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Abstract

We propose a framework for robot programming which allows
the seamless integration of explicit agent programming with
decision-theoretic planning. Specifically, the DTGolog model
allows one to partially specify a control program in a high-
level, logical language, and provides an interpreter that, given
a logical axiomatization of a domain, will determine the opti-
mal completion of that program (viewed as a Markov decision
process). We demonstrate the utility of this model with results
obtained in an office delivery robotics domain.

1 Introduction

The construction of autonomous agents, such as mobile
robots or software agents, is paramount in artificial intelli-
gence, with considerable research devoted to methods that
will ease the burden of designing controllers for such agents.
There are two main ways in which the conceptual complex-
ity of devising controllers can be managed. The first is to
provide languages with which a programmer can specify a
control program with relative ease, using high-level actions
as primitives, and expressing the necessary operations in a
natural way. The second is to simply specify goals (or an
objective function) and provide the agent with the ability to
plan appropriate courses of action that achieve those goals (or
maximize the objective function). In this way the need for
explicit programming is obviated.

In this paper, we propose a framework that combines both
perspectives, allowing one to partially specify a controller by
writing a program in a suitably high-level language, yet al-
lowing an agent some latitude in choosing its actions, thus
requiring a modicum of planning or decision-making abil-
ity. Viewed differently, we allow for the seamless integration
of programming and planning. Specifically, we suppose that
the agent programmer has enough knowledge of a given do-
main to be able to specify some (but not necessarily all) of the
structure and the details of a good (or possibly optimal) con-
troller. Those aspects left unspecified will be filled in by the
agent itself, but must satisfy any constraints imposed by the
program (or partially-specified controller). When controllers
can easily be designed by hand, planning has no role to play.
On the other hand, certain problems are more easily tackled
by specifying goals and a declarative domain model, and al-
lowing the agent to plan its behavior.
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Our framework is based on the synthesis of Markov deci-
sions processes (MDPs) [4, 13] with the Golog programming
language [10]. Key to our proposal is the extension of the
Golog language and interpreter, called DTGolog, to deal with
uncertainty and general reward functions. The planning abil-
ity we provide is that of a decision-theoretic planner in which
choices left to the agent are made by maximizing expected
utility. Our framework can thus be motivated in two ways.
First, it can be viewed as a decision-theoretic extension of the
Golog language. Golog is a high-level agent programming
language based on the situation calculus, with a clear seman-
tics, and in which standard programming constructs (e.g., se-
quencing, nondeterministic choice) are used to write high-
level control programs.

From a different standpoint, our contribution can be
viewed as a language and methodology with which to pro-
vide “advice” to a decision-theoretic planner. MDPs are a
conceptually and computationally useful model for decision-
theoretic planning, but their solution is often intractable. We
provide the means to naturally constrain the search for (ide-
ally, optimal) policies with a Golog program. The agent can
only adopt policies that are consistent with the execution of
the program. The decision-theoretic Golog interpreter then
solves the underlying MDP by making choices regarding the
execution of the program through expected utility maximiza-
tion. This viewpoint is fruitful when one considers that an
agent’s designer or “taskmaster” often has a good idea about
the general structure of a good (or optimal) policy, but may be
unable to commit to certain details. While we run the risk that
the program may not allow for optimal behavior, this model
has the clear advantage that the decision problem faced will
generally be more tractable: it need only make those choices
left open to it by the programmer. In contrast to existing mod-
els for constraining policies in MDPs, which use concepts
such as local policies [11, 18] or finite-state machines [11],
DTGolog provides a natural and well-understood formalism
for programming behaviors.

Our approach is specifically targeted towards developing
complex robotics software. Within robotics, the two major
paradigms—planning and programming—have largely been
pursued independently. Both approaches have their advan-
tages (flexibility and generality in the planning paradigm,
performance of programmed controllers) and scaling limi-
tations (e.g., the computational complexity of planning ap-
proaches, task-specific design and conceptual complexity for
programmers in the programming paradigm). MDP-style
planning has been at the core of a range of fielded robot ap-



plications, such as two recent tour-guide robots [5, 19]. Its
ability to cope with uncertain worlds is an essential feature
for real-world robotic applications. However, MDP plan-
ning scales poorly to complex tasks and environments. By
programming easy-to-code routines and leaving only those
choices to the MDP planner that are difficult to program (e.g.,
because the programmer cannot easily determine appropriate
or optimal behavior), the complexity of planning can be re-
duced tremendously. Note that such difficult-to-program be-
haviors may actually be quite easy to implicitly specify using
goals or objectives.

To demonstrate the advantage of this new framework, we
have developed a prototype mobile office robot that delivers
mail, using a combination of pre-programmed behavior and
decision-theoretic deliberation. An analysis of the relative
trade-offs shows that the combination of programming and
planning is essential for developing robust, scalable control
software for robotic applications like the one described here.

We give brief overviews of MDPs and Golog in Sections 2
and 3. We describe the DTGolog representation of MDPs and
programs and the DTGolog interpreter in Section 4, and illus-
trate the functioning of the interpreter by describing its imple-
mentation in a office robot in Section 5.

2 Markov Decision Processes
We begin with some basic background on MDPs (see [4, 13]
for further details). We assume that we have a stochastic
dynamical system to be controlled by some agent. A fully-
observable MDP �������	��
���
�������� comprises the follow-
ing components. � is a finite set of states of the system be-
ing controlled. The agent has a finite set of actions 
 with
which to influence the system state. Dynamics are given by

���������
������ � �!�#"�$ ; here 
��&%�')(*��+,�*'.-&/ denotes the
probability that action + , when executed at state ' ( , induces
a transition to ' - . �0�,�1�32 is a real-valued, bounded re-
ward function. The process is fully observable: though the
agent cannot predict the outcome of an action with certainty,
it can observe that state precisely once it is reached.

