather serious drawbacks. The first ap-
proach allows one to anticipate precondition failures well in
advance and replan as soon as one notices that the current
plan will not work. However, it does not allow for the fact
that precondition failure may be temporary or intermittent1For example, Veloso [16] monitors selected conditions for op-
portunities to construct better plans.

(e.g., a traffic jam may render a plan infeasible, but perhaps
should not be taken into account if it occurs on a route that
will not be reached for several hours). Even worse it does
not factor in the cost of monitoring. Generally, precondition
monitoring is not cost-free (e.g., tasking an agent to mon-
itor a route, or obtaining information from a Web source,
has some cost). As a consequence, the value of monitoring
a precondition from the time it is established until the time
it is used may not be worth the cost (e.g., knowing about
traffic many hours in advance is not likely to be much more
useful than learning of it just before reaching the desired
route, assuming a reasonable alternative route can be found
at the later point in time). The second approach suffers from
the opposite problem: though monitoringcosts play no role,
one cannot anticipate failures in advance. This generally
means that the best repaired plan is not as good as one con-
structed when the failure is known in advance (e.g., if the
traffic jam is not discovered until one is in it, the best re-
paired plan is likely of poor quality compared to one that
avoided the jammed route entirely).

The decision of whether to monitor a plan precondition, and
when to monitor it, involves balancing the cost of monitor-
ing and the value of monitoring information. Specifically,
the value of a monitoring report at any point in time de-
pends on the odds that a report could change the plan, and
the value of the best plan should that report not be received.
As such, we can formulate the problem of monitoring as
a partially-observable Markov decision process (POMDP).
To do so requires that we have available the following in-
formation prior to plan execution time:� the probability that preconditions may fail� the cost of attempting to execute a plan action when its

precondition has failed� the value of the best alternative plan at any point dur-
ing plan execution (i.e., given that we abandon the cur-
rent plan at that point)� a model of monitoring processes and their accuracy
(e.g., the probability that a precondition is reported to
be OK when it has in fact failed).

We assume that such information can be obtained or esti-
mated, and discuss these assumptions further below.



Unfortunately, though optimal monitoring can be formu-
lated as a POMDP, for any nontrivial plan, the size of the
required POMDP takes it far from the realm of practical
solution. Plans of only three steps (and three precondi-
tions) severely tax state-of-the-art algorithms. For this rea-
son we propose a class of heuristic techniques for solv-
ing the optimal monitoring problem. These methods in-
volve solving the monitoring problem for individual pre-
conditions, then constructing an (online) monitoring policy
based on these component solutions. Though the individual
problems also involve solving POMDPs, these remain very
small and tractable. Thus the construction of monitoring
policies for plans involving hundreds of steps is rendered
feasible using our heuristic methods. We demonstrate em-
pirically on a small selection of problems that the solution
quality of our techniques is generally quite good.

The main contributions of this work are twofold. We
first provide a decision-theoretic model of plan monitoring.
This model makes clear the role that value of information
plays in optimal plan monitoring and the sequential nature
of the decision problem. Neither of these characteristics is
present in the existing plan-monitoring literature. The sec-
ond contribution is a tractable class of methods for solv-
ing the plan monitoring problem. Though these methods
are heuristic and we currently explore their quality empir-
ically, we expect that they should yield to theoretical er-
ror analysis. These algorithms make the abstract monitor-
ing problem computationally manageable, thus making our
decision-theoretic model a practical alternative to standard
classical plan-monitoring methods.

2 The Plan Monitoring Problem

Classical planning techniques have advanced to the point
where large planning problems involving hundreds of ac-
tions in sophisticated domains (e.g., logistics, process plan-
ning) can be solved effectively. However, these models in-
variably assume away uncertainty, modeling problems de-
terministically. Even though this modeling assumption may
be reasonable, uncertainty (e.g., in action effects, or exoge-
nous events) must be dealt with when it impacts the ability
to execute the plan. Plan and execution monitoring and re-
planning are often used in the regard.

The simplest monitoring model involves monitoring the es-
tablished preconditions of every action at each point in time
until that action is executed. If a precondition has failed
(e.g., due to unanticipated exogenous events) then we re-
plan from the current point in the plan subject to the ob-
served constraints. Unfortunately, despite offering opti-
mal object-level performance, this model may be too costly
to implement. If precondition monitoring has some cost,
the expected benefit in terms of improved object-level (re-
paired) plan quality may not outweigh the monitoring costs.
Furthermore, if the monitoring reports are subject to error
(e.g., unreliable Web sources, or faulty sensors), this ap-
proach is not satisfactory. A more refined decision-theoretic
model is required, one where the probabilityof precondition
failure and the cost of precondition monitoringare balanced
against the expected improvement in plan quality offered

A B C
failure?

πA
πB

Figure 1: A Sample Scenario

by timely information about the status of that precondition.
This allows one to optimallydecide if and when to monitor a
given precondition. In this section, we formulate a specific
version of the plan monitoring problem and describe how it
can be solved optimally when cast as a POMDP.

