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Abstract

We consider the problem of approximate belief-state
monitoring using particle filtering for the purposes
of implementing a policy for a partially observable
Markov decision process(POMDP). While particlefil-
tering hasbecomeawidely usedtool in Al for monitor-
ing dynamical systems, rather scant attention has been
paid to their usein the context of decision making. As-
suming the existence of avalue function, we derive er-
ror bounds on decision quality associated with filtering
using importance sampling. We also describe an adap-
tive procedure that can be used to dynamically deter-
mine the number of samples required to meet specific
error bounds. Empirical evidenceis offered supporting
this technique as a profitable means of directing sam-
pling effort whereit is needed to distinguish policies.

1 Introduction

Considerableattention hasbeen devotedto partially observ-
able Markov decision processes (POMDPs) [19] asamodel
for decision-theoreticplanning. Their generality allowsone
to seamlessly model sensor and action uncertainty, uncer-
tainty in the state of knowledge, and multiple objectives
[1, 4]. Despite their attractiveness as a conceptua model,
POMDPs are intractable and have found practical applica-
bility in only limited specia cases.

The predominant approach to the solution of POMDPs in-
volves generating an optimal or approximate value func-
tion via dynamic programming: this value function maps
belief states (or distributions over system states) into opti-
mal expected value, and implicitly into an optimal choice
of action. Constructing such value functions is computa
tionally intractable and much effort has been devoted to de-
vel oping approximation methods or algorithmsthat exploit
specific problem structure. Potentially more troublesomeis
the problem of belief state monitoring—maintaining a be-
lief state over time as actions and observations occur so that
the optimal action choice can be made. This too is gen-
eraly intractable, since a distribution must be maintained
over the set of system states, which has size exponentia in
the number of system variables. While value function con-
structionis an offline problem, belief state monitoring must
be effected in real time, hence its computational demands
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are considerably more pressing.!

One important family of approximate belief state monitor-
ing methods is the particle filtering or sequential Monte
Carlo approach [6, 13]. A belief state is represented by a
random sample of system states, drawn from the true state
distribution. This set of particlesis propagated through the
system dynamics and observation model sto reflect the sys-
tem evolution. Such methods have proven quite effective,
and have been applied in many areas of Al such as vision
[11] and robotics[21].

While playing alarge rolein Al, the application of particle
filters to decision processes has been limited. While Thrun
[20] and McAllester and Singh[14] have considered theuse
of sampling methods to solve POMDPs, we are unaware
of studies using particle filters in the implementation of a
POMDP policy. In this paper we examine just this, focus-
ing on the use of fairly standard importance sampling tech-
niques. Assuming a POMDP has been solved (i.e., avalue
function constructed), we derive bounds on the error in de-
cision quality associated with particlefiltering with agiven
number of samples. These bounds can be used a priori to
determine an appropriate sample size, as well as forming
the basis of a post hoc error analysis. We aso devise an
adaptive scheme for dynamic determination of sample size
based on the probability of making an (approximately) op-
timal action choice given the current set of samples at any
stage of the process. We notethat similar notionshave been
applied to the problem of influence diagram evaluation by
Ortiz and Kaelbling [15] with good results—our approach
draws much from this work, though with an emphasis on
the sequentia nature of the decision problem.

A key moativation for taking a value-directed approach to
sampling lies in the fact that monitoring is an online pro-
cess that must be effected quickly. One might argue that
if the state space of a POMDP is large enough to require
sampling for monitoring, then its state space istoo large to
hope to solve the POMDP. To counter this claim, we note
first that recent algorithms [2, 9] based on factored repre-
sentations, such as dynamic Bayes nets (DBNs), can of-
ten solve POM DPswithout explicit state space enumeration
and produce reasonably compact val ue function representa
tions. Unfortunately, such representations do not generally

while techniques exist for generating finite-state controllers

for POMDPs, there are still reasons for wanting to use value-
function-based approaches[17].



trandate into effective (exact) belief monitoring schemes
[3]. Even in cases where a POMDP must be solved in a
traditiona “flat” fashion, we typically have the luxury of
compiling a value function offline. Thus, even for large
POMDPs, we might reasonably expect to have value func-
tion information (either exact or approximate) available to
direct the monitoring process. The fact that oneis able to
produce a value function offline does not imply the ability
to monitor the process exactly in atimely online fashion.

We overview POM DPs, structured sol ution techniques, and
monitoring in Section 2. Section 3 describes a basic par-
ticle filtering scheme for POMDPs and analyzes its error.
We a so describe a dynamic sampl e generation scheme that
relies on ideas from group sequential sampling. We exam-
ine thismodel empiricaly in Section 4, and conclude with
adiscussion of future directions.

2 POMDPsand Belief State Monitoring
2.1 Solving POMDPs

A partially observable Markov decision process (POMDP)
is a genera model for decision making under uncertainty.
Formally, we require the following components: a finite
state space S; afinite action space .A; afinite observation
space Z; atrangtionfunction 7 : S x A — A(S);2 an
observation function O : S x A — A(Z); and areward
function # : § — R. Intuitively, the transition function
T(s,a) determines adistribution over next states when an
agent takes action a in state s. This captures uncertainty in
action effects. The observationfunctionreflectsthefact that
an agent cannot generally determine the true system state
with certainty (e.g., due to sensor noise). Finally R(s) de-
notes theimmediate reward associated with s.

