
Approximate Linear Programming for First-order MDPs

Scott Sanner
University of Toronto

Department of Computer Science
Toronto, ON, M5S 3H5, CANADA

ssanner@cs.toronto.edu

Craig Boutilier
University of Toronto

Department of Computer Science
Toronto, ON, M5S 3H5, CANADA

cebly@cs.toronto.edu

Abstract

We introduce a new approximate solution technique
for first-order Markov decision processes (FOMDPs).
Representing the value function linearly w.r.t. a set
of first-order basis functions, we compute suitable
weights by casting the corresponding optimization as a
first-order linear program and show how off-the-shelf
theorem prover and LP software can be effectively
used. This technique allows one to solve FOMDPs
independent of a specific domain instantiation; fur-
thermore, it allows one to determine bounds on ap-
proximation error that apply equally to all domain in-
stantiations. We apply this solution technique to the
task of elevator scheduling with a rich feature space
and multi-criteria additive reward, and demonstrate
that it outperforms a number of intuitive, heuristically-
guided policies.

1 Introduction

Markov decision processes (MDPs) have become the de
facto standard model for decision-theoretic planning prob-
lems. While classic dynamic programming algorithms for
MDPs [14] require explicit state and action enumeration,
recent techniques for exploiting propositional structure in
factored MDPs [2] avoid explicit state and action enumer-
ation, thus making it possible to optimally solve extremely
complex problems containing

�����
states [9]. Approxima-

tion techniques for factored MDPs using basis functions
have also been successful, yielding approximate solutions
to problems with up to

�����	�
states [8, 17].

While such techniques for factored MDPs have proven ef-
fective, they cannot generally exploit first-order structure.
Yet many realistic planning domains are best represented
in first-order terms, exploiting the existence of domain ob-
jects, relations over these objects, and the ability to express
objectives and action effects using quantification. As a
result, a new class of algorithms have been introduced to

explicitly handle MDPs with relational (RMDP) and first-
order (FOMDP) structure.1 Symbolic dynamic program-
ming (SDP) [3], first-order value iteration (FOVIA) [10],
and the relational Bellman algorithm (ReBel) [11] are
model-based algorithms for solving FOMDPs and RMDPs,
using appropriate generalizations of value iteration [14].
Approximate policy iteration [5] induces rule-based poli-
cies from sampled experience in small-domain instantia-
tions of RMDPs and generalizes these policies to larger
domains. In a similar vein, inductive policy sslection us-
ing first-order regression [6] uses regression to provide the
hypothesis space over which a policy is induced. Approx-
imate linear programming (for RMDPs) [7] is an approxi-
mation technique using linear program optimization to find
a best-fit value function over a number of sampled RMDP
domain instantiations.2

In this paper, we provide a novel approach to approxima-
tion of FOMDP value functions by representing them as a
linear combination of first-order basis functions and using
a first-order generalization of approximate linear program-
ming techniques for propositional MDPs [7, 17] to solve
for the required weights. While many FOMDP solution
techniques need to instantiate a ground FOMDP w.r.t. a
set of domain objects to obtain a propositional version of
the FOMDP (usually performing this grounding operation
multiple times for many different domain sizes), our ap-
proach exploits the power of full first-order reasoning taken
by SDP, thus avoiding the exponential blowup that can re-
sult from domain instantiation. Since the use of first-order
reasoning techniques allows our solution to abstract over all
possible ground domain instantiations, the bounds that we
derive for approximation error apply equally to all domain
instantiations (i.e., the bounds are independent of domain
size and and thus do not rely on a distribution over domain
sizes).

1We use the term relational MDP to refer models that allow
implicit existential quantification, and first-order MDP for those
with explicit existential and universal quantification.

2Because the language in this work allows count aggregators
in the transition and reward functions, it is more expressive than
typical RMDPs.

2 Markov Decision Processes

Formally, a finite state and action MDP [14] is a tuple�����������	��
��
where:

�
is a finite state space;

�
is a finite set

of actions;
��
�������������� � � ���

is a transition function,
with

�����������! #"
a distribution over

�
for all

�%$&������$'�
;

and

(
)�*�+�,�.-

is a bounded reward function. Our
goal is to find a policy / that maximizes the value func-
tion, defined using the infinite horizon, discounted reward
criterion: 021 ���3"5476 1 � 8*9:<; �>= : @? :!A � � 4*� � , where

? :
is a

reward obtained at time B , �DC =FE �
is a discount factor,

and
�
� is the initial state.

A stationary policy takes the form /
G�*�H�
, with / �I�3"

denoting the action to be executed in state
�
. Policy / is

optimal if 0 1 ���3"KJ 0 1ML ���3" for all
��$D�

and all policies /ON .
The optimal value function 0QP is the value of any optimal
policy and satisfies the following:0 P ���3"R4S
T�������U"OVXWZY\[] =�^:`_�a ����������� B ") 0 P � B " (1)

In the approximate linear programming solution to MDPs
[8, 17] on which our work is based, we represent the value
function as the weighted sum of b basis functions c�d ���3" :

0 ���3"e4 f^ d ;)gGh d c d ���3" (2)

Our goal is to find a good setting of weights that approxi-
mates the optimal value function. One way of doing this is
to cast the optimization problem as a linear program that di-
rectly solves for the weights of an i g -minimizing approxi-
mation of the optimal value function:
Variables: jKkmlononpnolqjRr
Minimize: st�u3v rs wyx k j w�z{w}|�~��
Subject to: ������� |�~ l`� �2��� s � u3v�� |�~ l`�Ul`� ��� rs wyx k j w�z{w�| � �I���rs w�x k j w<z5w}|�~��)��� ���T�	l ~ �Z� (3)

While the size of the objective and the number of con-
straints in this LP is proportional to the number of states
(and therefore exponential), recent techniques use compact,
factored basis functions and exploit the reward and transi-
tion structure of factored MDPs [8, 17], making it possible
to avoid generating an exponential number of constraints
(and rendering the entire LP compact).