The decision problem faced by the agent in an MDP is
that of forming an optimal policy (a mapping from states to
actions) that maximizes expected total accumulated reward
over some horizon of interest. An agent finding itself in state
')4 at time 5 must choose an action +64 . The expected value of
a course of action 7 depends on the specific objectives. A
finite-horizon decision problem with horizon 8 measures the
value of 7 as 9:%�;=<4�>@? �A%B'C4D/#E 7@/ (where expectation is taken
w.r.t. 
�� ). F For an MDP with horizon 8 , a (nonstationary)
policy 7G�IHJ�LKM"N�#O�O#OD�.8�P��RQ associates with each state
' and stage-to-go 5TSU8 an action 7�%�'6�V5*/ to be executed at '
with 5 stages remaining. An optimal policy is one with max-
imum expected value at each state-stage pair.

The planning problem faced by an agent is that of forming
an optimal policy (a mapping from states to actions) that max-
imizes expected total accumulated reward over some hori-
zon. Dynamic programming methods are often used to solveW

We focus on finite-horizon problems to keep the presentation
short, though everything we describe can be applied with little mod-
ification to discounted, infinite-horizon MDPs.

MDPs [13], though one difficulty facing (the classical ver-
sions of) such algorithms is their reliance on an explicit state-
space formulation; as such, their complexity is exponential
in the number of state variables. However, “logical” repre-
sentations such as STRIPS and dynamic Bayesian networks
have recently been used to make the specification and solu-
tion of MDPs much easier [4]. The DTGolog representation
goes further in this direction by specifying state transitions in
first order logic. Restricting attention to reachable states us-
ing decision tree search can, in some circumstances, allevi-
ate the computational difficulties of dynamic programming.
Search-based approaches to solving MDPs can use heuris-
tics, learning, sampling, and pruning to improve their effi-
ciency [3, 6, 7, 8, 9]. Declarative search control knowledge,
used successfully in classical planning [2], might also be used
to prune the search space. In an MDP, this could be viewed
as restricting the set of policies considered. This type of ap-
proach has been explored in the more general context of value
iteration for MDPs in, e.g., [11, 18]: local policies or finite-
state machines are used to model partial policies, and tech-
niques are devised to find the optimal policy consistent with
the constraints so imposed. In Section 4 we develop the DT-
Golog interpreter to capture similar intuitions, but adopt the
Golog programming language as a means of specifying these
constraints using natural programming constructs.

3 The Situation Calculus and Golog
The situation calculus is a first-order language for axiomatiz-
ing dynamic worlds. In recent years, it has been considerably
extended beyond the “classical” language to include concur-
rency, continuous time, etc., but in all cases, its basic ingre-
dients consist of actions, situations and fluents.

Actions are first-order terms consisting of an action func-
tion symbol and its arguments. In the approach to represent-
ing time in the situation calculus of [14], one of the argu-
ments to such an action function symbol—typically, its last
argument—is the time of the action’s occurrence. For exam-
ple, startGo %YXD�DXYZ[��\!]^"#/ might denote the action of a robot start-
ing to move from location X to X_Z at time 3.1. Following Reiter
[14], all actions are instantaneous (i.e, with zero duration). `

A situation is a first-order term denoting a sequence of ac-
tions. These sequences are represented using a binary func-
tion symbol do: do %Bab�*'#/ denotes the sequence resulting from
adding the action a to the sequence ' . The special constant
H ? denotes the initial situation, namely the empty action se-
quence. Therefore, the situation term

do % endGo %_XD�.X_ZV��c!] \N/)� do % startGrasp %�dM��eN/C�
do % startGo %YXD�DXYZ[��eN/)�*H ? /D/D/

denotes the following sequence of actions: startGo f_g�hVg_i^hDj#k ,
startGrasp f_lNhDj#k , endGo f_gBhVg i h*mon p&k . Axioms for situations with
time are given in [15].

Relations whose truth values vary from state to state are
called relational fluents, and are denoted by predicate or
function symbols whose last argument is a situation term. For

q
Durations can be captured using processes, as shown below. A

full exposition of time is not possible here.



example, r�XBd&'�s)8	dM%�tu�*vw�*'#/ might be a relational fluent, mean-
ing that

x
when the robot performs the action sequence denoted

by the situation term ' , t will be close to v .
A domain theory is axiomatized in the situation calculus

with four classes of axioms:
Action precondition axioms: There is one for each ac-
tion function Qy%#zt,/ , with syntactic form Poss %_QA%#zt,/C��'�/|{}�~ %#ztu�*'#/C] Here,

}�~ %#ztu�*'#/ is a formula with free variables
among zt���'6] These are the preconditions of action Q .
Successor state axioms: There is one for each rela-
tional fluent �:%#zt���'#/ , with syntactic form �:%#ztu�*�MdM%B+���'#/D/:{�b� %#zt���+,�*'#/C� where

�b� %#zt���+,�*'#/ is a formula with free vari-
ables among +,�*'6�Mzt�] These characterize the truth values of the
fluent � in the next situation �MdM%�+,��'�/ in terms of the current
situation ' , and they embody a solution to the frame problem
for deterministic actions ([16]).
Unique names axioms for actions: These state that the ac-
tions of the domain are pairwise unequal.
Initial database: This is a set of sentences whose only situ-
ation term is H ? ; it specifies the initial problem state.