The rewards obtai ned over time by an agent adopting a spe-
cific course of action can be viewed as random variables
R®). Our aimisto construct apolicy that maximi zes theex-
pected sum of discounted rewards £(3> ;< , 3 R®)) (where
[ isadiscount factor lessthan one). It is well-known that
an optimal course of action can be determined by consid-
ering the fully observable belief state MDP, where belief
states (distributions over &) form states, and a policy = :
A(S) — A maps belief statesinto action choices. In prin-
ciple, dynamic programming algorithms for MDPs can be
used to solve this problem. A key result of Sondik [19]
showed that the value function V' for afinite-horizon prob-
lem is piecewise-linear and convex and can be represented
as afinite collection of o-vectors3 Specifically, one can
generate acollection X of «-vectors, each of dimension |S]|,
such that V(b)) = maxqex bev. Figurelillustratesacollec-
tion of «-vectorswiththe upper surfacecorrespondingto V.
We define ma(b) = arg maxqex b to be the maximizing
a-vector for belief state b.

Each &« € R corresponds to the expected value of
executing an implicit conditional plan a a given be-
lief state. This conditional plan, 7(«), has the form
(a; 01,713 02,725+ - 0n, Ty ), Where a iSan action, o; isan

2A(X) denotes the set of distributions over finite set X

3For infinite-horizon problems, a finite collection may not al-
ways be sufficient, but will generally offer agood approximation.
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Figure 1: Geometric View of Value Function

observation, and ; isitself a conditiona plan. Intuitively,
aplan of thisform denotesthe performance of action « fol-
lowed by execution of the remaining plan =; in response
to observation o;. We denote by A(«a) the (first) action
a of w(«). Given belief state b, the agent should execute
the action with the maximizing «-vector: A(ma(b)). In-
deed, if one hasaccess totheentireplan 7(ma(b)), thisplan
should be executed to termination. We note, however, that
the plans () arerarely recorded explicitly.

One difficulty with these classical approaches is the fact
that the «-vectors may be difficult to manipulate. A sys-
tem characterized by n random variables has a state space
size that is exponentia in n. Thus manipulating a single
a-vector may be intractable for complex systems* Fortu-
nately, it is often the case that an MDP or POMDP can be
specified very compactly by exploiting structure (such as
conditiona independence among variables) in the system
dynamics and reward function [1]. Representations such as
dynamic Bayes nets(DBNSs) can be used, and schemes have
been proposed whereby thea-vectorsare computed directly
in afactored form by exploiting this representation.

Boutilier and Poole [2], for example, represent a-vectors
as decision trees in implementing Monahan's algorithm.
Hansen and Feng [9] use agebraic decision diagrams
(ADDs) as their representation in their version of incre-
mental pruning. The empirical results in [9] suggest that
such methods can make reasonably sized problems solv-
able. Furthermore, factored representations will likely fa
cilitate good approximation schemes.

2.2 Bédief State Monitoring

Given a vaue function represented using a collection X
of a-vectors, implementation of an optimal policy requires
that one maintain a belief state over time in order to ap-
ply it to R. Given belief state #* a time ¢, we determine
a® = A(ma(b')), execute a’, make a subsequent obser-
vation o't!, then update our belief state to obtain 4'+!,
The processis then repeated. Belief state monitoring is ef-
fected by computing b'+1 = Pr(S5]b%, a, o' T1), whichin-
volves straightforward Bayesian updating. We denote by
T(b,a,0) the update of any belief state b by action @ and
observation o. We inductively define

T(baalaOla T aanaOn) —

T(T---(T(b,ar,01), -+, @n—1,0n-1)an,0n)

4The number of «-vectors can grow exponentially in theworst
case, but can often be approximated.



Even if the value function can be constructed in a com-
pact way, the monitoring problem itself is not generaly
tractable, since each belief stateisavector of size|S|. Un-
fortunately, even using DBNSs does not dleviate the diffi-
culty, since correlations tend to “bleed through” the DBN,
rendering most (if not all) variables dependent after atime
[3]. Thus compact representation of the exact belief state
istypicaly impossible. Belief state approximationisthere-
fore often required. At any point in time we have an ap-
proximation* of thetrue belief state b, and must make our
decisionsbased on thisapproximate belief state. Whilesev-
eral methodsfor belief state approximation can be used (in-
cluding projection, aggregation, and variational methods),
and important class of techniques for dynamic problemsis
sampling or simulation methods.

3 ParticleFiltering for POMDPs

In this section we examine the impact of particle filtering
on decision quality in POMDPs. Wefirst describe atypical
sequential importance sampling algorithm, and discuss the
use of partial evidence integration (El) in the DBN to help
keep samples on track. We then analyze the error induced
by one stage of belief state approximation and show how
partial El allowsthisanalysisto be carried through multiple
stages (inaway that is not possible otherwise).