3 First-Order Representation of MDPs

3.1 The Situation Calculus

The situation calculus [13] is a first-order language for ax-
iomatizing dynamic worlds. Its basic ingredients consist

of actions, situations, and fluents. Actions are first-order
terms involving action function symbols. For example,
the action of moving an elevator � up one floor might be
denoted by the action term up

� � " . A situation is a first-
order term denoting the occurrence of a sequence of ac-
tions. These are represented using a binary function sym-
bol do: do

���R�o��"
denotes the situation resulting from doing

action
�

in situation
�
. In an elevator domain, the situation

term

do
�
up
��6�"m�

do
�
open

��6�"��
do
�
down

��6�"��p�
�
"�"�"

denotes the situation resulting from executing sequence
[down(E),open(E),up(E)] in

�
� . Relations whose truth val-

ues vary from state to state are called fluents, and are de-
noted by predicate symbols whose last argument is a situ-
ation term. For example, EAt

� � � ��� �o��" is a relational fluent
meaning that elevator � is at floor

���
in situation

�
.3

A domain theory is axiomatized in the situation calculus
with four classes of axioms [15]. For this paper, the most
important of these axioms are the successor state axioms
(SSAs). There is one such axiom for each fluent � �@� �p�3" ,
with syntactic form � �@� � do

�����p�3"�"¢¡¤£K¥¦��� �p���p�3" where£5¥¦�@� �����o��" is a formula with free variables among
���p���§� .

These characterize the truth values of the fluent � in the
next situation do

�����p�3"
in terms of the current situation

�
,

and embody a solution to the frame problem for determin-
istic actions [15].

Following is a a simple example of an SSA for EAt (assum-
ing 1 is the ground floor):

EAt
|<¨ lo©�l do

| ��l ~!�q�Gª
EAt

|<¨ l}«¬l ~���­ �¯® down
|<¨!�±°

EAt
|<¨ lp©�l ~���­ �³²® up

|<¨!�
This states that an elevator � is at the first floor after doing
action

�
in situation

�
if � was at the second floor in

�
and

the action down
� � " , or if � was already at the first floor in

�
and the action was not to move up.

The regression of a formula ´ through an action
�

is a for-
mula ´ N that holds prior to

�
being performed iff ´ holds

after
�

. Successor state axioms support regression in a nat-
ural way. Suppose that fluent � ’s SSA is � ��� � do

���2�o�3"�"R¡£5¥¦�@� �����o��" . We inductively define the regression of a for-
mula whose situation arguments all have the form do

�����p�3"
as follows:

Regr
|<µ¯|�¶· l do

| �Ul ~��q�q� ® ¸�¹ |�¶· lq�Ul ~��
Regr

|�º�»�� ® º
Regr

|¼»½�
Regr

|¼» k ­�»O¾m� ® Regr
|¼» k �2­ Regr

|¼»O¾o�
Regr

|q|�¿ · �I»�� ® |�¿ · � Regr
|¼»½�

3In contrast to states, situations reflect the entire history of
action occurrences. As we will see, the specification of dynamics
in the situation calculus will allow us to recover state properties
from situation terms, and indeed, the form we adopt for successor
state axioms renders the process Markovian.

For example, regressing � EAt
� � � � � do

�����p�3"�"
exploits the

the SSA for EAt to obtain the following description of the
conditions on the “pre-action” situation

�
under which this

formula is true:

Regr
|�¿M¨Rº

EAt
|<¨ lo©�l do

| ��l ~!�q� ®¿�¨Rº��
EAt

|<¨ l�«\l ~��2­ �¯® down
|<¨@�±°

EAt
|<¨ lo©@l ~��2­ �³²® up

|<¨!���
3.2 Stochastic Actions and the Situation Calculus

The classical situation calculus relies on the deterministic
form of actions to allow compact and natural representa-
tion of dynamics using SSAs as described in the previous
section. To generalize this to stochastic actions, as required
by FOMDPs, we decompose stochastic actions (those in
the control of some agent) into a collection of deterministic
actions, each corresponding to a possible outcome of the
stochastic action. We then specify a distribution according
to which “nature” may choose a deterministic action from
this set whenever that stochastic action is executed. As a
consequence we need formulate SSAs using only these de-
terministic nature’s choices [1, 3], obviating the need for a
special treatment of stochastic actions in SSAs.

We illustrate this approach with a simple example in an ele-
vator domain consisting of elevators, floors, and people. At
each time step, an elevator can move up, down, or can open
its doors at the current floor. Suppose the open action is
stochastic with two possible outcomes, success and failure
(we suppose up and down action are deterministic and al-
ways succeed). We decompose open into two deterministic
choices, openS and openF, corresponding to success and
failure. The probability of each choice is then specified,
for example:

EAt
|<¨ lo©@l ~!�����
	���
@|

openS
|<¨!� l open

|<¨!� l ~�� ®��¬n ���
EAt

|<¨ lo©@l ~!�����
	���
@|
openF

|<¨!� l open
|<¨!� l ~�� ®��Mn ©��

EAt
|<¨ l��§l ~��±­ �%²®'© ���
	���
�|

openS
|<¨@� l open

|<¨!� l ~�� ®X�¬n �
EAt

|<¨ l��§l ~��±­ �%²®'© ���
	���
�|
openF

|<¨!� l open
|<¨!� l ~�� ®X�Mn ©��	���
�|

upS
|<¨!� l up

|<¨!� l ~�� ®'©@n ���	���
�|
downS

|<¨!� l down
|<¨!� l ~�� ®&©�n �

Here we see that the probability of the door failing to open
is slightly higher on the first floor (

��� ���
) than on other floors

(
��� ���

); this is simply to illustrate the “style” of the rep-
resentation. Next, we define the SSAs in terms of these
deterministic choices. However, in order to formalize the
Elevator domain independent of any fixed set of floors, we
must first introduce an axiomatization of above and below
functions (� ��� " and ��� � " respectively) as well as tran-
sitive closure predicates above

� ����" and below
� ���U" over

these functions:4

4While transitive closure is technically not first-order defin-
able, the axiomatization of above

| · l � � and below
| · l � � given

here suffices to yield a contradiction when an assertion conflicts
with an inference derivable from these axioms. Inconsistency de-
tection is all that is needed by our algorithms.