It is important to note that a planning problem where pre-
condition failure and monitoring are both possible can be
directly posed and solved as a POMDP. Specifically, assum-
ing the availability of the information required for optimal
plan monitoring (e.g., precondition failure probabilities and
monitoring accuracy models), a POMDP for the planning
problem—as opposed to the plan monitoringproblem—can
be formulated readily. Forcing the problem into a classi-
cal framework, even with good execution monitoring and
replanning strategies, will generally lead to suboptimal be-
havior. Despite this, breaking up the problem by construct-
ing a classical plan together with a monitoring policy can
prove fruitful for several reasons. Most importantly, the
POMDP formulation will generally prove impossible to
solve for all but the most trivial problems. As such, the clas-
sical model can be viewed as a way of approximating the
solution of the underlying POMDP. This isn’t to say that
other ways of approximating the POMDP’s solution would
not also be appropriate; and there has been little if any re-
search on how to directly form a deterministic relaxation
of a POMDP or bound the quality of the classical plans so
formed. But this form of solution has the advantage of rely-
ing on widely-used (and often very efficient) classical plan-
ning technology. Apart from this, the monitoring model we
propose can be used with any classical plan, regardless of
how it was constructed (e.g., it may simply be a plan con-
structed by a human expert). Since the classical view of
plans as sequences of actions is often very natural in many
domains, plan monitoring remains an important problem to
be tackled using decision-theoretic techniques.

2.1 A Motivating Example

To illustrate the types of tradeoffs that must be addressed in
plan monitoring, consider the following simple route plan-
ning example, illustrated in Figure 1. The best (e.g., lowest
cost) plan � to reach goal locationC from initial locationA
traverses the bottom-most links through locationB. We in-
formally say that actionAmoves fromA toB, thus the plan
consists of two actions, A and B. If the link B ! C fails
(e.g., become impassable), the best plan fromA involves an
alternative route �A, and similarly the best plan from B is�B. We can monitor this link at any point in time for a cer-
tain cost, say, just before execution of A or B. If we learn
that a link has failed, we can adopt the best alternative plan
for the point at which failure was discovered.



Intuitively, one should monitor the link B ! C at some
point if the expected value of information (EVOI) obtained
by monitoringoutweighs the cost of obtaining that informa-
tion. For example, suppose we monitor B ! C just prior
to execution of actionB. If we learn of link failure, the best
“repaired” plan �B has value v(�B). If we had not learned
of this failure, we would have continued execution of the
original plan �, with a failure occurring when we try to ex-
ecute B. We assume that this failure will be repaired when
it occurs, giving us an plan with value v(�fail). Therefore,
the value of learning of link failure at point B is given byv(�B)� v(�fail).2 EVOI is given byEV OI(B) = Pr(B) � (v(�B) � v(�fail))
where Pr(B) is the probability of link failure occurring by
“time” B. Monitoring just prior to B is then worthwhile if
the EVOI is greater than the monitoring cost.

We will develop a model below that makes precisely these
tradeoffs. However, there are a number of subtleties that
must be dealt with to provide an accurate account. First,
as presented above, we have assumed that perfect informa-
tion is available, when, in fact, monitoring information is
likely to be error-prone or uninformative. To deal with this
we assume the existence of “sensor models” that describe
the probability that a monitoring report is faulty in various
ways. This also requires that we maintain a belief state de-
scribing the probability of precondition failures based on
previous monitoring reports; we will seldom know of fail-
ure with certainty. We must also account for the sequential
nature of the problem. Applying this reasoning to monitor-
ing prior to action A might suggest that monitoring at that
point is also useful. But, in fact, this decision depends on
whether one should monitor at point B. If it is worthwhile
monitoring at B, it may not be worthwhile to additionally
monitor at A. Intuitively, if v(�B) is close to v(�A), then
monitoring at A is probably not worthwhile, while if v(�A)
is much greater, it probably is. The sequential nature of the
problem demands a dynamic programming formulation of
monitoring policy construction.

2.2 Modeling Assumptions

We assume that we have a deterministic planning problem,
which has been solved with a classical plan �; this is a
sequence of (deterministic) actions ha1; a2; � � � ; ani. We
somewhat loosely use the term time t to refer to the point
just prior to the execution of at (thus time ranges from 1 ton+ 1). The preconditions for action at all hold at time t in
normal plan execution. For simplicity we assume each ac-
tion has a single precondition; thus we use the terms “mon-
itoring an action” and “monitoring a precondition” inter-
changeably.

In general, preconditions should only be considered for
monitoring at certain points in the plan. The monitoring in-
terval for at is the interval between the establishment of the
precondition of at and time t.3 There is no point consider-
ing the monitoring of at outside of this interval. Again for2We require that v(�B) � v(�fail) since one could always
ignore failure if it is discovered.3A precondition p for at is established by action aj , j < t,

expository purposes, we assume that relevant preconditions
have been established prior to the execution of the plan; that
is, no action at establishes the (monitored) precondition for
a future action at+k. This is merely to keep notation to a
minimum—the techniques that follow make no important
use of this fact.