Examples of these axioms will be seen in Section 4.1.
Golog [10] is a situation calculus-based programming lan-

guage for defining complex actions in terms of a set of primi-
tive actions axiomatized in the situation calculus as described
above. It has the standard—and some not-so-standard—
control structures found in most Algol-like languages.

1. Sequence: a��@��] Do action a , followed by action � .

2. Test actions: �,� Test the truth value of expression � in the
current situation.

3. Nondeterministic action choice: a�E#��] Do a or � .

4. Nondeterministic choice of arguments: %�7�t�/.ab%�t,/ . Non-
deterministically pick a value for t , and for that value of
t , do action ab%�t,/ .

5. Conditionals (if-then-else) and while loops.

6. Procedures, including recursion.

The semantics of Golog programs is defined by macro-
expansion, using a ternary relation Do. Do %_�&��'N��' Z / is an ab-
breviation for a situation calculus formula whose intuitive
meaning is that 'CZ is one of the situations reached by eval-
uating the program � beginning in situation ' . Given a pro-
gram � , one proves, using the situation calculus axiomatiza-
tion of the background domain, the formula %��!'#/ Do %_�&��H ? ��'�/
to compute a plan. Any binding for ' obtained by a construc-
tive proof of this sentence is a legal execution trace, involving
only primitive actions, of � . A Golog interpreter for the situ-
ation calculus with time, implemented in Prolog, is described
in [15].

Thus the interpreter will makes choices (if possible) that
lead to successful computation of an execution trace of the
program. With nondeterministic choice and the specifica-
tion of postconditions corresponding to goals, Golog can be
viewed as integrating planning and programming in deter-
ministic domains. We will see examples of Golog programs
in Section 5.

4 DTGolog: Decision-Theoretic Golog

As a planning model, MDPs are quite flexible and robust,
dealing with uncertainty, multiple objectives, and so on, but
suffer from several key limitations. While recent work in
DTP has focused on the development of compact, natural
representations for MDPs [4], little work has gone into the
development of first-order languages for specifying MDPs
(see [1, 12] for two exceptions). More importantly, the com-
putational complexity of policy construction is prohibitive.
As mentioned, one way to circumvent planning complexity
is to allow explicit agent programming; yet little work has
been directed toward integrating the ability to write programs
or otherwise constrain the space of policies that are searched
during planning. What work has been done (e.g., [11, 18])
fails to provide a language for imposing such constraints, and
certainly offers no tools for programming agent behavior. We
believe that natural, declarative programming languages and
methodologies for (partially) specifying agent behavior are
necessary for this approach to find successful application in
real domains.

Golog, on the other hand, provides a very natural means
for agent programming. With nondeterministic choice a pro-
grammer can even leave a certain amount of “planning” up
to the interpreter (or agent being controlled). However, for
applications such as robotics programming, the usefulness of
Golog is severely limited by its inability to model stochastic
domains, or reason decision-theoretically about appropriate
choices. Despite these limitations, (deterministic) Golog has
been successfully used to provide the high-level control of
a museum tour-guide robot, controlling user interaction and
scheduling more than 2,400 exhibits [5].

We have developed DTGolog, a decision-theoretic exten-
sion of Golog that allows one to specify MDPs in a first-order
language, and provide “advice” in the form of high-level pro-
grams that constrain the search for policies. A program can
be viewed as a partially-specified policy: its semantics can
be viewed, informally, as the execution of the program (or
the completion of the policy) that has highest expected value.
DTGolog offers a synthesis of both planning and program-
ming, and is in fact general enough to accommodate both ex-
tremes. One can write purely nondeterministic programs that
allow an agent to solve an MDP optimally, or purely deter-
ministic programs that leave no decisions in the agent’s hands
whatsoever. We will see, in fact, that a point between these
ends of the spectrum is often the most useful way to write
robot programs. DTGolog allows the appropriate point for
any specific problem to be chosen with relative ease. Space
precludes the presentation of many technical details, but we
try to provide the basic flavor of DTGolog.

4.1 DTGolog: Problem Representation

The specification of an MDP requires the provision of a back-
ground action theory—as in Section 3—and a background
optimization theory—consisting of the specification of a re-
ward function and some optimality criterion (here we require
only a horizon 8 ). The unique names axioms and initial
database have the same form as in standard Golog.



A background action theory in the decision-theoretic set-
ting� distinguishes between deterministic agent actions and
stochastic agent actions. Both types are used to form pro-
grams and policies. However, the situation resulting from
execution of a stochastic action is not determined by the ac-
tion itself: instead each stochastic agent action is associated
with a finite set of deterministic actions, from which “nature”
chooses stochastically. Successor state axioms are provided
for nature’s actions directly (which are deterministic), not for
stochastic agent actions (i.e., successor state axioms never
mention stochastic agent actions). When a stochastic action
is executed, nature chooses one of the associated actions with
a specified probability, and the successor state is given by na-
ture’s action so chosen. The predicate stochastic %�+,��'N���@/ re-
lates a stochastic agent action + to one of nature’s action � in
a situation ' , and prob %B�����u�*'#/ denotes the probability with
which � is chosen in ' . Deterministic agent’s actions are ax-
iomatized using exactly the same precondition and succes-
sor state axioms. This methodology allows us to extend the
axiomatization of a domain theory described in the previous
section in a minimal way.