� · l � |�¿"! below
| · l !\�±­ below

|#! l$� �q�%�
below

| · l$� �� · l � |�¿"! above
| · l !\�±­ above

|#! l � �q���
above

| · l � �� · l � above
| · l � �%� º

below
| · l � �� · l � above

| · l � �%�
below

| �Ul · �� · l � below
| · l � �%� º

above
| · l � �� · l � below

| · l � �%�
above

| �Ul · �� · l � above
| · l � �%� · ²®&� � � · l$� below

| · l � ��� · ²®&�� · l � · ®&� � º
above

| · l � ���Z� · l'� · ®&� � º
below

| · l$� �� · above
| �§� | · � l · ���Z� · below

| �
�| · � l · �� ·�· ®(�§� | �
�| · �q���Z� ·�· ®)�
@| �§� | · �q�
Given these foundational axioms, we can define the SSAs
in a straightforward way.5 For the fluent EAt

� � � � �p�3"
(meaning elevator � is at floor �), we have the following
SSA:

EAt
|<¨ l*�§l do

| �Ul ~��q� ª
EAt

|<¨ l*�
@| � � l ~!�±­ ��® upS
|<¨!�±°

EAt
|<¨ l*�§� | � � l ~��2­ �¯® downS

|<¨!�±°
EAt

|<¨ l*�§l ~���­ �³²® upS
|<¨!�±­ �³²® downS

|<¨!�
Intuitively, � is at floor � after doing

�
only if � (success-

fully) moved up or down from an suitable floor above or
below, or if � was already at � and did not (successfully)
move up or down. The SSA PAt

�,+O� � �o�3" (person
+

is at
floor �) is:

PAt
|-� l��§l do

| �Ul ~��q�Gª� ¿M¨
EAt

|<¨ l��§l ~��2­ OnE
|-� l ¨ l ~��q­

Dst
|-� l*� �2­ ��® openS

|<¨!�q���\°��
PAt
|-� l��§l ~��q­º½|�¿M¨

EAt
|<¨ l��§l ~��2­�º Dst

|-� l*� �2­ ��® openS
|<¨!�q���

Intuitively, person
+

is at floor � in the situation resulting
from doing

�
iff

+
has destination � and was on � , which

had (stopped and successfully) opened its doors at � ; or
+

was at � already and it’s not the case that � opened its doors
at � and

+
was not at their destination. Finally, OnE

�,+O� � �o��"
(person

+
is on elevator �) has the following SSA (with

obvious meaning):

OnE
|-� l ¨ l do

| �Ul ~��q�� ¿ � EAt
|<¨ l��§l ~��2­ PAt

|-� l*�§l ~��q­º
Dst
|-� l � �2­ ��® openS

|<¨@���\°.�
OnE

|-� l ¨ l ~��q­º½|�¿ � EAt
|<¨ l��§l ~��2­ Dst

|-� l*� �2­ ��® openS
|<¨!�q���

3.3 Case Representation

When working with first-order specifications of rewards,
probabilities, and values, one must be able to assign values
to different portions of state space. For this purpose we use

5SSAs can often be compiled directly from “effect” axioms
that directly specify the effects of actions [15].

the notation B 4 case
� � g � B g�� @ ! � ���G� B � � as an abbreviation

for the logical formula:�d�� �	� � d�
 B 4 B d�� �
Here the

� d are state formulae (whose situation term does
not use do) and the B d are terms. We sometimes write this
case

� � d � B d � . Often the B d will be constants and the
� d will

partition state space. For example, we may represent our
reward function as:

case
� � � l*� PAt

|-� l*�§l ~����
Dst
|-� l�� � le©m� �¿�� l�� PAt

|-� l �§l ~!��­Tº Dst
|-� l*� � lO� �

This specifies that we receive a reward of 10 if all people
are at their destinations and 0 if not. We introduce the fol-
lowing operators on case statements:

case
� � d � B d
�
 C������ case

� ����������
�� C���� 4
case

� � d�
 ´ �M� B d �����
�
 C�� ��� C��³�
case

� � d � B d
�
 C������ case
� ����������
�� C���� 4

case
� � d
 ´ � � B}d V � �
�
 C�� ��� C��³�

case
� � d � B}d
�
 C�����! case

� � � ��� �
�� C���� 4
case

� � d
 ´ � � B}d#" � �
�
 C�� ��� C��³�
Intuitively, to perform an operation on two case statements,
we simply take the cross-product of their partitions and per-
form the corresponding operation on the resulting paired
partitions. Letting each

� d and ´ � denote generic first-
order formulae, we can perform the cross-sum

�
of two

case statements in the following manner:

case
� $ k lo©o� �%$±¾ l�«@� ��& case

� » k lm© �G»O¾ l�« � ®
case

� $ k ­�» k lo©�© �%$ k ­�»O¾ lp©�« �%$±¾G­�» k l�«\© �'$±¾O­�»O¾ l�«�« �
Note that the conjunction of two first-order formalae in a
partition may be inconsistent, implying that that partition
formula can never be satisfied and thus discarded.

We can also represent choice probabilities using case no-
tation. Letting

���@� " be a stochastic action with choices� g ��� "��! @ ! G� � f �@� " , we define:

pCase
|)(+*M|m¶· � l}� |�¶· � l ~�� ® case

� $ * k |m¶· l ~�� l � * k �m�p�o�2�,$ * - |�¶· l ~�� l � * - � l
where the

� � d partition state space and
+ � d is the probability

of choice
� d ��� " being executed under condition

� � d ��� �o�3"
when the agent executes stochastic action

���@� " .
We can likewise use case statements (or sums over case
statements) to represent the reward and value functions. We
use the notation rCase

�I��"
and vCase

�I�3"
to respectively de-

note these case representations.