3.1 A BasicFiltering Method for POMDPs

Assume we have been provided with the value function for
a specific POMDP M. Thisvaue function is represented
by afinitecollection R of «-vectors. We assume an infinite-
horizon model so that we have a single set R. We aso
assume that R is of a manageable size, and that the vec-
tors themselves are represented compactly (using ADDs,
decision trees, linear combinations of basis functions, or
some other representation). We emphasize, however, that
even if the value function is represented in standard state
form, approximatemonitoringisoften needed. We notethat
our methods can be applied to approximate val ue functions,
though our analysis assumes an exact set .

Implementation of the policy induced by thisvaluefunction
requires that a belief state ' be maintained over all times

t. At any point in time we assume an approximation b of
thetruebelief state b, and make our decisions based onthis
approximate belief state.

Thebasic procedurewe consider istheuse of aparticlefilter
for monitoring, with the approximate belief states so gener-
ated used for action selection inthe POMDP. At any timet,

we have a collection b of n' weighted particles, or system
states, approximating thetrue distribution 4. Each particle
isapair (s(;), w(;). Weoften smply write s{;, to refer to
the /" particle (i < n'). The total weight of the particle
st bt isw! = wai). The particle set b* represents the
following distribution (which we also refer to as b*):

_ Z{wfi) : sfi) = s}

t

b (s)

w

Given thisapproximation b* of b*, action selection will take

()= (&)~
Lo e

Figure 2: Partial Evidence Integration

place in the POMDP as if b were the true distribution.
Thus, welet a* = A(ma(b')), execute action af, and make
observation o'*1. Our new approximate belief state bt +!
is generated by repeating the following steps until n'+! is
greater than some desired threshold:

1. Draw astate s* from the distribution b*.

2. Draw a doae s't!  from the distribution
Pr(StHst, at).

3. Computew = Pr(o'Tt|st, at, s'T1)

4. Addsample (s(fi', wif!) = (s'*!,w) tob**! and add
w to total weight w'.

This sequentia importance sampling procedure induces a
consistent, though biased, estimate '+ of &'+, and will
convergeto thetruedistributionaccording to the usual con-
vergence results. The significance of thismethod liesin the
fact that, for agreat many systems, it is easy to sample suc-
cessor states according to the system dynamics(i.e., sample
from the conditional distributionin Step 2), and to evaluate
the observation probabilitiesfor given states (i.e., compute
the weights in Step 3). In contrast, direct computation of
Pr(S*T1pt, at, o' T1) isgeneraly intractable.

3.2 Evidencelntegration

One difficulty with thefiltering algorithm above isthat the
samples generated at timet + 1 are not influenced by ob-
servation o' !, which often allows particles to drift from
the true belief state. Since we assume a DBN representa-
tion of dynamics, partial evidence integration (El) or arc
reversa [8] can be used to partiadly aleviate this problem
[13]. The generic structure of a DBN (assuming afixed ac-
tion) isshownin Figure2(a); reversingthearc from St+! to
O'*! resultsin anetwork shown in Figure 2(b). With this
structure, given a particlesfl.) and observation ¢'+!, apar-
ticlesfjg1 can be drawn directly. Of course, thereweighting
given o' t! must now be applied to the particlesin 4. This
givesrise to the following particlefiltering procedure used

throughout the remainder of the paper:

(8) Given particle set #', select action of =
A(ma(b?)), and observe o' t1;

(b) Reweight samples sfi) according to
Pr(o'*!|s’,a’) and normalize to produce
bt

(c) Draw some number of particles sfi) according to

i
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(d) Sample particlessfzgl given drawn prior particles
st;y and o +! to produce b+

Note that the reweighted distribution ¢ is an approxi-
mation of Pr(St[a®,---at, 0!, - oftl) in contrast to *,
which represents Pr(5t|a”, - - -at=1 o, - of).

When the DBN isfactored, thearc reversal process can of-
ten befairly expensive, sinceit increases the connectivity of
the network. However, thereversal process can take advan-
tage of the structure in CPTs represented as, say, decision
treesor ADD. In thisway, theusual exponentia increasein
table size with the number of added parentsisoften circum-
vented [5]. We use structured arc reversal techniquesin our
experiments.

3.3 One-Stage Analysis

As a precursor to bounding the error in decision quality
associated with particlefiltering, we consider the error in-
duced by one stage of approximation only (and acting using
exact inferenceat al other stages). Wefirst notethefollow-
ing important fact regarding POMDPs:

Fact 1 Let b, b* betwo belief states st. ma(b') = ma(b).
For any seguence of & observations and actions,
let Btt* = T(b', at, ottt .. atth=1 ot+F)  and
btk = T(I;t, at, ot Tl ... gtth=l ottky, Then
ma(b'+*) = ma(b't*).

Thisimplies that, if we approximate b' at time ¢ in such a
way that b* has the same maximizing ov-vector asb?, thenwe
will: (a) choose the correct action at state ¢; and (b) choose
the optimal action at al subsequent stagesif we monitor the
process exactly (w.rt. b') at al subsequent stages.