As an example, imagine a robot moving between differ-
ent locations: the process of going is initiated by a deter-
ministic action startGo %YX F �.X ` �V5*/ ; but the terminating action
endGo %_X F �.X ` ��5*/ is stochastic (e.g., the robot may end up in
some location other than X ` , say, the hallway). We give na-
ture two choices, endGoS %_X F �.X ` ��5*/ (successful arrival) and
endGoF %_X F � Hall �V5*/ (end with failure), and include axioms
such as stochastic % endGo %YX F �.X ` ��5*/C��'N� endGoS %_X F �DX ` �V5*/./ and
prob % endGoS %YX F �.X ` ��5*/C���!] �!��'�/ (i.e., successful movement oc-
curs with probability 0.9 in any situation). Let going %_X F �DX ` ��'�/
be the relational fluent meaning that in the situation ' the
robot is in the process of moving between locations X F and
X ` ; and let robotLoc %YXD�*'#/ be a relational fluent denoting the
robot’s location. The following precondition and succes-
sor state axioms characterize these fluents, and the actions
startGo, endGoS, endGoF:

Poss f startGo f_g W hVg q hD�Bk.hD�Ck�����f��&gBhVg i k going f_gBhDg i hD�Ck�
robotLoc f_g W hD�Ck

Poss f endGoS f_g W hVg q hD��k.hD�Cku� going f_g W hVg q hD�Ck.h
Poss f endGoF f_g W h[g q h*��k.hV�Ck����og i n going f_g W hDg i hD�Ck � g i@�� g q
going f_gBh[g_i�hD�&lNf_�MhV�CkVk���f��6��kB� � startGo f_gBh[g_i�h*��k@�

going f_gBh[g_i�h��)k � ��f��N�BkB� � endGoS f_gBh[g_i�h��BkV�
going f_gBh[g i h��)k � ��f��N��hVg i i kB� � endGoF f_gBhVg i i hD��k.h

The background action theory also includes a new class
of axioms, sense conditions axioms, which assert atomic for-
mulae using predicate senseCond %������@/ : this holds if � is a
logical condition that an agent uses to determine if the spe-
cific nature’s action � occurred when some stochastic action
was executed. We require such axioms in order to “imple-
ment” full observability. While in the standard MDP model
one simply assumes that the successor state is known, in prac-
tice, one must force agents to disambiguate the state using
sensor information. The sensing actions needed can be de-
termined from sense condition axioms. The following dis-
tinguish successful from unsuccessful movement:
senseCond % endGoS %YX F �.X ` ��5*/C� robotLoc %YX ` /./
senseCond % endGoF %YX F �.X ` �V5*/)� robotLoc % Hall /./

A DTGolog optimization theory contains axioms specify-
ing the reward function.   In their simplest form, reward ax-
ioms use the function reward %B'�/ and assert costs and rewards
as a function of the action taken, properties of the current sit-
uation, or both (note that the action taken can be recovered
from the situation term). For instance, we might assert

reward % do % giveCoffeeSuccessful % Jill �V5*/)�*'#/D/��J¡!] \
Because primitive actions have an explicit temporal argu-
ment, we can also describe time-dependent reward func-
tions easily (associated with behaviors that extend over time).
These can be dealt with in the interpreter because of our
use of situation terms rather than states, from which time
can be derived without having it explicitly encoded in the
state. This often proves useful in practice. In a given tem-
poral Golog program, the temporal occurrence of certain ac-
tions can be uniquely determined either by temporal con-
straints or by the programmer. Other actions may occur at
any time in a certain interval determined by temporal in-
equalities; for any such action QA%#ztu�V5*/ , we can instantiate the
time argument by maximizing the reward for reaching the
situation do %_Qy%#zt���5*/C��'#/ . For example, suppose the robot re-
ceives a reward ¢	�G£¤+Mtu% F�?�?)¥�4¦ (_§ 4�¨�©6ªD«�¬®­^¯V° ­®±�² / for doing the action
endGoS %_X F �.X ` ��5*/ in ' . With this reward function, the robot
is encouraged to arrive at the destination as soon as possible
and is also encouraged to go to nearby locations (because the
reward is inversely proportional to distance).

Our representation for stochastic actions is related some-
what to the representations proposed in [1, 7, 12].

4.2 DTGolog: Semantics
In what follows, we assume that we have been provided with
a background action theory and optimization theory. We in-
terpret DTGolog programs relative to this theory. DTGolog
programs are written using the same program operators as
Golog programs. The semantics is specified in a similar fash-
ion, with the predicate BestDo (described below) playing the
role of Do. However, the structure of BestDo (and its Prolog
implementation) is rather different than that of Do. One dif-
ference reflects the fact that primitive actions can be stochas-
tic. Execution traces for a sequence of primitive actions need
not be simple “linear” situation terms, but rather branching
“trees.” Another reflects the fact that DTGolog distinguishes
otherwise legal traces according to expected utility. Given a
choice between two actions (or subprograms) at some point
in a program, the interpreter chooses the action with high-
est expected value, mirroring the structure of an MDP search
tree. The interpreter returns a policy—an expanded Golog
program—in which every nondeterministic choice point is
grounded with the selection of an optimal choice. Intuitively,
the semantics of a DTGolog program will be given by the op-
timal execution of that program.

The semantics of a DTGolog program is defined by a pred-
icate BestDo %®�,¢&d)³´��'N��µ�d&¢&¶B·!�B��d#X.�*¸6+NX.���,¢&d&¹C/ , where �,¢&d)³ is a
Golog program, ' is a starting situation, ��d#X is the optimal
conditional policy determined by program ��¢&d)³ beginning in

º
We require an optimality criterion to be specified as well. We

assume a finite-horizon » in this work.



situation ' , ¸6+6X is the expected value of that policy, �,¢&d&¹ is the
probability¼ that �,d#X will execute successfully, and µ�d&¢&¶B· is
a prespecified horizon. Generally, an intepreter implement-
ing this definition will be called with a given program ��¢&d)³ ,
situation H ? , and horizon µ�d&¢&¶B· , and the arguments ��d#X , ¸6+6X
and �,¢&d&¹ will be instantiated by the interpreter. The policy
�,d#X returned by the interpreter is a Golog program consist-
ing of the sequential composition (under � ) of agent actions,
senseEffect %_Q�/ sensing actions (which serve to identify na-
ture’s choices whenever Q is a stochastic agent action), and
conditionals (if � then �,d#X F else �,d#X ` ).