3.4 Symbolic Dynamic Programming

Suppose we are given a value function in the form
vCase

�I��"
. Backing up this value function through an action

����� " yields a case statement containing the logical descrip-
tion of states that would give rise to vCase

���3"
after doing

action
����� " , as well as the values thus obtained. This is

analogous to classical goal regression, the key difference
being that action

����� " is stochastic. In MDP terms, the
result of such a backup is a case statement representing a
Q-function.

There are in fact two types of backups that we can per-
form. The first, c/.'0�12�3 , regresses a value function through
an action and produces a case statement with free variables
for the action parameters. The second, c4. , existentially
quantifies over the free variables

� in c5.'0�12�3 and takes the
max over the resulting partitions. The application of this
operator results in a case description of the regressed value
function indicating the best value that could be achieved by
any instantiation of

���@� " in the pre-action state.

To define the c/.'0�12�3 operator, we first define the first-order
decision theoretic regression (FODTR) operator [3]:

FODTR
|
vCase

|�~�� l}� |�¶· �q� ®� � & *�6
pCase

|)(* |�¶· � l ~!�87 Regr
|
vCase

|
do
|)(* |�¶· � l ~!�q�q��9 �

(Unlike the original definition of FODTR [3], we do not
include the sum of rCase

���3"
in the FODTR definition since

it is useful to keep it separate in this paper.) Thus, we can
express the c/.'0�12�3 operator as follows:z;:=<?>@BA |

vCase
|�~��q� ® rCase

|�~��8&
FODTR

|
vCase

|�~�� l}� |�¶· �q� (5)

To obtain the result of the c5. operator on this same value
function, we need only existentially quantify the free vari-
ables

� in c/.'0�12�3 , which we denote as C � c5.'0�12�3 . Since
the case notation is disjunctively defined, we can distribute
the existential quantification into each individual case par-
tition. However, even if the partitions were mutually exclu-
sive prior to the backup operation, the existential quantifi-
cation can result in overlap between the partitions. Thus,
we modify the existential quantification operator to ensure
that the highest possible value is achieved in every state by
sorting each partition

�D�)�@� "m� B d � by the B d values (such that
 E �FE B dHG B �) and ensuring that a partition can be satis-
fied only when no higher value partition can be satisfied:¿O¶· case

� $ k |�¶· � l`� k �o�o�o�±��$ - |�¶· � l`� - ��ª
case

� ¿�¶· $ w |�¶· �±­JI*BK w ºG¿�¶· $ * |m¶· � l,L wNM�OQP (��

Assuming that the rCase
���3"

statement does not depend on
the parameters of the action (this can be easily relaxed, if
needed) and exploiting the fact

�
is conjunctively defined,

we arrive at the definition of the c . operator:z : |
vCase

|�~��q� ® rCase
|�~��8&+¿O¶· FODTR

|
vCase

|�~!� lq� |�¶· �q�
4 Approximate Linear Programming for

FOMDPs

We now generalize the approximate linear programming
techniques from propositional factored MDPs to FOMDPs.

4.1 Value Function Representation

We represent the value function as a weighted sum ofb first-order basis functions, denoted bCase d ���3" , each of
which is intended to contain small partitions of formulae
that provide a first-order abstraction of the state space:

vCase
���3"R4 � fd ;)g h d bCase d ���3" (7)

As in the propositional case [8, 17], the fact that basis func-
tions are represented compactly using logical formulae to
specify partitions of state space means that the value func-
tion can be represented very concisely using Eq. 7. Our
approach is distinguished by the use of first-order formulae
to represent the partition specifications.

We can easily apply our previously defined backup opera-
tors c .'0�12�3 and c/. to this representation and obtain some
simplification as a result of the structure in Eq. 7. Forc .'0�12�3 , we substitute value function expression in Eq. 7
into the definition c/.'0�12�3 (Eq. 5). Exploiting the fact that�

is conjunctively defined and that Regr
� ´ g
 ´ � " 4

Regr
� ´ g "
 Regr

� ´ � " , we push the regression down to the
individual basis functions and reorder the summations. As
a consequence, we find that the backup of a linear combi-
nation of basis functions is simply the linear combination
of the FODTR of each basis function:z :#<D>@BA |�& w j w bCase

w |�~!�q� ®
rCase

|�~���&X|�&Kw j w FODTR
|
bCase

wq|�~!� lq� |�¶· �q�q� (8)

By representing the value function as a linear combina-
tion of basis functions, we can often achieve a reason-
able approximation of the exact value function by exploit-
ing additive structure inherent in many real-world problems
(e.g. additive reward functions or problems with indepen-
dent subgoals). Unlike exact solution methods where value
functions can grow exponentially in size during the solu-
tion process and must be logically simplified [3], here we
necessarily achieve a compact form of the value function
that requires no simplification, just the discovery of good
weights.

To apply the c/. operator for a linear combination of basis
functions, we let � . denote the set of indices for basis func-
tions affected by action

���@� " (thus having free variables
�),

and let
� . denote the set of indices for basis functions not

affected by the action.6 Then, we again exploit the fact that�
is defined by conjunction and push the C � through to the

the sum over case statements with free variables
� . This

yields the following definition of c5. :z : |�&Kw j w bCase
wq|�~!�q� ® rCase

|�~!�8&�|�&¦w u���� j w bCase
wq|�~��q�& ¿O¶· |�&Kw u ¹ � j w FODTR

|
bCase

wq|�~�� l}� |m¶· �q�q�
6Since an action typically affects only a few fluents and basis

functions contain relatively few fluents, only a few of the basis
functions will be affected by an action. This fact holds for many
domains, including the elevator domain in this paper.

It is important to note that the backup operator results in
the “cross sum”

�
of a collection of case statements, per-

forming the explicit sum only over those case statements
affected by the action being backed up. This results in a
representation of the backed-up value function that often
retains most of its original additive structure.