We assume a plan value or cost model: for any alternative
plan �0, we know the value v(�0) of that plan. This may,
for instance, simply ascribe higher value to plans with lower
total action cost. Apart from knowing v(�) for the original
plan �, we also assume that we can determine by planning,
or estimate by some other means, the value of the best alter-
native plans at each time t. Specifically, if we know that the
precondition for ak 2 � has failed, the best alternative plan�j is known—or at least some estimate of its value v(�j)—
for each 1 � j � k. So if we abandon � at time j because
some future precondition has failed, the best alternative has
a known value. We also know the value of attempting to
execute an action in the original plan when its precondition
does not hold, and subsequently implementing the best re-
paired plan. We dub this plan �fk . (If the truth of precon-
ditions can’t be unknown before an action is attempted, we
simply need to set �fk = �k.)

Though actions are modeled as though they have determin-
istic effects, certain exogenous events can occur that de-
stroy established preconditions. In order to construct op-
timal monitoring strategies, we must have some model of
the likelihood of precondition failure. We adopt a general
model of exogenous events, using a spontaneous transi-
tion model T (s0js), where s and s0 denote arbitrary system
states. The quantityT (s0js) denotes the probability that the
system state swill transition to state s0 due to the occurrence
of some exogenous event (or events).4 From the point of
view of plan monitoring, we are interested only in precon-
dition failure, so the required state space S simply consists
of all truth assignments to plan preconditions.5 To ease the
modeling burden, we adopt the assumption of precondition
failure independence, requiring that the probability of one
precondition changing its state is independent of any other.
Thus we can model transitions using n 2� 2 transition ma-
trices, where T j denotes the dynamics of the jth precondi-
tion. Specifically, T j(:pjp) denotes the probability of pre-
condition failure, whileT j(pj:p) denotes the probabilityof
spontaneous precondition repair (e.g., clearing of a traffic
jam). Dealing with complex events that induce correlations
in the failures of different preconditions can be modeled in
probabilistic STRIPS notation [9, 10], dynamic Bayes nets
[6, 3], or other representations. We need not move to full2n � 2n transition matrices.

A set of monitoring actionsM is assumed, each action pro-

if aj makes p true and no intervening action ak , j < k < t af-
fects p. If no such aj makes p true, it is established by the initial
state. More generally, we can define the monitoring interval for
each precondition pi(at).4The stationarity assumption, where the transition probabili-
ties are fixed at each time step, can easily be relaxed.5We assume preconditions are boolean variables for ease of
presentation; however, our model can easily be extended to deal
with discrete failure modes.



t
1

t
1

+
t
2

t
2

+
t
3

t
3

+
t
4

t
4

+
t
0

t
0

+

A B C D E F

P
1

P
1

P
2

P
2

P
3

P
3

P
4

P
4

P
0

P
0

+ + + + +

Report
Link Failure

Monitor for next time step? Original Plan? Alternative?

Monitoring
Possible

Monitoring Decision: Object-level Decision:

Figure 2: Sequencing of Decision Stages and Belief Update

viding information about a particular precondition and hav-
ing a fixed cost. We use a sensor model of monitoringactionm to determine its influence on our degree of belief in the
precondition (i.e., estimate of the probability that the pre-
condition holds). For any action m that monitors precon-
dition p, we assume: (a) a finite set of possible observation
values Zm that can be returned by m; and (b) a stochastic
sensor model that specifies, for each z 2 Zm, both Pr(zjp)
and Pr(zj:p). To keep the presentation simple, we assume
that observations are restricted to “true” and “false,” and the
sensor model dictates the probability of false positive and
false negative reports on a precondition. This type of model
derives from the standard model used in partially observ-
able MDPs [1, 15, 11]. Monitoring actions have no influ-
ence on the underlying state of the world (though this could
easily be incorporated, as it is in the general POMDP for-
mulation). Rather they influence only our assessment of a
precondition’s truth. We assume a fixed monitoring cost ct
for the monitoring of each action at.6
The sequence of object-level and monitoringdecisions, and
the points at which one’s belief state will be updated, are il-
lustrated graphically in Figure 2 (other models of sequenc-
ing are possible however). At any point in time 1 � t � n,
assuming the agent is still able to execute the original plan�, the agent makes two decisions in sequence. First it can
request the monitoring of any action ak for any k � t.
The observation reports obtained are used to update its cur-
rent belief state Pt to obtain a new distribution over pre-
conditionsP+t . Precondition independence means that this
distribution can be factored into n distributions over indi-
vidual preconditions. Given this updated belief state, the
agent now makes an object-level action choice: it can ei-
ther continue with the original plan � and execute actionat, or it can abandon the plan and execute the alternative
plan �t. If the original plan is abandoned due to the pos-
sibility of link failure, then no future decisions need to be
made: we assume that �t can be executed without diffi-
culty to provide value v(�t). If at is executed, any precon-
dition’s status can change: the system dynamics determine
the probability with which this occurs. The agent can up-
date its belief state from P+t to Pt+1 reflecting the possible
changes. As a consequence, there are two decision stages
for each plan step: a monitoring stage with a decision at6More realistic models that distinguish the costs of continuing
vs. intermittent monitoring could also be adopted.

time t, where one decides which preconditions to monitor;
and an action stage decision at time t+, the decision regard-
ing which object-level action to execute (i.e., to continue or
abandon the plan).