Below we assume an MDP with finite horizon ½ : if a pro-
gram fails to terminate before the horizon is reached, the in-
terpreter produces the best (partial) ½ -step execution of the
program. The interpreter can easily be modified to deal with
programs that are guaranteed to terminate in a finite amount
of time (so a bound ½ need not be imposed) or infinite-
horizon, discounted problems (returning ¾ -optimal policies).

BestDo is defined inductively on the structure of its first
argument, which is a Golog program:

1. Zero horizon.
BestDo %¿����'N��µ���7���¸!�B��¢&/

¦ «VÀ�
µ¤�G�TÁ¤7T�ÃÂ�¶YX	ÁÄ¸u��¢&s#Å	+M¢&�,%�'#/ÆÁ���¢@�Ç"N]

Give up on the program � if the horizon reaches 0.

2. The null program

BestDo %BÂ�¶_X.�*'6�*µu��7��*¸w���,¢&/
¦ «�À�

7T�ÃÂ�¶YXÈÁG¸��Ã¢&s#Å	+M¢&�,%�'#/ÆÁL�,¢@�Ç"N]
3. First program action is deterministic.

BestDo %B+��B����'6�*µu�*7���¸!�B��¢&/
¦ «VÀ�É Poss %�+,��'�/@ÁÃ7Ã� Stop ÁA��¢@�Ã�ÊÁÃ¸u� reward %B'�/�Ë

Poss %B+,�*'#/DÁ
�@%�7,ZV��¸&ZV�B��¢#ZÌ/ BestDo %®�����MdM%�+,��'�/)�*µ – "6�*7,Z_��¸&ZB���,¢#ZÌ/DÁ

7Ã�1+,��7,ZNÁ�¸Í�1¢&s#Å	+M¢&�,%�'#/@Î�¸&ZÏÁA�,¢	����¢#ZV]
A program that begins with a deterministic agent action +
(if + is possible in situation ' ) has its optimal execution de-
fined as the optimal execution of the remainder of the pro-
gram � in situation do %�+,��'�/ . Its value is given by the ex-
pected value of this continuation plus the reward in ' (ac-
tion cost for + can be included without difficulty), while
its success probability is given by the success probability
of its continuation. The optimal policy is + followed by the
optimal policy for the remainder. If + is not possible at ' ,
the policy is simply the Stop action, the success probability
is zero, and the value is simply the reward associated with
situation ' . H@5*d�� is a zero-cost action that takes the agent
to a zero-cost absorbing state. Ð

4. First program action is stochastic.
When + is a stochastic agent action for which nature se-
lects one of the actions in the set K&� F �#]�]#]��*�,ÑMP ,

BestDo %B+��B����'6�*µu�*7���¸!�B��¢&/
¦ «VÀ�

�@%�7,Z_/C] BestDoAux %VK&� F �^]�]#] ��� Ñ PÏ�B����'N��µu�*7,Z^�*¸w���,¢&/�Á
7Ã�G+�� senseEffect %B+M/C��7,Z�]

Ò
This can be viewed as having an agent simply give up its at-

tempt to execute the policy and await further instruction.

The resulting policy is +,� senseEffect %�+M/C��7 Z where 7 Z is
the policy delivered by BestDoAux. Intuitively, this policy
says that the agent should first perform action + , at which
point nature selects one of � F ��]#]#]*��� Ñ to perform (with
probabilities ��¢&d&¹&%B� ( ��'#/ ), then the agent should sense the
outcome of action + (which tells it which of nature’s ac-
tions � ( actually occurred), then it should execute the pol-
icy delivered by BestDoAux. Ó

BestDoAux %VK�PM���u�*'6��µ���7��*¸w���,¢�/
¦ «VÀ�

7T�ÃH@5*d��AÁÃ¸��Ã�TÁA��¢@�Ã�!]
Suppose ÔÖÕ×" . Suppose further that � F is the sense
condition for nature’s action � F , meaning that observing
that � F is true is necessary and sufficient for the agent to
conclude that nature actually performed action � F , among
the choices KØ� F �#]#]�]����,ÑMP available to her by virtue of the
agent having done stochastic action + . Then

BestDoAux %�KØ� F �#]#]�]����,ÑMPÏ�B����'N��µ���7���¸!�B��¢&/
¦ «�À�É Poss %B� F ��'�/)Á BestDoAux % KØ� ` �^]�]#] ��� Ñ PÏ�B����'N��µ���7���¸!�B��¢&/

Ë Poss %�� F ��'�/�Á
�@%�7,ZV��¸&ZV�B��¢#ZÌ/)] BestDoAux % KØ� ` �Ì]#]#] �*�,ÑMPM���u�*'6�*µu��7,ZÌ��¸&ZV�B��¢#ZÌ/ Á
�@%�7 F ��¸ F �B��¢ F /C] BestDo %®�����MdM%�� F ��'#/C��µ – "N��7 F ��¸ F ���,¢ F /IÁ

7Ã� if � F then 7 F else 7,Z�Á
¸��Ã¸&Z!Î�¸ F OD�,¢&d&¹&%�� F ��'#/�Á
��¢@�A��¢#ZNÎÇ�,¢ F OD�,¢&d&¹&%�� F �*'#/C]

BestDoAux determines a policy in the form of a conditional
plan:

if �,( ¯ then �,d#X F else if �,( ± then ��d#X ` O#O#O
else if �,(BÙ then �,d#X^Ú else H@5*d��u]

Here, �,( ¯ �#]#]�]����,(�Ù are all of nature’s actions among
KØ� F �#]�]#]��*� Ñ P that are possible in ' , and ��d#X - is the policy
returned by the program � , in situation �ÏdM%B� (^Û �*'#/ .