As a concrete example of the application of backup oper-
ators c .'0 2�3 and c/. , suppose we have a reward function
that assigns 10 for being in a state where all people are at
their intended destination, and 0 otherwise:7

rCase
|�~�� ® case

��� � l�� PAt
|-� l � l ~!���

Dst
|-� l*� � lo©m� �)º ” l�� �

Suppose our value function is represented by the following
weighted sum of two basis functions (the first basis func-
tion indicates whether some person is at a floor that is not
their destination, the second whether there is a person on
an elevator stopped at a floor that is their destination):

vCase
|�~�� ®jKk � case

�3¿�� l�� PAt
|-� l*�§l ~���­Tº Dst

|-� l � � lm© �)º ” lq� ��&j ¾¬� case
�3¿�� l��§l ¨ Dst

|-� l*� �2­ OnE
|-� l��§l ~��±­ EAt

|<¨ l��§l ~�� lo© �º
” l}� �

Because down
� " is a deterministic action, FODTR is sim-

ply the direct regression of each case statement through na-
ture’s choice downS

� " . Thus, we obtain the following ex-
pression for c down 0 2�3 :z

down
< @BA |

vCase
|�~��q� ®

case
��� � l � PAt

|-� l*� l ~!���
Dst
|-� l*� � lm©m� ��º ” l}� �&%� jKk � case

�3¿�� l � PAt
|-� l��§l ~��2­�º Dst

|-� l�� � lo© ��º ” l}� �&%� j ¾�� case
�3¿�� l �§l ¨ Dst

|-� l�� �±­ OnE
|-� l*�§l ~��q­|q|

EAt
|<¨ l��§l ~��2­�¨ ²® · �±°³| EAt

|<¨ l��§� | � � l ~��2­�¨ ® · �q� l�© �º
” l}� �

Applying c��
	�� � yields:z�
���� - |
vCase

|�~��q� ®¿ · z down
< @BA |

vCase
|�~��q� ®

case
��� � l � PAt

|-� l*� l ~!���
Dst
|-� l*� � lm©m� ��º ” l}� �&%� jKk � case

�3¿�� l � PAt
|-� l��§l ~��2­�º Dst

|-� l�� � lo© ��º ” l}� �&%� j ¾�� case
�3¿ · l � l��§l ¨ Dst

|-� l�� �±­ OnE
|-� l*� l ~!�q­|q|

EAt
|<¨ l��§l ~��2­�¨ ²® · �±°³| EAt

|<¨ l��§� | � � l ~��2­�¨ ® · �q� l�© �º
”
­Q¿ · � � l��§l ¨5º Dst

|-� l�� �±°Qº OnE
|-� l��§l ~��q°|q|�º

EAt
|<¨ l*�§l ~��±°�¨ ® · �q­|�º

EAt
|<¨ l*�§� | � � l ~��±°�¨ ²® · �q� l`� �

Note that in the computation of c��
	�� � above, we push the
existential into the only case statement containing free vari-
able . We then make the second partition in this case state-
ment mutually exclusive of the first partition to ensure that
the highest value gets assigned to every state. This results

7We replace the partition formula with
º

” when the formula
is just the negation of its predecessor in the case statement.

in a logical description of states that describes the maxi-
mum value that can be obtained by applying any instanti-
ation of action down

� � " and subsequently obtaining value
dictated by vCase

�I��"
. Thus, as noted in [3], the symbolic

dynamic programming approach provides both state and
action space abstraction.

4.2 First-order Linear Program Formulation

We now generalize the approximate linear programming
approach for propositional factored MDPs (i.e., Eq. 3)
to first-order MDPs. If we simply substitute appropri-
ate notation, we arrive at the following formulation of
the first-order approximate linear programming approach
(FOALP):

Variables: j wG�³� OQP��

Minimize: s t rs wyx k j w±� bCase
w}|�~!�

Subject to: ��� z : |�& rw�x k j w2� bCase
wq|�~��q���|�& rw�x k j w2� bCase

wq|�~��q�)�G� � l ~ (9)

Unfortunately, while the objective and constraints in the ap-
proximate LP for a propositional factored MDP range over
a finite number of states

�
, this direct generalization to the

FOALP approach for FOMDPs requires dealing with in-
finitely (or indefinitely) many situations

�
.

Since we are summing over infinitely many situations in the
FOALP objective, it is ill-defined. Thus, we redefine the
FOALP objective in a manner which preserves the intention
of the original approximate linear programming solution
for MDPs. In the propositional LP (Eq. 3), the objective
weights each state equally and minimizes the sum of the
values of all states. Consequently, rather than count ground
states in our FOALP objective—of which there would be
an infinite number per partition—we suppose that each ba-
sis function partition is chosen because it represented a po-
tentially useful partitioning of state space, and thus weight
each case partition equally. Consequently, we write the
above FOALP objective as the following:

s t rs wyx k j w2� bCase
wq|�~!� ® rs wyx k j w s t bCase

w�|�~��
(10)

� rs wyx k j w s���	��
 � �
� u bCase �
� *�

bCase
w �

With the issue of the infinite objective resolved, this leaves
us with one final problem—the infinite number of con-
straints (i.e., one for every situation

�
). Fortunately, we can

work around this since case statements are finite. Since the
value B�d for each case partition

�D� d ���3"m� B}d � is constant over
all situations satisfying the

� d �I��" , we can explicitly sum
over the case d ���3" statements in each constraint to yield a

Input: A set � of case statements being summed and an ordering� k nmnon}� - of all relations in � .
Output: The maximum value achievable and the consistent par-
tition which achieves that value.

1. Convert the first-order formulae in each case partition to a
set of CNF clauses.

2. For each relation �&�Q� k nononq� - (in order):

(a) Remove all case statements in � containing � and
store their explicit “cross-sum”

&
in ��� �

.
(b) Do the following for each partition in ��� �

:� Resolve all clauses on relation � .� Remove all clauses containing � (sound because
we are doing ordered resolution).� If a resolvent of � exists in this partition, remove
this partition from ��� �

and continue.� Remove dominated partitions whose clauses are
a superset of another partition with greater value.