2.3 A POMDP Formulation

Optimal monitoring decisions can be determined by cast-
ing the problem as a POMDP and solving using standard
dynamic programming methods [15, 11].

A POMDP can be viewed as a fully observable Markov
decision process whose state space consists of probability
distribution over underlying system states, or belief states.
While the set of belief states is continuous (with dimensionjSj � 1), Sondik [15] showed that the k-stage-to-go value
functionsV k of a finite-horizonPOMDP is piecewise linear
and convex (p.w.l.c.) and thus can be represented finitely
using a collection of linear functions over belief space, or�-vectors. Specifically, given such a collection @k of jSj-
dimensional �-vectors, V k(b) = maxfb � � : � 2 @kg.

The sequence of value functions V k (or more accurately,
their representation as sets @k) can be computed by dy-
namic programming. We describe the basic intuitionsusing
Monahan’s [12] algorithm since it is conceptually straight-
forward. However, we tailor the presentation to our mon-
itoring problem. We assume an n-step plan monitoring
problem with n action stages and n monitoring stages. The
final decision occurs at time n+. A decision to continue
with the last step of the original plan or to abandon the plan
is made based on the belief state bn+. The value of aban-
doning the plan is v(�n) regardless of the true state: hence
the Q-functionQn+

aban for action aban, where Qn+
aban(b) is the

value of aban at belief state b, can be represented by the con-
stant vector�aban with entriesv(�n). The value of cont (i.e.,
attempting to continue the original plan) is simply v(�) if
the final precondition holds and v(�fn) if it does not. ThusQn+

cont(b) = b � �cont, where �cont is the vector with entriesv(�) for each state where the precondition holds, and v(�fn)
where it doesn’t. The value function V n+ is thus repre-
sentable by @n+ comprising these two vectors. It is clear
that V n+ is p.w.l.c. We note that each vector is associated
with a specific action: ifb � �cont � b � �aban

then the optimal choice is cont, otherwise it is aban. More
generally, as we see below, vectors denote the value of ex-
ecuting a complete course of action (or conditional plan)
over the remainder of the problem horizon.

Given @t+ for the tth action stage, we can compute @t for
the preceding monitoring stage as follows. One can choose
to monitor any subset of the remaining t preconditions.;
thus a monitoring action refers to some collection of indi-
vidual monitoring actions. Any such compound monitoring
action chosen involving k � t preconditions gives rise to2k possible observations (2 observations for each observed
condition). Since a different course of action can be pur-
sued after each distinct observation, we define the set ob-
servation strategies OStm for time t and monitoring actionm to be the set of mappings � : Zm ! @t+ that associate



a subsequent �-vector with each possible observation (note
that each vector has a conditional plan associated with it).
The value of executing m together with � is again a linear
function of the belief state. Specifically, for each state s the
probability Pr(zjs) of any observation z is fixed, and theQ-value of � at s is:Q(�; s) = c(m) +Xz fPr(zjs)�(z)sg
The Q-value of � can thus be represented by the vector ��
with sth component Q(�; s); and Qt(�; b) = b ��� for any
belief state b. The best monitoring action and observation
strategy at belief state b is simply that which has maximum
expected value at b; thus the value of optimal monitoring
can be represented by the collection of �-vectors induced
by the strategies in fOStm : m 2Mg. For each �-vector in
this set we record the appropriate monitoring action: if ��
corresponds to � 2 OStm, we associate m with ��.7
Finally, given the value function @t+1 for the t+ 1st moni-
toring stage, it is a simple matter to compute the value func-
tion@t+ for the tth action stage. The decision at time t+ is,
again, whether to continue the original plan � or abandon
it (executing �t). If the agent persists with � for one addi-
tional step, value is given almost directly byV t+1: once the
specific step of� is executed, the agent can act optimally by
selecting the subsequent course of action dictated by V t+1.
Each course of action corresponds to some � 2 @t+1. The
value of continuing with � at a specific state s followed by
implementing � is given by:Qt+(�; s) = Xs02S T (s0js)�s0
for any s where the precondition for at holds. At all others, Qt+(�; s) = v(�ft ). The value of continuing with � can
therefore be represented by:Qt+

cont = fhQt+(�; s) : s 2 Si : � 2 @tg
With each such vector we associate the action cont. If � is
abandoned, the value obtained is the constant c(�t) (inde-
pendent of the state s). Thus@t+ = fhc(�t); :::c(�t)ig[Qt+

cont

where the action aban is associated with the constant vector.

Apart from the division into action and monitoring stages,
this algorithm is essentially that proposed by Monahan with
one exception. The collections of �-vectors defined above
typically contain many dominated vectors that do not max-
imize value at any belief state. Monahan’s algorithm in-
volves an additional pruning phase where dominated vec-
tors are removed at each stage before moving to the next
stage. This provides tremendous computational benefit.7We note that not monitoring any precondition corresponds to
choosing the empty subset of conditions above. The Q-value of
this action is simply identical to the value function V t+, thus the
set @t+ can be copied directly into @t.

Other algorithms, including linear support [5] and Witness
[4] proceed by directly identifying only (or primarily) non-
dominated vectors and thus require little or no pruning, and
tend to be more efficient still. Our results in Section 4 are
all based on the Witness algorithm.