Now, assume we have been able to exactly compute 61,
have selected and executed action «'~! and made ob-
servation o'. Furthermore, assume that we can com-
pute Pr(S?=t|a’~1 o') exactly. With these assumptions,
we can sample directly from the distribution #* =
T(b'=1, at=1, o') using the (arc-reversed) DBN to obtain
an unbiased estimate b* of 4. We analyze the error associ-
ated with selecting an «-vector that has maximum expected
vauew.r.t. #* and executing its conditional plan to comple-
tion (or equivaently, acting using exact monitoring from
that point on).

Let {sfi)} beacollection of n' statesamples drawn fromp*.

The vaueof any o € N applied to true belief state b’ is:
a(b) = a b = Eyla(s)] = Vy

where a(s) denotes the value of o at state s (i.e, the s**
component of «) and E,: denotes expectation with respect
to distribution b*. Thus the value of o can be viewed as
arandom variable whose expectation (w.r.t. b*) is Vi, As
such, each term a(sfi)) isasample of thisrandom variable

and the average of these is an unbiased estimate V! of V..
We can apply (one-sided) Hoeffding bounds to determine
the accuracy of thisestimate. Specifically:

Pr(V! <V!+4e)
Pr(VEi>Vi—e)

1 — e—2nta2/Ri

2
> 1 e—2nta2/Ri

where R, istherangeof valuesthat can betaken by « (i.e.,
R, = maxg{a(s)} — ming{a(s)}).

Given a particular confidence threshold 4 and a sample set
of sizen' we can produce a (one-sided) error bound =, on
the accuracy of our estimate V!

o Ri;;(%) )

The required sample size given error tolerance ¢ and confi-
dence threshold 4 for the estimation of V! is:

R2In(})
—x @

We can al so bound the simul taneousconfidence that each of
our estimates of each a(b*) has (one-sided) precision ¢ with
probability 1 —4. Decreasing § to I%I in Eq. 2 and maximiz-
ing over al o, we obtain the sample size N (¢, ):

J
¢ _ ¢
N'(e,0) = réleaéd\fa(a, |N|) (3)

Né(g,é) =

Choosing the maximizing a-vector using an approxi mate b*
with sample size N* (¢, J) ensuresthat a 2s-optimal choice
ismade with probability at least 1 —§; if theerror associated
with (arbitrary) nonoptimal behavior isbounded by 4, then
the one-step approximation error is given by thefollowing:

Theorem 2 If belief state b* isapproximated with N? (¢, §)
particles, with exact monitoring used at all other stages of
the process, then the error F (i.e., difference in expected
val ue of the policy implemented and the optimal policy) is
bounded by

E < B (2e(1 — 8) + dh)

Here the error incurred is discounted by 3°* to reflect the
fact that theapproximation error occurs at staget of the pro-
cess. Note that the error A on nonoptimal behavior can be
easily bounded (rather loosely) using

Bming{R(s)}
1=-p

though simple domain analysis will generally yield much
tighter boundson .

One can aso perform a post hoc analysis on the choice of
a-vector to determine if an optimal choice has been made
with high probability. Assuming »* samples have been gen-
erated, let !, betheerror level determined by Eq. 1 usingn®
(thisisgenerally tighter than the ¢ used to determine sample
sizein Eq. 3 since we are looking at a specific vector).

Corollary 3 Let of = ma(b*) and suppose that

h < maxmax a; —
(a3 s

bat —cl, +7>ba+e, YoeR){a}

Then with probability at least 1 — § a 7-optimal policy will
be executed, and our error is bounded by:

B < B (7(1 - 8) + oh)



The parameter  represents the degree to which the val ue of
the second-best «-vector may exceed the value of the best
at b! intheworst-case. Notethat thisre ationship must hold
for some r < 2¢. If thereationship holdsfor = = 0 (i.e,
there is 2¢-separation between the maximizing vector and
all other vectors at belief state b') then we are executing the
optimal policy with probability at least 1 — § and our error
isbounded by gt +1dh.

34 Multi-stage Analysis

The analysis above assumes that once an a-vector is cho-
sen, the plan corresponding to that vector will be imple-
mented over the problem’s horizon. In fact, once the first
action A(«) istaken, the next action will be dictated by re-
peating the procedure on the subsequent approximate beli ef
state. Due to further sampling error, the next action cho-
sen may not be the“correct” continuation of the plan = («).
Thuswe have no assurances that the 2¢-optimal policy will
be implemented with high probability. In what follows, we
assume that our sample size and approximate belief state b
are such that - = 0 at every point in time (i.e., our approx-
imate beliefs always give at least 2<-separation for the op-
timal vector). We discuss this assumption further bel ow.