5. First program action is a test.

BestDo %��@�M�B����'N��µu�*7���¸!�B��¢&/
¦ «�À�

��� 'Ü$ÏÁ BestDo %¿����'N��µ���7���¸!�B��¢&/@ËÉ ��� 'Ü$ÏÁÃ7T� Stop ÁÆ��¢@�Ã�TÁÃ¸��Ã¢&s#Å	+M¢&�,%�'#/
6. First program action is the nondeterministic choice of

two programs.

BestDo %D%¿� F E�� ` /)���u�*'6�*µu��7��*¸w���,¢&/
¦ «VÀ�

��%�7 F ��¸ F �B��¢ F /C] BestDo %®� F ���u�*'6��µ���7 F ��¸ F �B��¢ F /�Á
��%�7 ` ��¸ ` �B��¢ ` /C] BestDo %®� ` ���u�*'6��µ���7 ` ��¸ ` �B��¢ ` /�Á
%.%�¸ F ���,¢ F /bS1%�¸ ` �B��¢ ` /@ÁÃ7T��7 ` ÁÃ¸��Ã¸ ` ÁA��¢@�A��¢ ` Ë

%�¸ F ���,¢ F /�ÝÞ%�¸ ` �B��¢ ` /@ÁÃ7T��7 F ÁÃ¸��Ã¸ F ÁA��¢@�A��¢ F /)]
Given the choice between two subprograms � F and � ` , the
optimal policy is determined by that subprogram with op-
timal execution. Note that there is some subtlety in the
interpretation of a DTGolog program: on the one hand,
we wish the interpreter to choose a course of action with
maximal expected value; on the other, it should follow the
advice provided by the program. Because certain choices
may lead to abnormal termination—the H@5*d�� action cor-
ß
It is these sensing actions that “implement” the assumption that

the MDP is fully observable.



responding to an incomplete execution of the program—
withà varying probabilities, the success probability asso-
ciated with a policy can be loosely viewed as the degree
to which the interpreter adhered to the program. Thus
we have a multi-objective optimization problem, requiring
some tradeoff between success probability and expected
value of a policy. The predicate S compares pairs of the
form %®����¸N/ , where � is a success probability and ¸ is an
expected value. á

7. Conditionals.

BestDo %.% if � then � F else � ` /C�B����'N��µu�*7���¸!�B��¢&/
¦ «�À�

BestDo %.%��@�M�B� F E É �@�M�B� ` /C�B����'6�*µu�*7���¸!�B��¢&/
This simply says that a conditional if � then � F else � ` is
an abbreviation for �@�M�B� F E É �@�M�B� ` .

8. Nondeterministic finite choice of action arguments.

BestDo %.%�7�%�tâ�Nã!/Y��/C�B�!ZB�*'6��µ��B��d#XD��¸!�B��¢&/
¦ «�À�

BestDo %¿�IE äª�¯ E�O#O�OÆEå�IE äª�æ /)���wZV�*'6�*µu�B��d#XD��¸!�B��¢&/
The programming construct 7�%BtÃ�Nã!/Y� requires the nonde-
terministic choice of an element t from the finite set ãÃ�
KØr F ��]#]#]*��r © P , and for that t , do the program � . It there-
fore is an abbreviation for the program ��E äª�¯ EÍO�O#OÆE��IE äª�æ ,
where �IE äª means substitute r for all free occurrences of t
in � .

9. Associate sequential composition to the right.

BestDo %.%®� F �B� ` /)���   �*'6��µ���7��*¸w���,¢&/
¦ «�À�

BestDo %®� F �#%®� ` �B�   /C��'N��µu�*7���¸!�B��¢&/)]
This is needed to massage the program to a form in which
its first action is one of the forms suitable for application
of rules 2-8.

There is also a suitable expansion rule when the first pro-
gram action is a procedure call. This is almost identical to
the rule for Golog procedures [10], and requires second-order
logic to characterize the standard fixed point definition of re-
cursive procedures. Because it is a bit on the complicated
side, and because it is not central to the specification of poli-
cies for DTGolog, we omit this expansion rule here. While
loops can be defined using procedures.

4.3 Computing Optimal Policies
BestDo %¿��¢&d)³@�*'6�*µ,d&¢&¶B·!�B��d#XD��¸N+6XD�B��¢&d&¹C/ is, analogously to the
case for Golog, an abbreviation for a situation calculus for-
mula whose intuitive meaning is that �,d#X is an optimal policy
resulting from evaluating the program �,¢&d)³ beginning in sit-
uation ' , that ¸6+NX is its value, and ��¢&d&¹ the probability of a

ç
How one defines this predicate depends on how one interprets

the advice embodied in a program. In our implementation, we use a
mild lexicographic preference where f è W hDé W k�ê�f è q hDé q k wheneverè W �ìë and è qîí ë (so an agent cannot choose an execution that
guarantees failure). If both è W and è q are zero, or both are greater
than zero, than the é -terms are used for comparison. It is important
to note that certain multiattribute preferences could violate the dy-
namic programming principle, in which case our search procedure
would have to be revised (as would any form of dynamic program-
ming). This is not the case with our lexicographic preference.

successful execution of this policy. Therefore, given a pro-
gram � , and horizon H, one proves, using the situation cal-
culus axiomatization of the background domain described in
Section 4.1, the formula

�@%¿��d#XD��¸N+6XD�B��¢&d&¹)/ BestDo %_�!��Â�¶YXD�*H ? �*½â���,d#XD�*¸6+6XD���,¢&d&¹C/C]
Any binding for ��d#X , ¸N+6X and �,¢&d&¹ obtained by a constructive
proof of this sentence determines the result of the program
computation.