Given a collection of @-sets, implementation of the moni-
toring and execution policy requires that the agent maintain
and update its belief state b over time. At each (monitoring
or action) stage k, b is applied to each vector � 2 @k to de-
termine b � �, and the action associated with the maximiz-
ing vector is executed. Actions are either monitoring deci-
sions for the remaining preconditions, or “continue” deci-
sions. At action stages, the single aban-vector has constant
value, so the cont-vectors need only be searched until one
better than the sole aban-vector is found.

While this model is conceptually appealing, it is computa-
tionally intractable for all but the most trivial plan monitor-
ing problems. For plans involving n preconditions, there
are 2n states, as many as 2n monitoring actions, and up to2n observations. Present (exact) POMDP algorithms can at
best deal with problems involving a thousand states and are
highly sensitive to the number of actions and observations.
The solution of the plan monitoring POMDP can be well
beyond the reach of state-of-the-art algorithms like Witness
for three step plans. Clearly, some problem decomposition
and approximation is required if the decision-theoretic ap-
proach is to be practical.

3 Heuristic Monitoring
In this section we consider two alternative models for solv-
ing the monitoring problem that are vastly superior to the
full POMDP formulation computationally. Intuitively, for
a planning problem with n stages, we solve n independent
monitoring problems, one for each precondition (recall that
we assume a single precondition per action). The solutions
to these individual problems are then combined online. In
particular, at a given decision stage, whether action or mon-
itoring, we have access to the value functions and policy de-
cisions for the individual problems at that stage, as well as
the current belief state. These are used to determine an ap-
propriate choice of action for the original monitoring prob-
lem at that point.

3.1 Solving Single-Failure POMDPs

For each precondition (or action) at in an n-stage plan, we
consider the problem of optimally monitoring at over the
interval [1; t] under the assumption that this is the only pre-
condition that can fail. This is a t-stage POMDP with ac-
tion and monitoring stages as above. The key difference is
that decisions are based on belief in the state of that pre-
condition alone. As such the corresponding POMDP has
only two states, one monitoring action, and two observa-
tions. This tth single-failure monitoring problem is there-
fore generally very easily solved. The solution of each ofn single-failure problems provides us with a t-stage value
function for the tth problem, this value function consisting
of t sets of �-vectors, @1t ; � � � ;@tt. Thus the value functions
for all n problems can be represented in O(l � n2) space,



where l is a bound on the size of any @-set.

3.2 Naive Policy Combination

Assume that the n single-failure monitoring POMDPs for
an n-stage planning problem have been solved. At any
given monitoring stage t, the individual policies for each
action ak (t � k � n) will each require that their action
either be monitored or not. At each action stage t+, the po-
lices for each ak will either suggest that the original plan be
abandoned or continued.

Our Naive Policy Combination (NPC) algorithm works
as follows. The agent maintains a factored belief statehb1; � � � ; bni over the n individual preconditions (since
these are independent). At each monitoring stage t, the in-
dividual value functions @tk (t � k � n) are applied to thebk, and the monitoringdecision for each ak made on this ba-
sis. Thus the actual monitoring action m = hmt; � � � ;mni
executed hasmk assigned to “monitor” iff monitoring is op-
timal for the kth subproblem. At each action stage t+, the
individual value functions @t+k (t � k � n) are applied
to the bk, and the object-level action decision for each ak
determined. The action cont is executed if each of the indi-
vidual policies suggest continuing. The action aban is exe-
cuted if any of the individual policies suggest abandonment.

3.3 Value Function Adjustment

In the NPC strategy described above, if any monitoring
problem requires that the plan be abandoned, then abandon-
ment is (globally) optimal. However, continuing may not
necessarily be optimal. Consider for instance that each pre-
condition may be probable enough that the “abandonment
threshold” for the individual problem is not reached. How-
ever, when the probability of failure as a whole is consid-
ered, abandonment may, in fact, be appropriate.

We can perform some simple adjustments to the individ-
ual value functions to attain a more accurate estimate of the
value of continuing a plan. Consider the decision at action
stage t+, with individual value functions @t+k (t � k � n)
and belief state bk (1 � k � n). The value V t+n (bn) is an
accurate reflection of value assuming that all preconditionsaj(j < n) preceding an are OK. Specifically, the course of
action associated with any � 2 @t+n does in fact have valuebn ��. The value V t+n�1(bn�1) is also accurate under the as-
sumption that the preceding conditions aj(j < n � 1) are
OK as well as conditionan. However, if we wish to account
for the fact that an may have failed, we can adjust the value
function to reflect the fact that the impact of an failing is
captured by the value V t+n (bn) just calculated.

This adjustment can be effected by noting that for any � 2@t+n�1, its ith component �i is given by p�i v(�)+(1�p�i )x,
where p�i denotes the probability of successfully reaching
and executing action an�1 under the conditional plan re-
flected by � at state si, and x is some indeterminate quan-
tity (reflecting average value of plan abandonment/failure).
Once we execute an�1, however, the value v(�) is not as-
sured for action an may fail, or be abandoned, etc. To ap-
proximate the influence of this possibility, we can replacev(�) in the above expression with the expected value of the

nth monitoringproblem, V t+n (bn); we replace each compo-
nent �i of � with�i � p�i (v(�) � V t+n (bn))
This value-adjusted estimate offers a better picture of the
overall value of executing the conditional plan associated
with �, taking into account the influence of the later pre-
condition. We then take V t+n�1(bn�1) to be computed w.r.t.

the adjusted �-vectors b@t+n�1.