We make some preliminary observationsand definitionsbe-
fore analyzing the accumulated error.

o We first note that 4*+! is an unbiased estimate of the
distribution 7'(b*, a, o' *1). Though particle filtering
does not ensure that 6°*+! is unbiased with respect to
thetrue belief state '+, our evidenceintegration pro-
cedure and reweighting scheme produce “locally” un-
biased estimates. To see this, notice that the distribu-
tion b* obtained by reweighting b w.r.t. o'*' corre-
spondsto exact inference assuming the distribution &*
iscorrect for S*. (Thisexact computation istractable
precisely because of the sparse nature of this approxi-
mate “prior” on S*.) Thus, the procedure for generat-
ing samplesof 5¢t! using b* isasimpleforward prop-
agation without reweighting, and thus provides an un-
biased sample of T'(b%, a, o' 1).

e Let ussay that amistakeis made at staget if ma(b'*1)
is not optimal w.rt. T'(b', a*, o' T1). In other words,
due to sampling error, the approximate belief state
bi+! differed from the “true’ belief state one would

have generated using exact inference w.rt. b° in such
away asto preclude an optimal policy choice.

We can now anayzethe error in decision quality associated
with acting under the assumption that = = 0. Let stage ¢
be the first stage at which a mistake ismade. If thisisthe
case, we have that ma(b*+1) = ma(T'(b*, a*, o*+1)) for
al k < t. By Fact 1, this means that ma(b*) = ma(b*)
foral k < t (where b* isthetrue stage k belief state one
would obtain by exact monitoring). Thus, if staget isthe
first stage at which a mistake is made, we have acted ex-
actly aswe would have using exact monitoringfor thefirst ¢
stages of the process. Since our sampling process produces
an unbiased estimate b* +1 of T'(b*, a*, o* 1) at each stage,

the probability with which no mistake is made before stage
tisatleast (1 — §)'~1. Assuming aworst-case bound of
h on the performance of an incorrect choice (w.r.t. the opti-
mal policy) at any stage (which isthus independent of any
further mistakes being made), we have expected error £ on
the sampling strategy where N (4, ) samples are generated
at each stage; F isbounded as follows:

Theorem 4

C t—1noty hﬁ(s

The above reasoning assumes that ~ reaches zero at each
stage of the process, afact which cannot be assumed a pri-
ori, since it depends crucially on the particular (approxi-
mate) belief statesthat emerge during the monitoring of the
process. Unfortunately, strong a priori bounds, as asimple
function of ¢ and 4, are not possibleif = > 0 a more than
one stage. The main reason for thisis that the conditional
plans that one executes generally do not correspond to a-
vectors that make up the optimal value function. Specifi-
cally, when one chooses a r-optimal vector (for some 0 <
T < 2¢) at aspecific stage, a(worst-case) error of 7 isintro-
duced should this be the only stage at which a suboptimal
vector is chosen. If a 7-optimal vector is chosen at some
later stage (7 > 0), the corresponding policy is T-optimal
with respect to avector that isitself only approximately op-
timal. Unfortunately, after thissecond “switch” to a subop-
timal vector, the error with respect to the origina optimal
vector cannot be (usefully) bounded using the information
at hand.®

However, even without these a priori guarantees on deci-
sion quality, we expect that in practice, the following ap-
proximate error bound will work quite well, specifically as
a guide to determining appropriate sample complexity, as
discussed below:

266+ 2eh 3
1-p 1-5+p36

Intuitively, at each stage of the process a 2¢-optimal vec-
tor will be chosen with high probability. Though we cannot
ensure this, in practice we expect that the cumulative error
over those stages where mistakes are not made can be use-
fully estimated by thefirst term. The second term accounts
for the possibility of mistakes, asin Theorem 4. Hereamis-
takereferstotheprobability 1—4 event of choosing avector
at a specific stage that is not 2¢-optimal.

We a so notethat apost hoc analysis like that described for
one-stage analysis can be used to bound error:

Proposition 5 Let ¢ be the first stage of the process at
which 7 > 0, and ¢t + % bethe second such stage. Then

hjs
Es1T555

E

(4)

+6t+126+6t+k+1h

The first term in this bound denotes the error associated
with mistakes. The second term reflects the 2« bound on er-
5In particular, it is not the case that the error is bounded by 27+

[17].



ror associated with the first switch to an approximately op-
timal vector at stage ¢, while the third reflects the second
switch. The main weakness in the bound again liesin this
last term and its reliance on £ to bound error after a second
switch. Oneway inwhichthese boundscan bestrengthened
is through the use of switch set analysis, a technique de-
scribed in[17]. The set of constraintsimposed by the sam-
pling scheme on the true belief state are linear and a priori
error bounds can be computed by dynamic programming.
Details are beyond the scope of this paper.

3.5 Dynamic Sample Generation

Theanalysisabove alowsusto determinea priori the sam-
ple complexity required to achieve a certain error with a
specified probability. Our objectiveisultimately to be rea
sonably sure we choose the correct (maximizing) «-vector
at each stage of the process. The method above ensuresthis
by requiring that V! is estimated reasonably precisdly for
each «. The post hoc analysis of value separation suggests
that great precision is not needed if the vectors are widely
separated at thetrue belief state, specifically, if the best vec-
tor has value much greater than the second best. Draw-
ing on ideas from the literature on group sequential meth-
ods [12] and multiple-comparisons with the best (MCB)
[10] that analyze decision making from this perspective,
we describe a method that at each stage generates samples
dynamically, using a sampling plan whose termination de-
pendson results at earlier stages of the plan. Themethod is
inherently simple: we will take samplesin batches until we
can select an «-vector satisfying certain requirements. Our
method recall sthe application of M CB resultsand group se-
guentia methods by Ortiz and Kaelbling to influence dia
grams (see [15] for details and further references).