(c) Insert ��� �
back into � .

3. Find the maximum partition in each of the case statements
in � and return it along with its corresponding value.

Figure 1: The first-order factored max (FOMAX) algorithm for
finding the max consistent partition in a first-order cost network.

single case statement. For this “flattened” case statement,
we can easily verify that the constraint holds in each of
the finite number of resulting first-order partitions of state
space.

Furthermore, we can avoid generating the full set of case
partitions in the explicit sum by using constraint genera-
tion [17]. But before we formally define the algorithm for
solving first-order LPs via constraint generation, we first
outline an important subroutine.

First-order Cost Network Maximization

One of the most important computations in the approximate
FOMDP solution algorithms is efficiently finding the con-
sistent set of case partitions which maximizes a first-order
cost network of the following form:WZY\[

�
� � �

case
�����3"�"

(11)

Recall that this is precisely the form of the constraints (the
backed up linear value function) in Equation 9. The FO-
MAX algorithm given in Figure 1 efficiently carries out this
computation. It is similar to variable elimination [4], ex-
cept that we use first-order ordered resolution in place of
propositional ordered resolution.8

8We note that the ordered resolution strategy is not refutation-
complete as it may loop infinitely at an intermediate relation elim-
ination step before finding a latter relation with which to resolve
a contradiction. To prevent infinite looping, we simply bound the
number of inferences performed at each relation elimination step.
While a missed refutation in the FOMAX algorithm may result
in the generation of unneccessary constraints during the FOCG
algorithm, and this in turn may overconstrain the set of feasible

Input: An LP objective
��
��

, a convergence tolerance� ��� , and a set of first-order constraints, each encoded as�������	� t &Kw case
w}|�~��

where there are j w variables embedded
in the values of the case partitions.
Output: Weights for the optimal LP solution (within tolerance� ���).

1. Initialize the weights: j w ®�� �G� OQP��
2. Initialize the LP constraint set:
�® �
3. Initialize
 - � � ® �
4. For each constraint inequality:

(a) Calculate �³®
�	��������� t &Kw case
w�|�~��

using FO-
MAX.

(b) If
¨ L\� �I| � � ��� ��� , let � encode the linear constraint

for ��� &Kw case
wq| � � .

(c)
 - � � ®�
 - � ��� 6 � 9
5. If
 - � � ® � , terminate with j w as the solution to this LP.

6.
X®�
 �
 - � �
7. Solve the LP with objective

��
��
and updated constraints
 .

8. Return to step 3.

Figure 2: The first-order constraint generation (FOCG) algo-
rithm for solving a first-order linear program.

First-Order Constraint Generation

In the first-order constraint generation (FOCG) algorithm
given in Figure 2, we initialize our LP with an initial set-
ting of weights, but no constraints. Then we alternate be-
tween generating constraints based on maximal constraint
violations at the current solution and re-solving the LP with
these additional constraints. This process repeats until no
constraints are violated and we have found the optimal so-
lution. In practice, this approach typically generates far
fewer constraints than the full set. And using FOCG, we
can now efficiently solve the FOALP given in Equation 9.

To make the FOMAX and FOCG algorithms more con-
crete, we provide a simple example of finding the most vi-
olated constraint in Figure 3.

4.3 Obtaining Error Bounds

Following [17], we can also compute an upper bound on
the error of the approximated value function:

�����t vCase � |�~�� � vCase ������������� <! � � ��" bCase � A |�~�� P�© �³� �$#&%: �����t ' |�& w j w � bCase
w |�~��q�

(12)

�Xz : |�&Kw j w�� bCase
w�|�~��q�)(

The inner
WZY\[� can be efficiently computed by the FO-

MAX algorithm (Figure 1) leaving only a few simple arith-
metic operations to carry out. This yields an efficient means

solutions, this has not led to infeasibility problems in practice.

of computing a strict upper bound on the error of executing
a greedy policy according to an approximated value func-
tion that applies equally to all domain instantiations.

5 Experimental Results

We have applied the first-order approximate linear pro-
gramming algorithm to the FOMDP domain of elevator
scheduling. We refer to Section 3 for a rough description of
the FOMDP specification of certain aspects of this domain.
To this we have added a rich set of features used in elevator
planning domains [12]: VIP

� +�"
indicating that person

+
is

a VIP, Group
�,+O�+*U"

indicating that a person
+

is in group*
(persons in certain differing groups should not share the

same elevator), and Attended
� +�"

to indicate that person
+

requires someone to accompany them in the elevator. We
have also added action costs of

�
for , + � � �.- +��./ , h � and a

simple
� ,0, + action with cost

�
.9 We require that all poli-

cies observe typical elevator scheduling constraints [12] by
specifying appropriate action preconditions; for example,
the elevator cannot reverse direction if it has a passenger
whose destination is in the current direction of travel.

Given this domain specification, we have defined a mul-
ticriteria reward function rCase

���3"
with positive additive

rewards for satisfying each of the following conditions:� « M � � l � PAt
|-� l��§l ~����

Dst
|-� l�� �� « M � � l � Dst

|-� l*� �2­Qº PAt
|-� l*�§l ~���� ¿�¨21 (G|-� l ¨ l ~��� « M � � l � VIP

|-�U�2­
PAt
|-� l��§l ~����

Dst
|-� l*� �� « M � � l � VIP

|-�U�2­
Dst
|-� l*� �2­Qº PAt

|-� l*� l ~!�� ¿�¨
OnE

|-� l ¨ l ~���43 M � � l ¨ OnE
|-� l ¨ l ~!��­ Attended

|-����� ¿�� ¾
OnE

|-� ¾ l ¨ l ~��� � M � � k l ��¾ l�5 k l�5 ¾ l ¨ OnE
|-� k l ¨ l ~��2­ OnE

|-��¾ l ¨ l ~��­
� k	²® � ¾ ­
Group

|-� kol�5Mk �±­ Group
|-� ¾ l�5 ¾ ��� 5�k)®65 ¾

In our FOALP solution, we have used a set of basis func-
tions that represent each of the additive reward criteria
above, in addition to one constant basis function. We exper-
imented with a variety of more complex compound basis
functions in addition to the ones above but found that they
received negligible weight and did not affect the resulting
policy. Thus, it seems that a linear combination of these
six basis functions may approximate a reasonable amount
of structure in the optimal value function.