4.4 Implementing a DTGolog Interpreter
Just as an interpreter for Golog is almost trivial to implement
in Prolog, when given its situation calculus specification, so
also is an interpreter for DTGolog. One simply translates
each of the above rules into an almost identical Prolog clause.
For example, here is the implementation for rules 3 and 6:
% First action is deterministic.
bestDo(A : E,S,H,Pol,V,Prob) :-
agentAction(A), deterministic(A),
(not poss(A,S), Pol=stop, Prob is 0, reward(V,S);
poss(A,S), bestDo(E,do(A,S),H-1,RestPol,Vfuture,Prob),

reward(R,S), V is R + Vfuture, Pol = (A : RestPol)).

% Nondeterministic choice between E1 and E2
bestDo((E1 # E2) : E,S,Pol,V,P,k) :-

bestDo(E1 : E,S,Pol1,V1,P1,k),
bestDo(E2 : E,S,Pol2,V2,P2,k),
( lesseq(V1,P1,V2,P2), Pol=Pol2, P=P2, V=V2;

greater(V1,P1,V2,P2), Pol=Pol1, P=P1, V=V1).

The entire DTGolog interpreter is in this style, and is ex-
tremely compact and transparent.

5 Robot Programming
A key advantage of DTGolog as a framework for robot
programming and planning is its ability to allow behavior
to be specified at any convenient point along the program-
ming/planning spectrum. By allowing the specification of
stochastic domain models in a declarative language, DT-
Golog not only allows the programmer to specify programs
naturally (using robot actions as the base level primitives),
but also permits the programmer to leave gaps in the program
that will be filled in optimally by the robot itself. This func-
tionality can greatly facilitate the development of complex
robotic software. Planning ability allows for the scheduling
of complex behaviors that are difficult to preprogram. It also
obviates the need to reprogram a robot to adapt its behavior to
reflect environmental changes or changes in objective func-
tions. Programming, in contrast, is crucial in alleviating the
computational burden of uninformed planning.

To illustrate these points, we have developed a mobile
delivery robot, tasked to carry mail and coffee in our of-
fice building. The physical robot is an RWI B21 robot,
equipped with a laser range finder. The robot navigates using
BeeSoft [5, 19], a software package that includes methods for
map acquisition, localization, collision avoidance, and on-
line path planning. Figure 1d shows a map, along with a de-
livery path (from the main office to a recipient’s office).

Initially, the robot moves to the main office, where some-
one loads mail on the robot, as shown in Figure 1a. DTGolog
then chooses a recipient by utility optimization. Figure 1b
shows the robot traveling autonomously through a hallway.
If the person is in his office, he acknowledges the receipt of



(a) (b) (c) (d)

Figure 1: Mail delivery: (a) A person loads mail and coffee onto the robot. (b) DTGolog sends the robot to an office. (c) The
recipient accepts the mail and coffee, acknowledging the successful delivery by pressing a button. (d) The map learned by the
robot, along with the robot’s path (from the main office to recipient).

the items by pressing a button on the robot as shown in Fig-
ure 1c; otherwise, after waiting for a certain period of time,
the robot marks the delivery attempt as unsuccessful and con-
tinues with the next delivery. The task of DTGolog, thus, is
to schedule the individual deliveries in the face of stochastic
action effects arising from the fact that people may or may
not be in their office at the time of delivery. It must also con-
tend with different priorities for different people and balance
these against the domain uncertainty.

The underlying MDP for this relatively simple domain
grows rapidly as the number of people requiring deliv-
eries increases. The state space is characterized by flu-
ents such as hasMail % person �*'#/ , mailPresent % person �����*'#/ ,
robotLoc %_X�d&r&��'#/ , and so on. In a domain with ï people, ð
locations, and Â as the maximum number of pieces of mail
(and ignoring the temporal aspect of the problem), our MDP
has a state space of size e&ñÞOM%�¡6Â0ÎJ¡N/Vò�O&ð�  when formu-
lated in the most appropriate way. Even restricting the MDP
to one piece (or bundle) of mail per person, the state space
complexity, eoóNò�O�ð�  , grows exponentially in ï . Actions in-
clude picking up mail, moving from location to location, giv-
ing mail and so on. Uncertainty is associated with the endGo
action as described above, as well as with the outcome of giv-
ing mail (see below).

The robot’s objective function is given by a reward func-
tion that associates an independent, additive reward with
each person’s successful delivery. Each person has a differ-
ent deadline, and the reward decreases linearly with time un-
til the deadline (when it becomes zero). The relative priority
associated with different recipients is given by this function;
e.g., we might use reward %���+Mv!��5��*'#/��1\6��ôA5*õ!"#� , where the
initial reward (30) and rate of decrease (1/10) indicates rel-
ative priority. Given a situation term corresponding to any
branch of the tree, it is straightforward to maximize value
with respect to choice of temporal arguments assigned to ac-
tions in the sequence. We do not delve into details here.