Our Value-Adjusted Policy Combination (VAPC) algorithm
works as follows. Monitoring decisions are made precisely
as in NPC. The action decision at stage t+ is made by work-
ing backwards from stage n to stage t. We define b@t+k for
each t � k < n to be the set of value-adjusted vectors
using bV t+k+1(bk+1) (i.e., each � 2 @t+k is replaced by its

value-adjusted counterpart using bV t+k+1(bk+1) as the substi-

tute for v(�)). bV t+ is in turn defined as the value function
induced by the value-adjusted @-set b@t+k+1. This recursion

is grounded at stage n where b@t+n = @t+n . Algorithmi-
cally, this process can be implemented efficiently. Starting
at stage n, the continue/abandon decision is made for an. If
the decision is aban, a global abandon decision is made and
we terminate. Otherwise, we move to stage n� 1, comput-
ing the adjusted set b@t+n�1 usingV t+n (bn) (note that V t+n (bn)
is computed as a by-product of the decision for an). A deci-
sion to continue or abandon is then computed for an�1 us-
ing b@t+n�1. If aban is chosen, again we abandon the plan,
otherwise we move to stage n � 2, adjusting its �-vectors
using the (already-computed) value bV t+n�1(bn�1). This is re-
peated back to at, terminating whenever one action calls for
abandonment, or when at is reached with all actions calling
for continuation.

The probabilities p�i can can be computed easily during the
dynamic programming solution of the individual monitor-
ing problem for ak. For each �-vector hv1; v2i at any stage,
we compute a corresponding probability vector hp�1 ; p�2 i.
(there are two states, one denoting ak’s precondition OK,
and one its failure). At stage n, these probabilities are ei-
ther 0 or 1 (recall they are a function of the state, not belief
state). At any earlier stage, they are calculated as a function
of the probabilities associated with the following stage, in
exactly the same way that the values vi for the �-vector are
computed. This adds minimal computation time to dynamic
programming and requires only that we store an extra col-
lection of vectors: a probability vector for every �-vector.

The additional online adjustment phase of VAPC makes on-
line policy combination slightly more complex than NPC:
VAPC requires roughly twice the time to come to a deci-
sion at any stage. Both, however, are linear in the sum of
the sizes of the value functions being used. If the vector sets
for each subproblem are bounded in size, then this is linear
in the plan size (number of stages). Thus both methods are
efficient in their online computations.



4 Empirical Results

In this section we describe empirical results suggesting that
the computation time required to solve monitoring prob-
lems using our approximation technique is negligible when
compared to the full POMDP model, and that it scales very
well to plans involving many hundreds of steps. We also
provide evidence that the solution quality is generally quite
good. Our ability to do so is limited however by the fact
that computing optimal solutions for all but the most triv-
ial problems is a practical impossibility. The Witness algo-
rithm is used to solve all POMDPs (both the full POMDP
and the single-failure POMDPs for each problem).8
We begin with a simple three-stage problem. This problem
has characteristics that make it relatively “easy” to solve:
precondition failure has small probability and no precon-
dition can become OK once it has failed. The failure and
abandonment costs do not impose severe penalties, so the
value function has few components.9 This full POMDP
was still very difficult to solve, requiring 9608 seconds (2.7
hrs) of CPU time for Witness. Despite this the largest value
function (at the first monitoring stage) had only eight vec-
tors (each precondition was monitored in some of the cor-
responding actions, though not every combined monitoring
action was part of the optimal policy). In contrast, the ap-
proximation algorithm produced the collection of compo-
nent value functions in 5.78 seconds (5.86 seconds if ad-
justment probabilities are computed, 2.71 seconds if Mona-
han’s algorithm is used rather than Witness).10 The largest@-set had only 4 vectors.

On other three-stage problems, we were unable to get Wit-
ness to run to completion in a reasonable time on the full
POMDP. For instance, in one example with a more com-
plex value function, Witness was terminated after 76035
seconds (over 21 hours of CPU time) with an agenda (see
[4] for details) of over 10000 vectors (with indications that
the agenda was still growing). In contrast, the approxima-
tion method required only 5.06 seconds (5.08 if adjustment
probabilities are computed).11
The scaling of the approximation algorithms is illustrated
in Figure 3, where solution time is plotted as a function of
problem size for a series of related problems. In this se-
quence, the scaling appears to be nearly linear, though in
fact this is largely due to the fact that the value functions
tend to simplify as the horizon grows. In general, we expect8Algorithms are implemented in Matlab and run under Linux
on a 550MHz PIII architecture with 512Mb of memory.9Specifically, eachof the three preconditions had a 0:01 chance
of failing at each stage, and observation of each precondition has a0:1 false negative rate and a 0:3 false positive rate. Successfulplan
value is 20; alternative plans have value 12, 8 and 4, respectively,
at steps 1 through 3; plan failure values are 10, 5, and 2 (hence plan
failure does not impose great cost); observation costs are 0.5, 0.5
and 0.7 for preconditions 1 through 3, respectively.10Monahan’s algorithms tends to work better than Witness if the
value functions are very compact.11This problem is similar to the one above but with a higher
precondition failure rate of 0:05, more accurate observations (0:2
false positive rate), smaller observation costs (0:3), and greater
cost due to plan failure (i.e., greater difference between success-
ful and failed plan values).