Suppose we are trying to select the maximizing a-vector
at stage ¢, using belief state b*. The basic structure of our
dynamic approach requires that we generate samples from
T(b*, at, o*t1) inbatches, each of some predetermined size.
To generate the jth batch:

(8 we determine a suitable confidence parameter 4;

(b) we generate the jth batch of m; samples from
T(bt, al, Ot+1)

(c) we compute estimates V![j] for al vectors o

based onthe samplesinal j batches, correspond-
ing precisionse,, [j], and let a; bethevector with

greatest value V/ [f]
(d) we computethreshold —7; = V2. [j] — ea: [j] —

maxa;m;(f/of[j] + e4[j]) and terminate if 7;
reaches a certain stopping criterion

We now elaborate on this procedure.

We use MCB results to obtain confidence lower bounds
(or one-sided confidence intervals) on the differenceintrue
value between that of the vector with largest value estimate
with respect to al the samples in the batches so far and the
best of the other vectors. Suppose m; samples are gener-
ated in the first batch. Given simultaneous confidence pa
rameter 4, , we obtainthe one-sided boundse , [j] according

to Eg. Lusing § = 4, /|R| astheindividua confidence pa
rameter and n' = m; as the number of samples. Defining
7, as above, and combining alower bound for o} with an
upper bound for al the others, we have

Pr(VOfs{ — max VE>—m)>1-46; (5)

If 7 = 7, isnonpositive, o isthe optimal vector with prob-
ability at least 1 — 4;. In general, if we stop immediately
after processing the first batch and select o7, the error in-
curred will be a most max(0, 7) < 2e1 = 2max, £4[1].

If we are unsatisfied with the precision + achieved, we gen-
erate a second batch of m, samples, and propose that

Pr(VOf; — max VE> —m) > 1 -4,
This bound holdsif weinsist beforehand that we will gen-
erate the second batch; but it ignores that fact that we gen-
erate this batch only after realizing our stopping condition
was not satisfied using the first batch. This dependence on
the bound resultingfrom thefirst batch—sincethesebounds
are random variables, this means we do not know a priori
whether we will generate a second batch—requiresthat we
correct for multiplelooks at the data. We do thisby insist-
ing that both boundshold jointly, conjoining the boundsob-
tained after two batches using the Bonferroni inequality and
letting = = miﬂ{jugz,a;:a;} T

Pr(VOf; — H;sa)g Vof > —1) > 1— (61 +32)
Hence, if we stop after processing at most 2 batches, then
our error in selecting o3 will be a most max(0, 7) with
probability at least 1 — (41 + J2). Applying thisargument
up to k batches, we obtain

k
¢ ¢
Pr(Vgy, — max Vg > —7) > 1 — Zéj

aFay =
where r = min{jUSkﬂ;:az} Tj.

The method as described above will stop at the first batch
[ such that ; < 0: at this point we are assured of select-
ing the optimal vector with high probability. If we insist
that we force 7 to zero, the number of batches £ cannot be
bounded; thus, we must set the sequence of confidence pa-
rametersd; suchthat 302, d; < 4. For example, we might
setd; = 6/(j(j + 1)) and the individual confidence pa-
rameters asd; /|R|. If thereis separation between the value
of the optimal vector and the second best, the process will
stop after a finite number of batches. Hence, we can con-
tinue the process until = = 0. However, since the error
intheindividual estimates decreases only proportionally to
\/In j/j, termination might take longer than we wish, de-
pending on the amount of separation and the vector-value
variance. This problem is exacerbated by our use of loose
ranges in the computation of the precisions¢,, [J].

If weimposealimit B on the number of batches, and want
to make sure that our assessment of + holds with proba-
bility at least 1 — 4, we need to set the sequence of con-
fidence parameters §; such that Zle d; < 6. Theeas-
est way to accomplish our global confidence requirements



istoset 6; = 4/B. Furthermore, if we want to be sure
that the method selects a vector with true value that is no
less than 2¢ from the optima with the same confidence,
then one alternative is to set the number of samples m; in
each batch j to the [(max, R%/(2Be?)) In (B|R|/8)]. If
we do not impose specific requirements then the setting of
my; s arbitrary, but needs to be fixed in advance. Thisis
because for our analysis to hold, m; cannot depend on the
outcomesfromthesamplesthemselves. Althougharbitrary,
in general, the setting of m; should take into consideration
atrade-off between reducing the expected total number of
samples before the method stop versus reducing the varia-
tion on the total number of samples.