We evaluated two simple myopic policies that take the best
action from the current state based on one- and two-step
lookahead. We also evaluated several intuitive, heuristic
policies that seem to offer reasonable performance in the
elevator domain. The basic heuristic policy always picks
up passengers at each floor. The other policies are specified
by adding the following constraints to this basic policy in
various combinations: always prioritize picking up VIPs

9Since these costs are constant for each action, the backup op-
erators can be easily modified to handle action costs by subtract-
ing the constant cost from one of the cases being backed up.

Suppose we are given the following constraint specification (using a tabular case notation) for a first-order linear program:�������	�t � � � l*� Dst
|-� l � � �

PAt
|-� l��§l ~�� : ©m�º

” : � & ¿�� l*� Dst
|-� l*� �2­Qº PAt

|-� l � l ~!� : j kº
” :

� jKk & ¿�� l ¨ OnE
|-� l ¨ l ~�� : j ¾º

” : � �
Now, suppose that we are at step 4 of the FOCG algorithm and the last LP solution yielded weights j k ® « and j ¾ ® © . We can
efficiently compute the most violated constraint (if one exists) by evaluating the weights in the constraint and applying the FOMAX
algorithm. We begin with step 1 of FOMAX where we convert all first-order formulae to CNF:��� �����t � 6 º

Dst
|-� l*� �2° PAt

|-� l��§l ~���9 : ©m�6
Dst
| � k l � ¾m� l º PAt

| � k l � ¾ l ~���9 : � & 6
Dst
| � � l ��� � l º PAt

| � � l ����l ~���9 : «6 º
Dst
|-� l�� �2° PAt

|-� l*�§l ~���9 :
� « & 6

OnE
| ���@l ����l ~���9 : ©6 º

OnE
|-� l ¨ l ~!��9 : � �

Given relation elimination order PAt l Dst l OnE, we now proceed to step 2 of FOMAX. We begin by eliminating the PAt relation: we
take the cross-sum

&
of case statements containing PAt, resolve all clauses in each partition, and remove all clauses containing PAt

(indicated by struck-out text):

��� ���	�t � 6 º
Dst
|-� l�� �±° PAt

|-� l � l ~�� ,Dst
| � � l ��� � , º PAt

| � � l ����l ~�� l � 9 : ©m«6 º
Dst
|-� l�� �±° PAt

|-� l � l ~��,9 : �6
Dst
| � k l � ¾m� l Dst

| � � l � � � l º PAt
| � k l � ¾ l ~�� l º PAt

| � � l � � l ~!�=9 : «6 º
Dst
|-� l�� �±° PAt

|-� l � l ~�� ,Dst
| � k l � ¾o� , º PAt

| � k l � ¾ l ~�� l � 9 :
� « &

6
OnE

| ���@l ����l ~���9 : ©6 º
OnE

|-� l ¨ l ~���9 : � �
Because the partitions valued ©�« and

� « contain the empty clause (i.e. they are inconsistent), we can remove them. And because the
partition of value � dominates the partition of value « (i.e. «	� � and the clauses of the value « partition are a superset of the clauses of
the value � partition), we can remove it as well. This yields the following simplified result:��� �����t � 6 9

: � & 6
OnE

| ���@l ����l ~���9 : ©6 º
OnE

|-� l ¨ l ~!��9 : � �
From here it is obvious that the Dst elimination step will have no effect and the OnE elimination step will yield a maximal consistent
partition with value � . Since this is a positive value and thus a violation of the original constraint, we can generate the new linear
constraint � �X©o� � � jKk � j ¾ based on the original constituent partitions that led to this maximal constraint violation.

Figure 3: An example of using FOMAX to find the maximally violated constraint during an iteration of the FOCG algorithm.

over regular passengers (V); never allow an attended person
to be unaccompanied in the elevator (A); and never allow a
group conflict in the elevator (G).

We used the Vampire [16] theorem prover and the CPLEX
LP solver in our FOALP implementation.10 The perfor-
mance of various policies, measured using the average to-
tal discounted reward obtained over 100 simulated trials of
50 stages each, are shown in Table 1. While the results
have relatively high standard deviation due to the stochas-
ticity of the domain, the difference in performance between
FOALP with six basis functions and the best of the heuris-
tic policies is statistically significant at the 93% confidence
level for each domain size. Thus, we can conclude that
the FOALP approach with six basis functions outperforms
the heuristic policies with some confidence. This appears
to be due to the fact that the additive value function al-
lows FOALP to tradeoff various domain features while the
hard constraints must be applied in all situations (leading
to suboptimal performance in many cases) and the myopic
policies cannot see far enough ahead to make good choices
for the long-term. We note that while the upper bounds on

10We note that while the full FOALP specification with six ba-
sis functions contained over 250,000 constraints, only 40 of these
constraints needed to be generated to determine the optimal solu-
tion. Nonetheless, a considerable time is spent in theorem proving
deriving and ensuring the consistency of constraints. We note that
running times ranged from 5 minutes for one basis function to 120
minutes for six basis functions on a 2Ghz Pentium-IV machine.