0 10 20 30 40 50 60
0

100

200

300

400

500

600

700

800

900

Problem Size (Plan Stages)

C
P

U
 T

im
e 

(s
)

Time to Solve Related
Problems of Various Sizes

Figure 3: Solution Time as a Function of Problem Size

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

Monitoring Subproblem (Stage)

C
P

U
 T

im
e 

(s
)

Time to Solve Individual Monitoring
Subproblems (400 stage Problem) 

Figure 4: Solution Time for Component Subproblems (400
Stage Problem)

scaling to be quadratic in problem size. The (rather slow)
quadratic growth is evident in Figures 4 and 5, where the
solution times for the component single-failure monitoring
problems in a 400-step plan are shown, as well as the cumu-
lative solution time (thus this 400-step monitoring problem
is solved in about 4 hours).12
The efficiency gains of this approach cost very little in
terms of solution quality. We compare solution quality of
our approximations to the optimal solution for the three-
stage problem we were able to solve optimally (see details
above). This comparison is made by comparing the ex-
pected value of the policy induced by NPC and VAPC with
the optimal value, at a number of different belief states. We
sampled 1331 belief states uniformlydistributed over belief
space: for each of the three variables, each degree of belief
between 0 and 1 was sampled at intervals of 0:1. Over these
1331 states, the average relative error in decision quality for
NPC was 0.049, and for VAPC, 0.047; thus on average both
strategies give rise to policies whose value is within 5% of
optimal. The maximum relative error at any belief state is12Note that the full POMDP has 2400 states, 2400 monitoring
actions and up to 2400 observations for certain monitoring actions.



0 50 100 150 200 250 300 350 400
0

2000

4000

6000

8000

10000

12000

14000

16000

Problem Stage

C
P

U
 T

im
e 

(s
)

Cumulative Time to Solve 
400 Stage Problem 

Figure 5: Cumulative Solution Time for Subproblems (400
Stage Problem)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Range of Prior

R
el

at
iv

e 
E

rr
o

r

 Average Relative Error
Maximum Relative Error 

Figure 6: Solution Quality over “High Prior” Belief States

0.166 for NPC and 0.142 for VAPC. The sacrifice in deci-
sion quality seems a small price to pay for the vast differ-
ence in computational effort.

More interesting is the fact that the decision quality tends to
vary significantly in different parts of belief space. We plot
the relative value error for “high prior” belief states in Fig-
ure 6 (here we only show NPC). At each point p (e.g., 0:7),
we show the relative errors over all sampled belief states
where each precondition is restricted to have prior proba-
bility between p and 1 in increments of 0:1 (e.g., at 0:7 we
see the error ranging over belief states, for each variable,
in the set f0:7; 0:8; 0:9;1:0g). We see here that the relative
error for our approximation technique tends to decrease sig-
nificantly at belief states with high prior precondition prob-
ability. At :9 and above, all decisions are in fact optimal.
At :8 and above, average error is about 0:1 per cent. This is
important because plans involving such preconditions are
likely to be invoked only when the preconditions are rea-
sonably likely to hold.

A similar plot for “low prior” states is shown in Figure 7,
where relative error for belief states ranging from p down
to 0 (again in 0:1 increments) is plotted. Again we note that
the error tends to be most pronounced in the intermediate

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Range of Prior

R
el

at
iv

e 
E

rr
o

r

 Average Relative Error
Maximum Relative Error 

Figure 7: Solution Quality over “Low Prior” Belief States

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Range of Prior

R
el

at
iv

e 
E

rr
o

r

Average Relative Error
Maximum Relative Error

Figure 8: Solution Quality of NPC vs. VAPC

belief states.

Finally, we compare the relative value attained by NPC and
VAPC on a slightly larger 5-stage problem.13 The solu-
tion of this problem requires 16.04 seconds (16.09 when ad-
justment probabilities are computed). Figure 8 illustrates
the relative improvement of VAPC over NPC on a num-
ber of belief state ranges. Each point p shows the aver-
age and maximum relative improvement of VAPC over the
243 belief states where each of the 5 variables has proba-
bility in fp � 0:1; p � 0:05; pg. In this problem, the in-
dividual value functions tend to be reasonably sensitive in
the choice of whether to continue of abandon in the neigh-
borhood [0:8; 0:9]. VAPC offers considerable advantage of
NPC areas around this point, with average improvement in
decision quality of nearly 11% in this range and maximum
improvement of 28.5%.13Problem parameters: 0:05 probability of precondition failure
and 0:1 chance of precondition repair; observations have a 0:1
false negative and a 0:2 false positive rate; successfulplan value is
40; alternative plan values are 25, 18, 12, 7, and 6; failure values
are 12, 11, 7, 5, and 2; observation costs range from 0.3 to 0.5.