Ingeneral, we expect thismethod to be effective when there
issufficiently large gap between the best vector and therest,
and/or the ranges in vector values are sufficiently small rel-
ativeto the value separation and the error tolerance. By us-
ing loose upper bounds on the variances and accuracy pa-
rameters, thetheoretical boundscan become very loose, and
hence do not reflect the potential gainswe expect. The ver-
sion presented inthis paper isvery simple. Many variations
on the same idea are possible to try to bring the theoret-
ical bounds more in accordance with our belief about the
expected behavior of the method (for instance, using infor-
mation about range of differences in value between vector
pairs, alocating some samples to estimate variance, etc.),
but this is beyond the scope of this paper.

As before, unless we push the error tolerance r to zero at
each stage of the monitoring process, we cannot obtain tight
bounds on error after that point. However, we can assert:

Theorem 6 Suppose beliefs are monitored according to
the dynamic procedure described above using global con-
fidence parameter §. Furthermore, supposethat - = 0 at
each stage. Then error F satisfies

hjs
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However, as noted above, the computational demands of
insisting that = = 0 can be severe if the belief state at
sometimet issuch that little separation exists between the
best vector and the second-best (that is, if b liescloseto a
“edge” of the value function, where two optimal «-vectors
intersect). If = < 0 at al stagesup to timet, then the bound
described in Proposition 5 holdsfor this dynamic scheme.

4 Empirical Evaluation

Threetest problemswere used to carry out experimentstest-
ingthe efficacy of our sampling procedures (werefer to[16]
for thefull specification of those problems; seea so [18] for
asummary). Each of the three problems was solved using
Hansen and Feng's[9] ADD implementation of incremental
pruning (IP) to produceaset X of «-vectorsusing acompact
ADD representation.

In the following experiments, we report on the use of sam-
pling for approximate belief state monitoring on three test
problems. The goal of the experiments are twofold: to
evaluate (i) the impact on decision quality induced by sam-
pling techniques and (ii) the sample complexity necessary

Problem State Space Size Sizeof ¥

‘ maximum | average
Coffee 32 102 56
Widget 32 205 121
Pavement 128 39 16

Table 1: Statistics for the three test problems. The maxi-
mum and average size of X are taken over a 15-stage pro-
Cess.

to guarantee some level of decision quality. Note that the
experiments do not evaluate the running time of sampling
methods since that is not the focus of this paper and the ef-
ficiency gains of such methods have aready been clearly
demonstrated [11, 21]. Intheory, exact monitoring hastime
complexity on the order of O(|S]?) whereas sampling hasa
timecomplexity intheorder of O(m log |S]) (m isthenum-
ber of samples). Thus, a sampling strategy provides time
savingswhen m < |S|?/log|S|. The reader should also
be warned that the scope of the empirical evauation was
limited to test problems for which a set of «-vectors cor-
responding to an optimal value function can be computed.
Hence, asshowninTablel, |S| and |X| arefairly small, and
consequently the following experiments should be consid-
ered preliminary.

The first experiment compares the expected loss incurred
by sampling methods to that of a random monitoring ap-
proach. More precisaly, 5000 initial belief states are picked
uniformly at random and for each initia belief state, the op-
timal expected total reward is compared to the cumulative
rewards earned by an agent that approximately monitorsits
belief state over 15 stages. The difference between the opti-
mal expected total return and theactual returnisthelossdue
to approximate monitoring. Table 2 shows the average loss
due to a single approximation at the first stage (assuming
exact monitoring for the remaining 14 stages), whereas Ta-
ble 3 showsthe average cumul ativel oss dueto approximate
monitoring at each of the 15 stages. When doing random
monitoring, the agent picks a belief state at random (uni-
formly) and executes the optimal action for thisrandom be-
lief state. This random method can be viewed as a naive
strategy that any other approximation method should be
ableto beat. The sampling methods implemented are basic
particlefiltering (with partial evidence integration) where a
fixed number of particles (20, 40, 80 or 160) are sampled
for each approximate belief state. The column “worst” re-
ports the worst possible expected loss that can be achieved
by consistently choosing the worst actions.® The worst ex-
pected lossisincluded to give some idea of the scale of po-
tential losses due to approximate monitoring.

As expected, the experiments show a gradua decrease in
average expected loss as the number of samples increases.
When compared to the random strategy (and considering
the range of values obtainabl e across the set of possible be-
haviors), sampling methods perform quitewell. In Table 2,

5This worst strategy can be computed by minimizing (in-

stead of maximizing) the expected total reward while solving the
POMDP.



Prob Average Single Error
Rand Sampling Worst
20 40 80 160
Coff {] 0.261 | 0.008 | 0.005 | 0.003 | 0.002 | 1.263
2e 1.796 | 1.270 | 0.898 | 0.635
Widg || 0.101 | 0.034 | 0.021 | 0.012 | 0.007 | 1.099
2e 0.315 | 0.223 | 0.158 | 0.111
Pav 0.201 | 0.030 | 0.020 | 0.013 | 0.009 | 1.968
2e 1.266 | 0.895 | 0.633 | 0.448

Table 2: Comparison of the average error due to a single
approximation at thefirst stage of a 15-stage process (exact
monitoring being performed for the remaining 14 stages).