Our robot is provided with the following simple DTGolog
program:

while f���è,n �@�N�B�Yö�÷Tè!�YöC�Mf èøk � �6ù mailPresent(p,n) kú f è,hMèÏö)lDèMg^ö&hf��@�N�B�_ö#÷Tè!�_ö)�Mf èøk � �6ù mailPresent(p,n) kVûåü@�&öCg_ý_é#ö�þ�ÿ�l6f èøk@k
endWhile

Intuitively, this program chooses people from the finite
range people for mail delivery and delivers mail in the or-

der that maximizes expected utility (coffee delivery can be
incorporated readily). deliverTo is itself a complex pro-
cedure involving picking up items for a person, moving to the
person’s office, giving the items, and returning to the mail-
room. But this sequence is a very obvious one to handcode
in our domain, whereas the optimal ordering of delivery is
not (and can change, as we’ll see). We have included a guard
condition É +o5V5*s#£Æ�M5*s#�,%®�,/IÁÃ�!� mailPresent(p,n) in the pro-
gram to prevent the robot from repeatedly trying to deliver
mail to a person who is out of her office. This program con-
strains the robot to just one attempted mail delivery per per-
son, and is a nice example of how the programmer can easily
impose domain specific restrictions on the policies returned
by a DTGolog program.

Several things emerged from the development of this code.
First, the same program determines different policies—
and very different qualitative behavior—when the model is
changed or the reward function is changed. As a simple ex-
ample, when the probability that Ray (high priority) is in his
office is �!]�� , his delivery is scheduled before Craig’s (low pri-
ority); but when that probability is lowered to �!] ¡ , Craig’s de-
livery is scheduled beforehand. Such changes in the domain
would require a change in the control program if not for the
planning ability provided by DTGolog. The computational
requirements of this decision making capability are much less
than those should we allow completely arbitrary policies to
be searched in the decision tree.

Full MDP planning can be implemented within DTGolog
by running it with the program that allows any (feasible)
action to be chosen at any time. This causes a full deci-
sion tree to be constructed. Given the domain complexity,
this unconstrained search tree could only be completely eval-
uated for problems with a maximum horizon of seven (in
about 1 minute)—this depth is barely enough to complete the
construction of a policy to serve one person. With the pro-
gram above, the interpreter finds optimal completions for a
3-person domain in about 1 second (producing a policy with
success probability 0.94), a 4-person domain in about 9 sec-
onds (success probability 0.93) and a 5-person domain in
about 6 minutes (success probability 0.88). This latter cor-
responds to a horizon of about 30; clearly the decision tree
search would be infeasible without the program constraints
(with size well over "#�& C? ). We note that the MDP formulation
of this problem, with 5 people and 7 locations, would require



more than 2.7 billion states. So dynamic programming could
not be used to solve this MDP without program constraints
(or exploiting some other form of structure).

We note that our example programs restrict the policy that
the robot can implement, leaving only one choice (the choice
of person to whom to deliver mail) available to the robot,
with the rest of the robot’s behavior fixed by the program.
While these programs are quite natural, structuring a program
this way may preclude optimal behavior. For instance, by
restricting the robot to serving one person at a time, the si-
multaneous delivery of mail to two people in nearby offices
won’t be considered. In circumstances where interleaving is
impossible (e.g., the robot can carry only one item at a time),
this program admits optimal behavior—it describes how to
deliver an item, leaving the robot to decide only on the or-
der of deliveries. But even in settings where simultaneous
or interleaved deliveries are feasible, the “nonoverlapping”
program may have sufficiently high utility that restricting the
robot’s choices is acceptable (since it allows the MDP to be
solved much more quickly).

These experiments illustrate the benefits of integrating
programming and planning for mobile robot programming.
We conjecture that the advantage of our framework becomes
even more evident as we scale up to more complex tasks.
For example, consider a robot that serves dozens of people,
while making decisions as to when to recharge its batteries.
Mail and coffee requests might arrive sporadically at random
points in time, not just once a day (as is the case for our cur-
rent implementation). Even with today’s best planners, the
complexity of such tasks is well beyond what can be tackled
in reasonable time. DTGolog is powerful enough to accom-
modate such scenarios. If supplied with programs of the type
described above, we expect DTGolog to make the (remain-
ing) planning problem tractable—with minimal effort on the
programmer’s side.

6 Concluding Remarks
We have provided a general first-order language for specify-
ing MDPs and imposing constraints on the space of allowable
policies by writing a program. In this way we have provided
a natural framework for combining decision-theoretic plan-
ning and agent programming with an intuitive semantics. We
have found this framework to be very flexible as a robot pro-
gramming tool, integrating programming and planning seam-
lessly and permitting the developer to choose the point on this
spectrum best-suited to the task at hand. While Golog has
proven to be an ideal vehicle for this combination, our ideas
transcend the specific choice of language.

A number of interesting directions remain to be explored.
The decision-tree algorithm used by the DTGolog interpreter
is clearly subject to computational limitations. � However,
the basic intuitions and foundations of DTGolog are not wed-
ded to this particular computational model. We are currently
integrating integrating efficient algorithms and other tech-
niques for solving MDPs into this framework (dynamic pro-
gramming, abstraction, sampling, etc.). We emphasize that

�
Note, however, that program constraints often make otherwise

intractable MDPs reasonably easy to solve using search methods.

even with these methods, the ability to naturally constrain
the search for good policies with explicit programs is cru-
cial. Other avenues include: incorporating realistic mod-
els of partial observability (a key to ensuring wider appli-
cability of the model); extending the expressive power of
the language to include other extensions already defined for
the classical Golog model (e.g., concurrency); incorporat-
ing declaratively-specified heuristic and search control infor-
mation; monitoring of on-line execution of DTGolog pro-
grams [17]; and automatically generating sense conditions
for stochastic actions.
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