5 Concluding Remarks
We have described a decision-theoretic model for optimal
plan monitoring that takes into account monitoring costs,
the probability of precondition failure, and the value of al-
ternative plans. While this model is conceptually appeal-
ing, it is wildly intractable, leading us to develop approxi-
mation methods that scale very well with plan size and seem
to make small sacrifices in decision quality. This approach
makes decision-theoretic monitoring practical for complex
planning and monitoring problems.

There are a number of simple improvements that can be
made to this approach. One involves scaling to large plan-
ning problems through the use of critical points. One can
identify a subset of a plan’s actions to monitor—rather than
monitoring all n actions—by considering the difference in
the value of the alternative plans �t at various points. Ifv(�t) is not much less than v(�t+1) it may be reasonable
to simply ignore action at in one’s monitoring problem. By
judicious selection of such critical points (i.e., points in the
plan such that the cost of abandoning the plan once commit-
ting to them is very high), the number of stages and precon-
ditions one needs in a monitoring problem can be reduced.

The extension of this model to handle correlated precon-
dition failures is critical for many applications. Dealing
with correlations should prove to be fairly easy, using, say,
Bayesian networks to represent existing independence in
the transitionmodel and the belief state. The same basic ap-
proach to decomposing the POMDP into individual moni-
toring problems is still applicable, though the value adjust-
ment phase in the VAPC technique will require modifica-
tion. Other directions for future research include develop-
ing formal error bounds for this approach, the incorpora-
tion of more sophisticated cost and value models for the un-
derlying planning domain, and extending the model to deal
with partially-ordered plans.

Acknowledgements Many thanks to Pascal Poupart and
Manuela Veloso for their helpful discussion, as well as to
the reviewers for their comments. This research was sup-
ported by IRIS Phase 3 Project BAC, NSERC Research
Grant OGP0121843, and the DARPA Co-ABS program
(through Stanford University contract F30602-98-C-0214).

References
[1] K. J. Aström. Optimal control of Markov decision

processes with incomplete state estimation. J. Math.
Anal. Appl., 10:174–205, 1965.

[2] Ella M. Atkins, Edmund H. Durfee, and Kang G. Shin.
Detecting and reacting to unplanned-for world states.
In Proceedings of the Fourteenth NationalConference
on Artificial Intelligence, pages 571–576, Providence,
RI, 1997.

[3] Craig Boutilier, Richard Dearden, and Moisés Gold-
szmidt. Exploiting structure in policy construction.
In Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, pages 1104–
1111, Montreal, 1995.

[4] Anthony R. Cassandra, Leslie Pack Kaelbling, and
Michael L. Littman. Acting optimally in partially
observable stochastic domains. In Proceedings of
the Twelfth National Conference on Artificial Intelli-
gence, pages 1023–1028, Seattle, 1994.

[5] Hsien-Te Cheng. Algorithms for Partially Observable
Markov Decision Processes. PhD thesis, Universityof
British Columbia, Vancouver, 1988.

[6] Thomas Dean and Keiji Kanazawa. A model for rea-
soning about persistence and causation. Computa-
tional Intelligence, 5(3):142–150, 1989.

[7] Joaquín L. Fernández and Reid Simmons. Robust ex-
ecution monitoring for navigation plans. In Interna-
tional Conference on Intelligent Robotic Systems, Vic-
toria, BC, 1998.

[8] R. James Firby. Adaptive Execution in Complex Dy-
namic Worlds. PhD thesis, Yale University, New
Haven, 1989.

[9] Steve Hanks and Drew V. McDermott. Modeling a
dynamic and uncertain world i: Symbolic and proba-
bilistic reasoning about change. Artificial Intelligence,
1994.

[10] Nicholas Kushmerick, Steve Hanks,
and Daniel Weld. An algorithm for probabilistic least-
commitment planning. In Proceedings of the Twelfth
National Conference on Artificial Intelligence, pages
1073–1078, Seattle, 1994.

[11] William S. Lovejoy. A survey of algorithmic methods
for partially observed Markov decision processes. An-
nals of Operations Research, 28:47–66, 1991.

[12] George E. Monahan. A survey of partially observable
Markov decision processes: Theory, models and algo-
rithms. Management Science, 28:1–16, 1982.

[13] Louise Pryor and Gregg Collins. Planning for contin-
gencies: A decision-based approach. Journal of Arti-
ficial Intelligence Research, pages 287–339, 1996.

[14] M. J. Schoppers. Universal plans for reactive robots
in unpredictable environments. In Proceedings of the
Tenth International Joint Conference on Artificial In-
telligence, pages 1039–1046, Milan, 1987.

[15] Richard D. Smallwood and Edward J. Sondik. The
optimal control of partially observable Markov pro-
cesses over a finite horizon. Operations Research,
21:1071–1088, 1973.

[16] Manuela M. Veloso, Martha E. Pollack, and
Michael T. Cox. Rationale-based monitoring for con-
tinuous planning in dynamic environments. In Pro-
ceedings of the Fourth International Conference on AI
Planning Systems, pages 171–179, Pittsburgh, 1998.