Prob Average Cumulative Error
Rand Sampling Worst

20 | 40 | 80 | 160
Coff 1.653 | 0.100 | 0.043 | 0.018 | 0.017 | 8.014
Widg || 0.109 | 0.098 | 0.069 | 0.045 | 0.022 | 5.778
Pav 2.319 1 0.124 | 0.072 | 0.045 | 0.024 | 34.24

Table 3: Comparison of the average cumulativeerror dueto
approximatemonitoring at each stage of a 15-stage process.

the first row of each problem indicates the actua error in-
curred and the second row indicates the upper bound 2¢ pre-
dicted by thetheory (foré = 0.1). Thisboundisloosewhen
compared to the actua error dueto the worst-case nature of
the analysis. The bounds may still provide some guidance
regarding the amount of sampling desired to reduce the av-
erage expected lossto some suitablelevel (assuming amore
or less constant ratio between the bounds and the actual er-
ror).

In asecond experiment, we eval uate the benefits of dynam-
icaly determining the amount of sampling. For given ¢
and ¢, we eva uate the total number of samples necessary to
guarantee that the one-stage sampling error is bounded by
2e withconfidence 1 —4. Table4 showshow thistotal num-
ber of samples varies as we increase the maximum number
of batches. Once again, 5000 random initial belief states
are chosen and the average number of samples required to
decrease 7 below 2¢ is reported. The column for 1 batch
corresponds to the standard non-dynamic sampling proce-
dure. Table4 reveal sthat for thewidget and pavement prob-
lems, a dynamic sampling procedure can reduce the sam-
pling complexity quitedramatically for awell-chosen max-
imum number of batches. Unfortunately, the dynamic ap-
proach does not appear to have offered any savings in the
coffee problem. Further investigationisnecessary to assess
the optimal (maximum) number of batchesin general.

Inarelated paper [18], Poupart and Boutilier also tacklethe
belief state monitoring problem, but using a vector space
method that exploits conditional independence. The idea
isto repeatedly approximate belief states using projections
as initially proposed by Boyen and Koller [3]. Projec-
tion schemes and sampling approaches differ in many as-
pects including the properties of POMDPs for which they

Prob Maximum number of batches
1213|456 7]8]9]10
Coff || 2581266278277 (250256 (267248254265
Widg || 139|107 | 93 | 84 | 82 | 86 | 80 | 78 | 78 | 80
Pav 106| 64 | 62 | 52 | 66 | 62 | 60 | 55 | 58 | 59

Table 4: Comparison of the average number of samples re-
quired for adaptive sampling at the first stage of a 15-stage
process (0 = 0.1 and e = 2 for coffee and pavement,
0 = 0.1 and e = 0.5 for widget).

are most suitable. Sampling methods exploit the sparsity
of belief distribution whereas projection schemes exploit
conditiona independence. Given that the coffee, widget
and pavement problems are factored POMDPs, the vector
space methods tend to perform better than sampling with
respect to decision quality. For instance, average losses
dueto single-stage approximation using themax V S-search
method are respectively 0.0013, 0.0082, 0.0014 for the cof -
fee, widget and pavement problems; similarly, the average
cumulative losses over 15 stages are respectively 0.0154,
0.0519 and 0.0071. However, the computational overhead
associated with sampling is minimal whilethe overhead as-
sociated with choosing good projection schemes isnontriv-
ia. We expect thetwo approaches can be combined infruit-
ful ways (as we discuss bel ow).

5 Concluding Remarks

Our value-directed sampling technique can be seen as ap-
plying methods from the MCB and group sequential sam-
plingfieldsto the problem of particlefiltering for POMDPs.
We are able to derive (worst-case) error bounds on such an
approach, and use theseboundsto suggest methodsto direct
sampling in such away asto choose optimal actions rather
than (necessarily) accurately estimate their values. Our ini-
tial empirical results are encouraging, though clearly much
more substantial testing is needed, a task in which we are
currently engaged.

This research can be extended in a number of ways in a
number of very interesting ways. One important challenge
isto provideastronger analysis of error when the precision
parameter = > (. One strategy to circumvent this diffi-
culty buildson theideaof constructingthe set of alternative
conditiona plans that may be executed when = > 0 [17].
Another challenge isto provide an analysisin the absence
of partial El (which locally removes bias): one ideaisto
useinformationfromthe DBN parametersto computeapri-
ori error bounds; another is to use absolute approximation
bounds similar to those used in this paper or optimal rela-
tive approximation methods to obtain a posteriori bounds
on the error tolerance r.

We are very interested in adapting these techniques to other
value function representations (e.g., grid-based value func-
tions) and providing an error analysis of this method when
the value function is itself an approximation of the true
valuefunction. Finaly, previouswork using val ue-directed
projectionschemes[3, 17] hasbeen used successfully to ex-



ploit the conditional independence present in certain fac-
tored POMDPs to speed up belief monitoring. The sam-
pling approach described in thiswork does not exploit this
type of structure; however, one could sample the variables
defining the factored state space in a“stratified” fashion, or
apply Rao-Blackwellisation methods|[6, 7].
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