Policy F5 F10 F15 ME6 9
,
6
A
9

116
 28 106
 27 105
 28 N/A6
V
9
,
6
V,A
9

115
 30 108
 30 107
 28 N/A6
G
9
,
6
A,G
9

125
 24 119
 21 114
 20 N/A�
V,G � ,

�
V,A,G � 119
 30 114
 24 115
 23 N/A

Myopic 1 118
 10 119
 9 120
 13 N/A
Myopic 2 123
 12 122
 5 120
 12 N/A
FOALP

6
1,2
9

133
 31 114
 32 112
 23 177
FOALP

6
3,4
9

148
 26 129
 23 117
 23 159
FOALP

6
5
9

147
 26 126
 17 120
 17 146
FOALP

6
6
9

154
 25 130
 19 125
 19 92

Table 1: The performance of various policies in elevator domains
with 5, 10, and 15 floors (denoted F5, F10, and F15, respectively),
with passenger arrivals distributed according to

| �Mn ©@l��Mn � � � per
time-step, and discount rate

� ®X�¬n � . Heuristic policies, shown at
the top, are designated by the sets of constraints used: (V) priori-
tize VIP, (A) no attended conflict, and (G) no group conflict. For
example, the empty set policy

6 9
uses no constraints and picks

up everyone at each floor it passes. The one- and two-step looka-
head myopic policies are labeled Myopic 1 and 2. FOALP poli-
cies are labeled using the number of basis functions used, count-
ing from the top of the above list of reward criteria (e.g., FOALP6

3,4
9

represents two FOALP-derived policies using the first three
and first four basis functions, respectively). Policies are grouped
when they turn out to be identical (e.g., FOALP-3 and FOALP-4
are identical, as are heuristic policies

6�� 9
and
6�� l}� 9). Perfor-

mance is measured using the the sum of discounted rewards ob-
tained by time step 50, averaged over 100 random simulations.
The best results for each group of policies and number of floors
are in boldface. FOALP error bounds are computed according to
Equation 12 and are shown in the max error (ME) column.

error are not tight, there is nevertheless a strong correlation
between these values and actual policy performance.

6 Related Work

While our work incorporates elements of symbolic dy-
namic programming (SDP) [3], it uses this in an efficient
approximation framework that represents the value func-
tion compactly and avoids the need for logical simpli-
fication. This is in contrast to an exact value iteration
framework that proves intractable in many cases for SDP,
FOVIA [10], and ReBel [11] due to the combinatorial ex-
plosion of the value function representation and the need
to perform complex logical simplifications. FOALP uses a
model-based approach to avoid domain instantiation unlike
the non-SDP approaches [5, 7] which need to instantiate
domains. In addition, FOALP does not use inductive meth-
ods [5, 6] that generally require substantial simulation to
generalize from experience. The work by Guestrin et al. [7]
is the only other RMDP approximation work that can pro-
vide bounds on policy quality, but these are PAC-bounds
under the assumption that the probability of domains falls
off exponentially with their size. In contrast, the policy
bounds obtained by FOALP apply equally to all domains.

7 Concluding Remarks

We have introduced a novel approximate linear program-
ming technique for FOMDPs that represents an approxi-
mately optimal value function as a linear combination of
first-order basis functions. This technique allows us to effi-
ciently solve for an approximation of the value function us-
ing off-the-shelf theorem prover and LP software. It offers
us the advantage that we can approximately solve FOMDPs
independent of a domain instantiation and it additionally al-
lows us to determine upper bounds on approximation error
that apply equally to all possible domain instantiations. We
have applied our algorithm to the task of elevator schedul-
ing and have found that it is not only efficient, but that
its policies outperform a number of intuitive, heuristically-
guided policies for this domain.

An interesting question for future work is whether the uni-
form weighting of partitions in the FOALP objective is the
best approach. It would be informative to explore alterna-
tive FOALP objective specifications and to evaluate their
impact on value function quality over a variety of domains.
In addition, it is an interesting question as to whether dy-
namic reweighting schemes could improve solution quality
by identifying state partitions with large error and adjusting
their weights so they receive more emphasis on the next LP
iteration. Altogether, such improvements to FOALP could
bolster an already promising approach for efficiently and
compactly approximating FOMDP value functions.

References

[1] F. Bacchus, J. Y. Halpern, and H. J. Levesque. Reasoning
about noisy sensors in the situation calculus. In IJCAI 95,
pp. 1933–1940, Montreal, 1995.

[2] C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic
planning: Structural assumptions and computational lever-
age. JAIR, 1999.

[3] C. Boutilier, R. Reiter, and B. Price. Symbolic dynamic
programming for first-order MDPs. In IJCAI-01, 2001.

[4] R. Dechter. Bucket elimination: A unifying framework for
reasoning. In Artificial Intelligence, volume 113, pp. 41–85,
1999.

[5] A. Fern, S. Yoon, and R. Givan. Approximate policy itera-
tion with a policy language bias. In (NIPS-2003), Vancou-
ver, 2003.

[6] C. Gretton and S. Thiebaux. Exploiting first-order regres-
sion in inductive policy selection. In UAI-04, 2004.

[7] C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia. Gen-
eralizing plans to new environments in relational MDPs. In
IJCAI 03, Acapulco, 2003.

[8] C. Guestrin, D. Koller, R. Parr, and S. Venktaraman. Effi-
cient solution methods for factored MDPs. JAIR, 2002.

[9] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. SPUDD:
Stochastic planning using decision diagrams. In UAI 99, pp.
279–288, Stockholm, 1999.

[10] S. Hölldobler and O. Skvortsova. A logic-based approach
to dynamic programming. In Learning and Planning in
Markov Processes–AAAI-04 Workshop, pp. 31–36, 2004.

[11] K. Kersting, M. van Otterlo, and L. de Raedt. Bellman goes
relational. In ICML ’04. ACM Press, 2004.

[12] J. Koehler and K. Schuster. Elevator control as a planning
problem. In AIPS, pp. 331–338, 2000.

[13] J. McCarthy. Situations, actions and causal laws. Technical
report, Stanford University, 1963. Reprinted in Semantic
Information Processing (M. Minsky ed.), MIT Press, Cam-
bridge, Mass., 1968, pp. 410-417.

[14] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley, New York, 1994.

[15] R. Reiter. Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT
Press, 2001.

[16] A. Riazanov and A. Voronkov. The design and implementa-
tion of Vampire. AI Commun., 15(2):91–110, 2002.

[17] D. Schuurmans and R. Patrascu. Direct value approximation
for factored MDPs. In (NIPS-2001), 2001.

